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Abstract— For a robotic platform to be able to assist/interact
in human environments, the platform must be able to perform
some fundamental tasks. This includes interacting with humans
by grasping or releasing objects as or when required by
the human. This paper presents a system which allows a
robotic arm manipulator to grasp any moving object from a
user’s hand and releases the object when indicated to do so.
Data from a Time-of-Flight camera is fused with an ordinary
laboratory camera to create a robust method of rapidly tracking
a target object and providing data of possible obstacles. A basic
experiment is used to illustrate to the system.

I. INTRODUCTION

For a robot manipulator to collaborate with a user in
completing an arbitrary task, it is necessary for both partici-
pants to pass objects to each other. From the perspective of
the robot, taking a provided object involves tracking, grasp
planning and ’safe’ execution. The latter is not a focus of
this paper.

There has been some research conducted on this topic [3]
and there is a massive body of knowledge on grasp planning
and object tracking [1]. Our emphasis is on leveraging the
Time-of-Flight (ToF) camera data and fusing it with a stan-
dard laboratory camera to provide a means to rapidly track a
target object and provide data of potential obstacles. The aim
is to improve the robustness of a ‘taking’ maneuver. This is
an important step in creating a robot solution where a user
requires a reliable, quick responding robot in a collaborative
task. The paper represents an initial solution at solving the
problem with a vision system. The kinematic and planning
aspects are kept simple.

The ToF camera emits an infrared pulse and measures
return phase change at every pixel to estimate depth over an
image. We used a Mesa Imaging SR4000 which, if conditions
are right, provides impressively accurate point cloud data
with associated intensities. The resolution of 176x144 is low,
but if the point cloud data can be calibrated to data from a
ordinary lab camera an excellent depth map estimate of a
scene can be measured. The ToF camera provides a frame
rate of roughly 30 frames per second (fps) and combined
with a fast implementation of SIFT, the system can be used to
locate and track a moving object which the robot is required
to take.

This paper will describe all the components required to
complete the ‘taking’ maneuver. The structure of the paper
is as follows: Section II will describe the system architecture
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and provide details of the sensor fusion, robot planning and
object recognition. Section III will present the experimental
results and finally Section IV will describe the conclusions
and future work.

II. SYSTEM

The equipment used in the proposed system consists of a
Barrett Whole Arm Manipulatortm (WAM), a ToF camera
and a Point Grey black and white lab camera. These two
camera are mounted fixed to each other. Our WAM has
a Barrett Hand end effector, a variant of the Salsbury
hand, with sufficient prehensile capability to grasp larger,
less delicate day to day objects. The lab camera is used
to recognize the target object. The approach used will be
presented in Subsection B. To obtain the 3D pose of the
object, the ToF data is fused with the vision information.
The fusion process is described in the next section.

A. Time-of-Flight Range Data

The ToF camera’s software provides a 3D point cloud with
the origin set just in front of the lens. To label pixels in
the lab camera’s image plane the following method is used.
Pictures are taken simultaneously with both cameras of a
chessboard. In the ToF case, the camera’s infrared return
image is used. This image has the modest resolution of
176x144, but is still sufficiently high to calibrate the camera
using OpenCV.

The camera center of the ToF’s infrared image is not at
the origin of the 3D point cloud. This would thwart any
attempt to calibrate the two images directly with something
like OpenCV’s stereo calibration algorithm. To correct for
this the intensity labeled ToF data is reprojected to a virtual
camera which shares an origin with the point cloud. An
arbitrary focal length of 260 is chosen. The method of K-
Nearest Neighbors (KNN) is used to interpolate the pixels
values across the 176x144 resolution virtual camera.

After determining the intrinsic parameters of the lab
camera, OpenCv’s stereo callibration algorithm was applied
to the virtual camera and Point Grey camera images to
determine the cameras’ extrinsic parameters. Finally depth-
labeled point cloud data is projected onto the Point Grey
camera image plane. Because the ToF camera may see points
behind objects in the lab camera image, it is necessary to
remove points that are occluded from the perspective of the
lab camera. This is done by dividing the lab camera image
into cells (10x10 in the experiments) and assigning all pixels
within a cell with the minimum depth of a point from the
ToF camera that project into the cell.



