
A SPATIO-TEMPORAL APPROACH TO DETECTING LAND COVER CHANGE USING AN
EXTENDED KALMAN FILTER ON MODIS TIME SERIES DATA

†∗W. Kleynhans, †‡J.C. Olivier, †∗B.P. Salmon, ∗K.J. Wessels, ∗F. van den Bergh

† Electrical, Electronic and
Computer Engineering Univer-
sity of Pretoria, South Africa

∗Remote Sensing Research
Unit Meraka Institute, CSIR,
Pretoria, South Africa

‡Defense, Peace, Safety and
Security, CSIR, Pretoria, South
Africa

ABSTRACT

A method for detecting land cover change using NDVI time-
series data derived from MODerate-resolution Imaging Spec-
troradiometer (MODIS) satellite data is proposed. The algo-
rithm acts as a per pixel change alarm and takes as input the
NDVI time-series of a 3x3 grid of MODIS pixels. An Ex-
tended Kalman Filter was used to estimate a series of pa-
rameters related to each NDVI signal. A spatial compari-
son between the center pixel of the the 3x3 grid and each
of its neighboring pixels’ parameters was done to calculate
a change metric which compared to a threshold yielded a
change or no-change decision. The method was tested on real
change examples in the study area and results indicate 90%
detection of new settlements occurring in naturally vegetated
areas.

1. INTRODUCTION

Anthropogenic land cover change has a major impact on hy-
drology, climate and ecology [1]. Remote sensing satellite
data provide researchers with an effective way to monitor and
evaluate land cover changes. Automated change detection re-
duces human interaction and enables large datasets to poten-
tially be processed in a fraction of the time. Fully supervised
change detection methods using temporal satellite data have
shown potential, but require a considerable amount of change
and no-change examples to be useful [2, 3, 4]. Only a lim-
ited number of these examples are typically available. The
dearth of regional land cover training data makes unsuper-
vised change detection a more attractive solution.

In this paper, unsupervised change detection using a
NDVI time-series with a high temporal frequency (1 sample
every 8 days) is considered. Each pixel’s NDVI time-series
is modeled as a single but triply modulated cosine function,
where the meanµ, amplitudeα and the phaseφ values are
a function of time. The parameters of the triply modulated
cosine function are estimated using a non-linear extended
Kalman filter (EKF) [5]. The change metric is then calcu-
lated by means of spatial comparison of the EKF parameter
sequence of any given pixel with that of its neighboring pix-

els. The objective is to demonstrate that by making use of the
spatial EKF derived change metric and a threshold selection
method based on simulated land cover change, an unsu-
pervised change detection method can be formulated. This
method was applied to detecting new settlement formations
in the Limpopo province of South Africa.

Making use of a simulated or synthetic data is not a new
concept in the remote sensing community [6, 7, 8]. In this
study, the use of simulated change as a preliminary step in
the evaluation of the proposed algorithm is twofold. Firstly,
to properly evaluate the performance of the algorithm, a large
number of known change pixels have to be available. This
requirement is often not achievable as regional land cover
change in most cases is a rare event [9]. This holds true
for our study region where the most pervasive form of land
cover change, namely settlement expansion, is infrequently
mapped on an ad hoc basis and amounts to a relatively small
number of MODIS pixels. Simulating a change from natural
vegetation to settlement substantially increases the number of
change examples that could be used in the development and
evaluation of a change detection method. The second reason
is that the start date and the rate of change in actual examples
is unknown, however by simulating a land cover transition,
the start and rate of the land cover change can be controlled.

2. DATA DESCRIPTION

The Limpopo province is located in northern South Africa
and is mostly covered by natural vegetation. A large num-
ber of informal settlements are however rapidly expanding
throughout the province. The study area covers an ap-
proximate 25000 km2 having an upper left coordinate of
(23◦20′12.09′′S ; 28◦35′25.18′′E) and a lower right coordi-
nate of (25◦00′14.59′′S ; 30◦06′58.30′′E). NDVI time series
data was derived from 8 daily composite MCD43 bidirec-
tional reflectance distribution function (BRDF)-corrected,
MODIS data with a spatial resolution of 500m [10] for the
period 2001/01 to 2008/01. A large simulated change dataset
was generated to evaluate and optimize the change detec-
tion method. This was done by linearly blending a natural



