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ABSTRACT

Flooding is often associated with heavy rainfall. Hence quantifying the probability associated with heavy rainfall events is
useful in hydrology for design flood estimation and mapping. Rainfall varies over time and space, therefore it is anticipated that
at high levels the process will also vary over time and space. The objective of this study is to regionally quantify the average
size of a 24-hour winter rainfall event associated with a 2% chance of being exceeded for an area in the Western Cape, South
Africa. The point process approach to extreme value theory is employed to quantify the 50-year winter rainfall return level
estimate from daily rainfall data from fifteen stations in the Western Cape. Ordinary kriging is used to estimate the 50-year
winter rainfall return level surface over the study area. We compare the result to those obtained when the universal kriging
approach is undertaken. We present a technique used to obtain spatial correlation models used in kriging, where the return level
estimates are extended spatiotemporally, to circumvent inaccurate specification of the model and its parameters as a result of
the spatial sparseness of the sample.

1. INTRODUCTION

An estimate of the N-year design rainfall event is an important input for estimating the N-year design flood. Flooding is not
a single site event, hence the need for design rainfall estimation over space. A common approach in hydrology for spatial
modelling of extreme values is the regional frequency analysis (RFA) method (Hosking & Wallis, 1993, 1997). It involves
delineating the study area into homogeneous regions through cluster analysis of the observations. The extreme rainfall fre-
quency distribution for each homogeneous region is estimated by pooling data from sites within that region and fitting the
generalized extreme value (GEV) distribution through the Probability Weighted Method of Moments (PWM) to the new series
which is an average over that region. Spatial variation is a result of variation in rainfall of different regions. Smithers & Schulze
(2000, 2002) used the RFA method to derive estimates of short and long duration design rainfall and design floods events
for South Africa. To address the issue of instability in parameter estimates as duration changes, Smithers & Schulze (2002)
augmented the regional L-Moment algorithm by incorporating a scale invariance factor. The main criticism against the RFA is
the implausibility of the finite mean requirement in some practical cases (Katz et al., 2002).

Other approaches include the latent spatial process (LSP) (Casson & Coles, 1999) and the max-stable approach to extreme
value theory. For the LSP approach, the parameters of the extreme value distribution are considered to be realizations of an
unobserved spatial process, which can be modelled using the spatial regression framework. Spatial characteristics are incor-
porated as independent variables in the model. Spatial variation is the result of requiring that the parameters vary smoothly
over space. An estimate of the design rainfall surface, which is a quantile of the extreme value distribution, is obtained by
substituting the estimate of the parameter surface. The max-stable process approach involves modelling spatial dependence as
a multivariate extreme value distribution based on the theory of max-stable processes (Coles, 2001). Theoretical developments
for this approach are advance, however application is lacking due to the computational burden brought on by high dimension-
ality.

An approach followed in this study, involves applying classical geostatistics to rainfall return level estimates (or design
values) (Szolgay et al., 2009). The rainfall return level estimates are an output of a point process extreme value model for the
rainfall series at each site. These estimates become an input in the geostatistical analysis, where semivariogram models infer
about local spatial variation of these values. The aim of the geostatistical analysis is to obtain an estimate of the design rainfall
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surface or map. In this approach, once the semivariogram model is obtained, prediction of the design values at unsampled
locations is achieved through kriging. The result is a regional map of the N-year design rainfall, which is an important input
in simulation of run-off resulting from heavy rainfalls of such magnitude. While geostatistics for mapping design rainfall has
been employed, the issue of small sample sites is often left

In the next section, the point process extreme value model and the geostatistical method used to arrive at an estimate of
the 50-year design rainfall surface is discussed. The results and discussion follow in section 3, and the final remarks on the
study are contained in section 4.

2. MATERIALS AND METHODS

The data consists of observed daily rainfall data from fifteen weather stations in the Western Cape province of South Africa.
The study area is bounded between latitudes —34.058 °S and —32.463 °S and longitudes 18.157 °E and 26.493 °E, covering an
area of approximately 132000 km®. The Western Cape is classified as a winter rainfall region. The study is therefore restricted
to rainfall events in the months June to August. Seven stations had observation periods of fifty years, whilst for other stations
the periods are shorter.