Fig. 1. SIFT features detected and extracted from an object used in the
training set

The ToF camera has a number of sources of error ??.
There is a smoothing effect on the boundaries of objects so
that the discontinuity of an occlusion appears as a gradual
change. Color and illumination dependent noise sum with
typical white noise to further roughen the measurement. In
the proposed system, a simple averaging filter was used to the
remove the white noise. Any point that measured a variance
higher than some threshold over three frames was removed.

B. Object Recognition

For each object in the dataset, training images are cap-
tured. These are used to create a model for each object,
which enables the system to recognize the object at some
later stage. For the training set, objects are spun in front
of the system’s cameras against a white background. Ap-
proximately 40 images were captured for each object. The
Scale Invariant Feature Transform (SIFT)[4] detector and
descriptor was used to extract relevant features from all the
training images captured. SIFT was sued as it is robust to
changes in illumination and affine transformations. Figure
1 is an example of SIFT features which were detected and
extracted from an object in the training set.

Most state-of-the-art object recognition systems combine
multiple training images to produce a single model represen-
tation of an object. This has the advantage of allowing the
system to recognise an object from any viewpoint, especially
if the object is in a cluttered environment or partly occluded.
We used Davide Lowe’s [5] view clustering algorithm to
combine multiple training views to create 2.5D models of
each object. The idea is that similar image views of an
object are clustered into a single model view. The 2.5D
representation of the object consists of a set of these model
views which represents views from a range of significantly
different locations around the view sphere of the object.

The first training image is used to build an initial model.
This consists of the all SIFT features extracted from the
training view, as well the location, orientation and scale
of each feature in that image. We then use SIFT matching
followed by the Hough transform [7] and a least-squares
geometric verification to match subsequent images.

The matches obtained using SIFT matching are inputted

Fig. 2. Features that agree on a particular object location,scale and
orientation

into the Hough transform. The Hough transform assists in
removing ambiguous SIFT matches. This is achieved by
allowing each match to vote for an approximate location,
scale and orientation of the object as described in [6].
Only features that agree on a specific object location, scale
and orientation are kept. We use a bin size of 30 degrees
for orientation, a factor of 2 for scale and 0.25 times the
maximum model dimension for location. The large bin sizes
allow us to cluster images even in the presence of substantial
geometric distortion. Figure 2 displays features that have
voted for a particular location,scale and orientation of an
object.

Only bins with at least 3 entries are considered. These
are then sorte into decreasing order of size. A geometric
verification using a similarity transform is then performed on
each bin. This enables us to calculate if there exist parameters
that allow the similarity transform from the reference image
to the matched point.

The similarity transform gives the mapping of a model
point [x y] to an image point [u v] in terms of image scaling
s, image rotation,θ, and image translation [tx, ty ].[
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The above equation can then be written in a linear form

collecting the unknown similarity transform parameters into
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This equation describes a single feature match, but any

number of further matches can be added, with each con-
tributing two more rows to the first and last matrix. We can
write this linear system as:
Ax = b
The least-squares solution for the parameters x can be

determined by solving the corresponding normal equations,
X = [ATA]−1AT b



which minimises the sum of square distances from the
projected model locations to the corresponding image loca-
tions. We can then use this solution to calculate the error e
between the projected model feature and the image feature.

e =
√

2‖Ax−b‖2
r−4

where r is the number of rows in matrix A from which we
extract the 4 degrees of freedom of the similarity transform.
The factor 2 in the numerator accounts for the fact that
the squared errors in 2 rows must be summed to measure
a squared image distance [5].

The error e is then compared to a pre-defined threshold T
to determine if the new training image should be clustered
with an existing model view. T is selected to be 0.05 times
the maximum dimension of the training image, which results
in clustering views that differ by less than roughly 20 degrees
rotation in depth. When a new training image is inputted
into the system, it is matched to previous models views and
depending on whether there is a match and/or the value of
e one of three cases can occur:

1) The training image matches an existing model view
but e > T . In this case a new model view is created
using the training image

2) The training image matches an existing model view
and e ≤ T . Here the training image is then clustered
with the existing model view. All features from the
training image are transformed into the coordinates of
the model view using the similarity transform solution.