Fig. 1. 500m MODIS Pixel covering Natural Vegetation
and Settlement land cover in close proximity (courtesy of
GoogleTMEarth)

vegetation time-series with that of a settlement time-series
in close proximity ensuring that the rainfall, soil type and
local climate were similar [11]. Figure 1 shows a typical
500m MODIS pixel covering natural vegetation and settle-
ment in close proximity. As will be described in section
3, the algorithm uses a 3x3 pixel grid with the center pixel
being compared to all neighboring pixels. It is not realistic
to assume that only the center pixel has changed with all
neighboring pixels remaining unchanged. For this reason,
the center pixel together with a range of neighboring pixels
(zero to four) where subject to a simulated land cover change.
The simulated change for each of the neighboring pixels was
done in a similar manner ensuring that the settlement pixel
with which the blend is done is unique and in close prox-
imity. Real change areas were identified by means of visual
interpretation of two high resolution SPOT images in 2000
and 2006 respectively. All settlements identified in 2006
were referenced back to the same area in 2000 and all the
new settlement polygons were mapped and the corresponding
MODIS pixels were identified.

3. METHODOLOGY

3.1. EKF framework

The NDVI time series for a given pixel was modeled by a
triply modulated cosine function given as

yk = µk + αk cos(ωk + φk) + vk, (1)

whereyk denotes the observed value of the NDVI time series
at timek, andvk is the noise sample at timek. The values of
µk, αk andφk are functions of time, and must be estimated
givenyk for k ∈ 1, . . . , N [5]. An EKF was used to estimate
these parameters for every increment ofk. The estimated val-
ues forxk = [µk αk φk]T over timek effectively results in a
time series for each of the three parameters.

3.2. Change Detection Method

Having the parameter sequence forµk, αk and φk for
k ∈ 1, . . . , N for a given pixel, a change detection method
was formulated by comparing the parameter sequences of the
pixel with that of its direct neighboring pixels. This effec-
tively means focusing on the center pixel of a3 × 3 grid of
pixels and examining each neighboring pixel’s EKF param-
eter sequence relative to the center pixel. It was previously
established that theφ parameter sequence does not yield any
significant separability between natural vegetation and settle-
ment land cover types, and consequently only theµ andα

parameter sequence was considered [5, 12].
Figure 2 shows theµ parameter sequence for a 3x3 pixel

grid with the center pixel gradually changing to settlement
over a 6 month period. It is clear that theµ parameter se-
quence for the center pixel becomes less correlated with that
of its neighboring pixels as time passes. Theµ and α pa-
rameter sequence difference between the center pixel and an
arbitrary neighboring pixel at timek can be written as

Dk
µ(n) = |µk − µn

k | n ∈ 1, . . . , 8, (2)

Dk
α(n) = |αk − αn

k | n ∈ 1, . . . , 8, (3)

where Dk
µ(n) is the distance between theµ parameter se-

quence of a selected pixel (µk) with its n’th neighboring
pixel (µn

k ) at time k. Dk
α(n) is the distance between the

α parameter streams of a selected pixel (αk) with its n’th
neighboring pixel (αn

k ) at timek. Equation 2 and 3 can be
combined as

Dk
n = Dk

µ(n) + Dk
α(n) n ∈ 1, . . . , 8. (4)

Having obtained a distance relative to each of the neigh-
boring pixels, these could be combined at timek by simply
adding all the values ofDk

n n ∈ 1, . . . , 8 at timek

Dk =

8∑

n=1

Dk
n k ∈ 1, . . . , N. (5)

Having vectorD = [D1 D2 D3 . . . DN ], a change
metric was derived by firstly determining how the relative
distance between the center pixel and its neighboring pixel
changes through time. This was done by differentiating the
vectorD. A single change metric was then derived by sum-
ming all the values of the differentiatedD vector to yield

δ =

N∑

k=2

|Dk − Dk−1|, (6)

whereδ is a single valued change metric for the center pixel of
the 3x3 pixel grid. The change metric for each of the pixels
in the study area was thus calculated by sliding a 3x3 pixel
grid over the entire study area and calculatingδ for the center
pixel in each case.
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Fig. 2. Mean parameter sequence comparison of a 3x3 pixel
grid with simulated natural vegetation to settlement change
introduced to the center pixel.