Given a random sample of observations, the extreme value limit theorem states that the distribution of the largest (or small-
est) member of that sample can be approximated by the Generalized Extreme Value distribution (Coles, 2001). In the
point process approach to EVT (Pickands, 1971), the rainfall series at each site is reformulated as a bivariate point process
{(#,X;);i = 1,2,...,n}. Here first dimension refers to the position of X; in the sequence and the second dimension is
the magnitude of that rainfall event. As a consequence of the extreme value limit theorem, on bounded regions of the form
A = [t1,t2] X [u, 00), the number and size of threshold exceedances can be approximated by the Poisson and the generalized
Pareto distributions, respectively (Coles, 2001). An extensive study into the sensitivity of model parameters and assumption
is done (details in Khuluse, 2010) to determine the value at each site where the observation can be assumed independent
and where the generalized Pareto distribution (GPD) approximation to exceedances is plausible. This includes examining the
sensitivity of the average excess, the dispersion index and return level values to a range of threshold values. Inference for the
extreme value model is done by maximum likelihood. The parameter estimates are used to obtain the 25 to 50 year return levels
(at 5 yearly intervals).

To determine whether there is spatial variation in the 50-year rainfall return level within the study area, classical geostatistics
is applied to the estimated return levels obtained for each site. With only fifteen stations direct estimation of the variogram
model leads to unreliable parameter estimates(Stein & Sterk, 1999). The technique used to increase the sample size for
estimating the variogram is done by considering return level estimates for return periods 25 to 50 years (in intervals of 5
years) as temporal replicates of the return level surface. Design values at each site are assumed to be a sample from a random
variable which forms continuous surface over the study area. This continuous surface or spatial random field is denoted as
{Y(s,t) :s € D C Rt € T}, where D is a fixed, continuous subset of a two-dimensional plane and t € T is an index for the
temporal component. The primary objective is to make inference about the unknown underlying design rainfall process from
which we assume our sample to be generated. An important property in spatial analysis is that the strength of the association
between attribute values decreases as the distance between measurement locations increases, that is spatial autocorrelation.

“...the sensitivity of geographic and other phenomena to local interactions implies that we should carefully measure
and analyze relations among near things.” (Miller, 2004)

While the covariance statistic is useful in quantifying spatial autocorrelation, it is common in geostatistics to use the variogram
27(h) which is also a measure of the second-order property of the underlying process and related to the covariance as follows,

A vector of distances between locations is denoted as h.

In geostatistics, it is assumed that spatial correlation can be represented by some parametric form. Estimation of the pa-
rameters of the variogram model when the sample size is small may lead to unreliable results (Cressie, 1991). With design
rainfall values at just fifteen sites, estimation and prediction uncertainty is likely to be high. The method of regionalisation as
described in (Stein & Sterk, 1999; Sterk et al., 2004) is used to extend the observations in space and time in order to reliably



estimate the variogram. Hence, design values are considered as space-time observations, with space relating to their position
on the earth’s surface and time represented by a sequence of return periods.

Generally in statistics, assumptions are made to enable modelling of a phenomenon of interest. One such assumption is
that of random variables being ‘independent and identically distributed’. Its counterpart in geostatistics is strict stationarity,
where if any set of locations are shifted spatially by h, then observations from the two sets of locations will have the same
probability density. Strict stationarity can be relaxed by requiring the mean and covariance to be stationary, that is a constant
mean and covariance which only depends on the distance between any two locations. The weakest assumption is that of a
constant mean and a stationary variogram, termed intrinsic stationarity. Another property that is required to be able to estimate
the parameters of the model for the underlying unknown spatial process is ergodicity. This means that the single realization
of the process must be able to wander through all possible values that the process can take. Therefore, in spatial statistics
stationarity and ergodicity are necessary assumptions. The space-time field from which design rainfall values are sampled is
assumed to be intrinsically stationary and ergodic (Stein & Sterk, 1999). That is