3) The training image does not match an existing model
view and a new cluster model is created.

The clustering algorithm combines multiple object views
into a single representation of the object which allows us to
robustly recognize the object from various viewpoints even
if occlusion occurs.

C. Object Tracking

SIFT is a particular slow combination of a detector and
descriptor. To improve the performance of the system without
GPU implementations of SIFT, a simple optimization was
used. If the target object was seen in the previous image,
only the region of the image it was located in plus a border
of 50 pixels was stored. Only this region of the next image
was processed with SIFT. If the object was lost the region
was allowed grow to the full resolution of the camera.

The approach assumes that the object is moving slowly.
This is a fair assumption when an object is being handed to
the robot.

D. Robot Control

During training of the object, the 3D coordinate of the
object’s center was recorded. For each feature extracted on
the object, its depth and location from the object’s center
was associated the feature.

When the robot is made to grasp an object, the following
steps are taken.

1) The WAM manipulator is moved to a default position
with the arm and end-effector pointing directly up.

2) An image is taken from both cameras and the lab
camera image is labelled with depth information.

3) The object recognition component is applied to the
image and a set of matched features are output. Each
matched feature proposes an object center. The pro-
posed centers are adjusted by the depth information
provided by the ToF camera. They are then to estimate
the objects position in space.

4) An inverse kinematic solution is found which brings
the Barrett Hand to a point 5 centimeters above the
object. The destination pose is set with end-effector
palm face down. Because the WAM is a redundant
manipulator there will be a 1 DoF set of solution. The
solution closest in joint space, in a Euclidean sense,
to the WAM’s current pose is selected. This ensures
motion is smooth.

5) The Barrett is moved a fix percentage toward this point
from a pose of the arm pointing directly up.

6) The system will return to step 2 unless the end-effector
has arrived above the object and the object’s position
has been stable for T loops.

7) The end-effector fingers are spread and closed.
The robots approach from the top is to reduce the likeli-

hood of collision with the user and to keep the end-effector
from obscuring the vision component’s view of the target
object.

III. EXPERIMENT

Figure 3 illustrates the accuracy of the calibration between
the lab camera and ToF camera. Points from the ToF camera
were labelled by intensity and projected using the estimated
cameras’ extrinic parameters to show what the lab camera
would see. This is compared to actual lab camera picture. To
make the project image more visible it was convoluted with
a 2x2 box filter. The accuracy of the calibration process is
clearly acceptable for the grasping goal.

To obtain inverse kinematic solutions for the robot con-
troller the method described in [2] was used. It requires the
location of the cup in the frame of the robot. To determine
this, a chessboard was attached to the side of the Barrett
WAM which OpenCV was able to locate. The displacement
between the center of the chessboard and the reference frame
of the robot was hand tuned. Figure 4 shows the result.

The system was trained on the object shown in Figure
1 using the above methods. The grasping component was
executed in the absence of obstacles and the result is shown
in Figure 4. The limited dexterity of the Barrett Hand
requires the user to help the robot to a minimal degree. It is
thus difficult to quantify the performance of the system as a
whole without introducing an element of subjectivity.

The variant implementation of SIFT used for the proposed
system is libSIFTFast [9].

IV. CONCLUSIONS AND FUTURE WORK

A system was developed to grasp an object from a user’s
hand. A simple fusion process was used to combine time-
of-flight (ToF) and normal camera data to locate and track



Fig. 3. On the left is the result of projecting the point cloud from the ToF camera into the estimated lab camera image plane. The right image shows the
image from the lab camera.

Fig. 4. The Barrett WAM executing the grasping program.



the target object. The object is recognized using the normal
camera data using view clustering.

It is a first step in tackling this difficult problem and
requires some assistance from the user because the dexterity
of the robot hand is limited and there are no tactile sensors
installed. Future work will be adding tactile information
in the loop and replacing the simple grasp planner with a
robust grasp planning system. This planner will require finger
locations which is also a separate research problem.
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