4. RESULTS AND DISCUSSION

4.1. Simulated change

The algorithm was run on the examples of natural vegeta-
tion pixels known not to have changed within the seven year
study period. The value ofδ as calculated in Equation 6 was
recorded for each pixel. Next, the algorithm was run on the
simulated changed pixels as described in section 2. The value
of δ was again calculated and recorded for each pixel. The
Bayesian decision error in the form of a confusion matrix
is given in table 1. The value ofδ∗ is the optimal decision
threshold and is also shown for each case in table 1. It is ev-
ident that the overall accuracy of the algorithm decreases as
the number of changed pixels within the 3x3 grid increases.
This is to be expected as the spectral signature of settlement
pixels in close proximity (i.e the final state of all the changed
pixels in the 3x3 grid), is very similar. The pixels subjected
to change within the 3x3 pixel grid would thus be correlated.
This implies that the average distance between the center and
neighboring pixel’s parameter stream would reduce, effec-
tively reducing the value ofδ.

4.2. Real Change

As is the problem with most unsupervised change detection
methods, the selection of a suitable threshold is not an arbi-
trary task [13]. As was shown in the simulated change experi-
ment results (table 1), the optimal thresholdδ∗ varied between
1.63 and1.68 depending on the rate of change, as well as the
number of pixels changing in the 3x3 pixel grid. By lowering
the threshold, the change detection rate increases at the cost
of increasing the number of false alarms. The approach in se-
lecting the threshold for real change detection was to firstly

Table 1. Confusion Matrix - Land cover change detection
where the simulated change had a 6 month blending period

# of pixels changed
in 3 x 3 grid

Change
intro-
duced

No
Change
intro-
duced

δ∗

1 pixel change 1.68

Change Detected 91.71% 7.75%

No Change Detected 8.29% 92.25%

2 pixel change 1.66

Change Detected 92.45% 8.16%

No Change Detected 7.55% 91.84%

3 pixel change 1.65

Change Detected 92.38% 8.42%

No Change Detected 7.62% 91.58%

4 pixel change 1.63

Change Detected 92.38% 9.09%

No Change Detected 7.62% 90.91%

determine the range of the threshold by anticipating the rate
and area of change that is characteristic of the type of change
that is expected. In the case of settlement formation, new
settlement formations are mostly between 0.25 and 1km2

which relates to between one and four MODIS pixels. Figure
3 shows the distribution of the number of of MODIS pixels
that changed for each instance of new settlement formations
in the study area based on SPOT multi-date images. It is ev-
ident that 90% of the recorded new settlement formations af-
fected an area of four or fewer MODIS pixels. The rate of
change is very difficult to determine having only two SPOT
images (2000 and 2006). From simulation results shown in
table 1, the optimal threshold ranged between1.68 for a one
pixel change with a land cover transition of 6 months and1.63
for a four pixel change. The best change detection rate will
be achieved when selecting the lower threshold with the trade-
off being a higher false alarm rate. Thus the approach was to
select the lower range threshold and upwardly adjusting the
threshold until the false alarm rate is at an acceptable level.
In our case, a false alarm rate of13% was selected and the
corresponding threshold value (δ = 1.52) was used. New set-
tlement formation in naturally vegetated areas are very well
suited to the proposed change detection method. In this type
of settlement formation, no form of existing settlements are
within the direct vicinity of existing settlements. The new
settlement is developed within an area that is otherwise in an
undisturbed naturally vegetated state. In accordance withthe
simulated land cover change experiment, the change detection
accuracy that was achieved for new settlement formations was
90.48% with a false alarm rate of13%.
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Fig. 3. Distribution of the number of contiguous MODIS pix-
els affected by actual new settlement formations in the study
area.

5. CONCLUSION

In this paper, a land cover change detection method is pro-
posed. The method models an NDVI time series as a triply
modulated cosine function and estimates the mean, amplitude
and phase for each time increment using an EKF. A change
index was derived by comparing each pixel’s mean and am-
plitude parameters with that of its neighboring pixels. Be-
cause the parameters of the EKF are updated for each in-
crement of the time series (i.e. every eight days), changes
can be detected in near real time. The threshold that deter-
mined whether the change index associated with each pixel
should be classified as change or no-change was determined
by means of land cover change simulation. The algorithm
was tested for new settlement developments where no form
of existing settlements were present within the direct vicinity
of the new settlement and the surrounding area was mostly
in an undisturbed naturally vegetated state. The change de-
tection algorithm was particularly well suited to this typeof
change as the land cover change transition from natural vege-
tation to settlement was very similar to the blended simulated
change that was used for threshold selection. A change de-
tection accuracy of90.48% with a 13% false alarm rate was
achieved.
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