0 = Es,t[Y(S-ﬁ-hs,t-f—ht) — Y(S,t)}
27(hg,hy) = var(Y(s,t) —Y(s+ hs,t + hy))
For replication in time of return level estimates, consider the sequence of equally spaced return periods as pseudo-time. The

return periods satisfy the requirement that ¢, (\¢t; = () for ¢ # j. To satisfy the requirement of a constant mean for intrinsic
stationarity, the data is standardized by the ratio of the overall average design rainfall (my) and the average design rainfall for

that specific period (1, ), j = 1,2, ..., p. The standardized design value is determined as
~ mo
Y(s,t) =Y (s, t) x — 1
(5:6) =Y (s,1) x 0 m

This removes the effect of temporal replication, making the assumption of hy = 0 plausible. Hence, the space-time variogram
is reduced to a spatial variogram. At each location there will be p standardized observations. These can be extended in space,
by displacing the set of locations by a fixed distance c repetitively for p — 1 instances. The displacements are as follows
{cs,2cs, ..., (p— 1)cs} where s is the index for the original coordinates. Recall in analyzing spatial autocorrelation, emphasis
is on distances between paired locations rather than the exact locations. In this way a larger data set is created for the purpose
of choosing a variogram model and estimating its parameters. Three models were considered: the exponential, the spherical
and the penta-spherical models. The model forms can be found in Cressie (1991). The penta-spherical model is given by

5h 5 /h\3 . 3 /h\®
'y(h):{CO+C(8a4(a) Jrg(g)), 0<h<a o
Co + C, h>a

where Cj is the nugget, which is composed of micro-scale variation and measurement error. The partial sill is C and the range
is a. The range is the distance beyond which there is lack of spatial correlation. Estimation in this study is by weighted least
squares (WLS) (Cressie, 1991). In WLS, the weights increase with the number of pairs in each lag class and distance closer to
the origin. Hence it is important for the variogram to fit well near the origin. The estimates of the partial sill and nugget for
a particular return period are obtained by multiplying estimates of the variogram model for the pooled data with the square of
the reciprocal of the standardization factor. The re-scaled parameters are input in the kriging procedure to obtain the desired
design rainfall map. Kriging is a spatial prediction technique and details on its application in this study are discussed in the
next subsection.

Standardization by the ratio of the overall average return level estimate to the one for that particular return period is done
to remove the effect of different expectations for each return period. Replication in space is done by displacing the standardized
observations by a fixed distance of 100 km. The variogram is modelled using this extended sample. The next step is the
prediction of design rainfall values at unobserved sites through kriging.

Kriging is a generalized least-squares technique that allows one to account for spatial dependence in the observations as
given by the variogram model (Cressie, 1991). In kriging, design values at unsampled locations will be predicted by the
predictor

p p
Y(so) = Ayi, with Y N\ =1 (3)
i=1 i=1



Kriging is known as the Best Linear Unbiased Predictor (BLUP). This is due to the kriging weights being chosen to minimize
estimation variance Var(Y (sg) — Y'(s)), whilst ensuring that the estimator is unbiased, i.e. E(Y (sg) — Y(s)) = 0. Linearity
is a result of the predictor being a linear combination of neighbouring observations at un-sampled locations. The weights are
obtained by solving the kriging system of equations as detailed in Cressie (1991).

In ordinary kriging a spatial process is assumed constant over the study regions. If there is evidence of a global spatial
trend, the random process at location s can be defined as

U(s) = XT3+ e(s) “)

The model for spatial variation due to a non-constant mean of the process is given by

E(U(s)) = Y Brf(s) ©)
k=1

where ¢ is the number of beta coefficients. For variogram estimation initially parameters of the trend surface model given in
equation 5 are estimated. Once the global trend has been removed any remaining spatial correlation is detected as variation in
residuals, modelled as the residual variogram. Estimation of the residual variogram continues similarly to variogram estimation
for observations in the constant mean case.

For the universal kriging predictor, a predicted value can be expressed as a linear combination of observed values

P

U(so) = Y _ Ausy). (6)

i=1

Kriging weights are obtained by minimizing

(U(So) — Z /\1U(Sl)> = (XTﬁ + 6(80) — /\TXﬁ — Z /\1€(Sl)> (7)

i=1 i=1

To derive the ordinary kriging map for the 50 year return level, the parameters are re-adjusted by the reciprocal of the standard-
izing ratio to derive the variogram model for the 50 year return level estimates. Kriging is applied to the fifteen 50 year return
level estimates using the variogram model corresponding to this return period to derive the 50 year winter rainfall return level
surface. We compare the results of ordinary and universal kriging in the next section.

3. RESULTS

The sample proportion of exceedances at each station is generally small (the percentage of average number of exceedances
is above 3% for only three of the fifteen sites). For Cape Town International Airport, the exceedance percentage is 1.6% for
the chosen threshold of 26 mm. The proportion of exceedances is smaller (at only approximately 0.01) for stations towards
the east such as Jonkersberg, Plettenbergbay and Tygerhoek. This can be attributed to rainfall values being mostly low, with
few instances where large amounts of rainfall were observed. The location parameter appears stable over the region whereas
the scale parameter increases into the south easterly direction. The model fits the exceedances at each station adequately. The
degree of uncertainty however is large for stations such as Tygerhoek, where the largest values were approximately twice as
large as the other excesses. In such cases it was tempting to remove these large values, but we avoided this to minimize the risk
of obtaining inaccurate return level estimates. The 25-year design value for Ladismith is the smallest at 22.42 mm. This can be
attributed to the station’s generally low rainfall values for the winter period. In contrast, the return level value for Tygerhoek
is high, almost six times larger than that of Ladismith at 119.16 mm. Design values show variation between sites, therefore
it is of interest to investigate how this can be modelled. Relation between return level estimates and spatial coordinates are
investigated. Changes in longitude seem to have no influence on the 25-year design values (figure 2(a)), however, there seems
to be a weak negative relation with latitude as seen in figure 2(b). With only 15 estimated return level values across the study
region, it is difficult to be overly confident of the spatial trend in design values. Further investigation is done by regressing
the design values to the spatial coordinates. The model reveals that the spatial coordinates do have an overall influence on the
return level values (p — value = 0.028), but again the strength of this linear relationship is weak - only 36% of the variation in
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Fig. 2. Relation of the 25-year return level estimate to the coordinates

the return level estimates is explained by spatial coordinates.

From the regression results there is nearly a 3% chance that the positive relation between design values and longitude is



due to chance only, whilst for the latitude this is high at nearly 20%. Choosing the level of significance as 5%, there is evidence
(albeit weak) in support of a linear spatial trend in design values. However, this global trend explains a small proportion
(0.36) of the variation in the design values. It is anticipated that the remainder of the variation can be explained by the model
for local spatial variation. Diagnostic plots, namely the normal quantile-quantile plot and the plot of residuals against fitted
values concur on the inadequacy of the linear spatial trend. Influential observations are highlighted as those corresponding to
Ladismith, Molteno and Tygerhoek. This is understandable since the 25-year design rainfall value for Ladismith (22.42 mm)
is small in comparison to other sites, whilst 119.16 mm for Tygerhoek is more than 70% greater than values obtained for the
rest of the sites. The g-q plot also reveals violation of the normality assumption of the residuals. Potentially such discrepancies
could be a result of the small sample size, since the normal approximation is reliable for sample sizes of at least 25 — 30
observations.
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Fig. 3. Graphics for evaluating closeness of the fitted model to observed values and for checking the validity of model assump-
tions

Exploratory analysis for regional trend revealed that only 36% of the variation is due to a regional trend. Therefore, it is
anticipated that the remaining variation in design values is due to localized spatial effects, which can be modelled through a
variogram. A particular challenge in this case is that there are only fifteen sites, which is too few observations spatially. To
overcome this challenge space-time replication of design values is performed, which enables derivation of parameter estimates
for the variogram model. For the replication in time, the design values of a specific period are considered as realization of an
unobserved return level surface for that period. Specifically, six consecutive return periods are considered from 25 to 50 years
in intervals of five years (see Table 1). Thereafter, return level estimates at each site are standardized by a factor that is a ratio
of the overall average design value to the average design value for a specific return period. Return levels are strictly positive
values, hence the use of the ratio of averages instead of the normal standardization by a ratio of the difference from the mean
and the standard deviation. The reason for the standardization is to counter the challenge of return level estimates that increase
with increasing return period. Once standardized, the spatial autocorrelation property stating that the distance between points
rather than their position in space determines similarities in attribute values, is used to justify replication in space. The spatial
replication procedure involves creating observations at new sites by displacing sequentially five of the six observations from
the original sites by a fixed distance, in our case 100 km which was chosen arbitrarily. Physical reasoning and evidence may be
used to inform the choice of displacement distance, however in this case such information was not available.

A variogram cloud was computed to check whether the structure of the spatial correlation is the same across the different return



Table 1. Replicates of the design values in pseudo-time

Site Long. | Lat. 425 430 q3s5 G40 q45 gs0
Atlantis 18.483 | -33.607 | 39.63 40.72 41.63 42.41 43.09 43.69
CPT Astro. 18.477 | -33.935 | 71.56 75 77.99 80.66 83.06 85.26
CPT Int. Air. | 18.597 | -33.969 | 51.55 52.69 53.63 54.42 55.1 55.7
Excelsior 19.43 -32.963 | 47.58 49.34 50.77 51.98 53.01 53.92
Jonkers. 22.227 | -33.934 | 77.86 82.49 86.52 90.09 93.31 96.24

Ladismith 21.035 | -33.476 | 22.42 | 24.17 | 25.73 | 27.14 | 28.42 | 29.61
Langebaan. 18.157 | -32.972 | 33.99 | 35.56 | 36.91 38.1 39.17 | 40.13
Langgewens | 18.706 | -33.276 | 42.84 | 4423 | 4541 | 4642 | 4732 | 48.13
Malmesbury | 18.718 | -33.472 | 30.95 | 31.75 | 32.39 | 3292 | 33.38 | 33.77
Molteno 18.417 | -33.933 | 82.8 86.66 | 90.02 | 9299 | 95.68 | 98.12
Paarl 18.967 | -33.75 | 80.96 | 83.15 | 84.96 | 86.51 87.87 | 89.06
Plettenberg. | 23.372 | -34.058 | 72.77 | 75.16 | 77.18 | 78.92 | 80.46 | 81.84
Porteville 18.994 | -33.012 | 61.52 | 64.9 67.93 | 70.68 | 73.22 | 75.57
Tygerhoek 25993 | -33.553 | 119.16 | 130.82 | 141.41 | 151.18 | 160.27 | 168.8
Wellington 19.006 | -33.651 | 53.45 | 55.58 | 57.38 | 58.96 | 60.35 | 61.61

periods. Sample variograms as shown in figure 4 were computed. In this study two cases are considered — in the first case lack
of regional trend is assumed and in the second case a linear trend surface is considered, hence variogram model (Fig. 4(b)) is
for residuals resulting from removal of the regional trend. As anticipated the semivariances for the residuals would be lower as
some of spatial variation has been accounted for by the regional trend, but the spatial correlation structure remains similar for
the two cases.
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Fig. 4. Empirical variogram and potential variogram model curves superimposed. In red is the exponential model, blue is the
spherical and in green the penta-spherical model.

Variogram model estimation was done by curve-fitting, minimizing the weighted sum of squared differences of the curve to
points of the empirical variogram. Three variogram models were considered. From the structure of the sample variograms,



there appears to be definite sills, which are reached gradually. Therefore, the spherical class of models was considered. The
exponential model was also considered, but it was the first to be eliminated. The elimination of this model was due to the
nugget estimate being zero, which is impractical in this case since design values are estimates and by definition a certain
degree of uncertainty is expected. From the plots in figure 4, the penta-spherical model appears to be a closer fit than the spheri-
cal model, especially the shoulder of the empirical variogram. The penta-spherical model had the least weighted sum of squares.

Similar variogram analysis was carried out for the second case, the residuals. The weighted sum of squared differences
was again minimum for the penta-spherical model. To arrive at the parameter estimates for the 50-year return level, the sill and
the nugget were multiplied by the square of the reciprocal of the standardization factor. The nuggets and sills for the first case
are 101 mm? and 446 mm? and for the second case 48.21 mm? and 328.17 mm? respectively. The ranges for the two cases are
0.51 x 100km and 0.28 x 100 km respectively.

Lastly kriging maps are obtained. In both the ordinary and universal kriging cases, due to the small number of observa-
tions and the vastness of the study region, the intensity is strong near observed sites. In ordinary kriging, the predicted values
are the same as the observed in a circular area around it, whilst in universal kriging there is spread in the direction of the
regional trend. The design rainfall level in most of the Western Cape is between 40 mm and 80 mm, but as one moves east
this becomes higher, largely due to the influence of the large design value obtained for Tygerhoek. As anticipated for ordinary
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Fig. 5. Comparison of maps derived by ordinary kriging compared with universal kriging for the 50-year 24-hour rainfall return
level surface

kriging, the kriging error is greatest at unsampled locations, but it is lower when compared to universal kriging. Region of
minimum error for the universal kriging is in the inner spherical area containing all the sites, with the exception of Tygerhoek
and Plettenbergbaai which are furthest stations from the rest.
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4. DISCUSSION AND CONCLUDING REMARKS

In this study the point process approach to extreme value theory was used to quantify rainfall return levels for discrete sites
within the Western Cape. The 50 year 24 hour winter rainfall return level is the single-day average amount of winter rainfall
that can be expected to be exceeded with 0.02 probability. This gives a measure of the rarity of such events. Quantifying this
statistic for this study involved taking into account short-range temporal correlations to ensure model accuracy, by declustering
the series of exceedances at sites where the level of persistence was strong, as measured by extremal index values smaller than
0.80 for the chosen thresholds. The quantile-quantile and return level plots for evaluating the model’s goodness-of-fit did not
reveal any inadequacies, except for high uncertainty for large quantiles for sites like Porteville, Ladismith and Tygerhoek. The
uncertainty was due to the influence of the largest excess being nearly twice the size of other excesses at these sites. Direct fit
of the GPD to threshold exceedances could have been used to quantify the rainfall return levels. In this study the point process
approach was chosen because it’s parametrization in terms of the generalized extreme value distribution (GEV), ensures that
the scale parameter is invariant to threshold choice.

In hydrology an estimate of the rainfall return level surface may be more informative than the discrete site statistic. Ordi-
nary kriging was done to obtain the 50 year winter rainfall return level map from the 15 site-wise estimates. Kriging is the
Best Linear Unbiased Estimator, given a model for spatial correlation. In geostatistics spatial correlation is modelled through a
variogram, which requires the sample to be sufficiently large, with at least 100 observations (Stein & Sterk, 1999). The method
of regionalisation as described in (Stein & Sterk, 1999; Sterk et al., 2004) was used to circumvent this. This ensured that
predictions by ordinary kriging of the 50 year daily rainfall return level at unsampled sites were based on a reliable model for
spatial correlation.

The main limitations of this study with respect to the spatial analysis of extreme values was that some stations had an ob-
servation period shorter than 50 years and that the sample was spatially sparse. These factors affect the quality of the parameter
estimates and the resulting rainfall return level map. The spatiotemporal variogram estimation technique presented provided a
way of solving the spatial sparseness problem. As further research the use of densely sampled covariate information to improve
on the quality of the resulting map can be explored.
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