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Summary

Organophosphate and carbamate pesticides are pbwetfrotoxins that impede the
activity of cholinesterase enzyme leading to seve@th effects. This study firstly
reports the development, characterisation, and icgtigh of thick-film
acetylcholinesterase (AChE) biosensors based ooldaajectrode modified with a
mercaptobenzothiazole (MBT) self-assembled monolagad either poly(o-
methoxyaniline) (POMA) or poly(2,5-dimethoxyaniln@PDMA) in the presence of
polystyrened-sulphonic acid) (PSSA). The Au/MBT/POMA-PSSA/AChand
Au/MBT/PDMA-PSSA/ACHhE biosensors were then appliedsuccessfully detect
standard organophosphorous and carbamate pestinide®.1 M phosphate buffer,
0.1 M KCI (pH 7.2) solution. Secondly, it reportdet construction of the
Au/MBT/PANI/AChE/PVAC thick-film biosensor for theletermination of certain
organophosphate and carbamate pesticide solutionseliected aqueous organic
solvent solutions. The Au/MBT/PANI/AChE/PVAc eleatatalytic biosensor device
was constructed by encapsulating acetylcholineste(AChE) enzyme in the PANI
polymer composite, followed by the coating of pulgfl acetate) (PVAc) on top to
secure the biosensor film from falling off. The ateactive substrate called
acetylthiocholine (ATCh) was also chosen to replasetylcholine (ACh) as
substrate, since ATCh has better redox activity @rdboth be oxidised and reduced
to provide better movement of electrons in the ampetric biosensor. The

voltammetric results have shown that the currenttssimore anodically as the




Au/MBT/PANI/AChE/PVAC biosensor responded to sustes acetylthiocholine
(ATCh) substrate addition under anaerobic condstion0.1 M phosphate buffer, KCI
(pH 7.2) solution. For the Au/MBT/PANI/AChE/PVAc dBensor, various
performance and stability parameters were evaluaiése factors include the
optimal enzyme loading, effect of pH, long-term biity of the biosensor,
temperature stability of the biosensor, the eft#fcpolar organic solvents, and the
effect of non-polar organic solvents on the ampetoim behaviour of the biosensor.
The Au/MBT/PANI/AChE/PVACc biosensor was then apgli® detect a series of 5
organophosphorous and carbamate standard pesticeddutions. The
organophosphorous pesticides studied were diazifemthion, parathion-methyl,
malathion and chlorpyrifos; while the carbamatetipetes included dioxacarb,
aldicarb, carbaryl, carbofuran and methomyl. Vemod) detection limits were
obtained for the standard pesticide solutions dm®&y twere within the nanomolar
range. The detection limit values for the individysesticides were 0.137 nM
(diazinon), 0.826 nM (fenthion), 1.332 nM (paratiimethyl), 0.189 nM
(malathion), 0.018 nM (chlorpyrifos), 1.572 nM (gararb), 1.209 nM (aldicarb),
0.880 nM (carbaryl), 0.249 nM (carbofuran) and @.1AM (methomyl). The
detection limit results showed that the thick-fillu/MBT/PANI/AChE/PVAC
biosensor was more sensitive to organophosphorous carbamate pesticides

compared to other biosensor results found in teegliure.
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CHAPTER 1

Introduction

1.1 Introduction

This thesis describes the development and chaisatien of a suitable organic phase
amperometric biosensor for the detection of organsphorus and carbamate
pesticides in organic solvents.

Chapter 1 discusses what a biosensor is and dgfisemsors in general,
followed by the use of self-assembled monolayefS), conducting polymers and
the role of pesticides. This is followed by a dssion of the motivation, aims, and

layout of the thesis.

1.2 Biosensors

Biosensors operate on the direct spatial couplifigao immobilised
biologically active compound with a signal transeluand an electronic amplifier
(Scheller and Schubert 1992:7; Karube and Nomu@®:207-178).

A biosensor can be defined as:
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“a compact analytical device incorporating a bioiogl or biologically-
derived sensing element either integrated withimamately associated with
a physicochemical transducer. The usual aim of gsdmsor is to produce
either discrete or continuous digital electronigrsals that are proportional
to a single analyte or a related group of analytes.

(Newman et al. 2001:6; Morrin 2002:3; Keanet al 2002:103; Evtugyret al

1998:467; Jin & Brennan 2002:16)

Signal Transducer

Processor [ ] .
o

Digital
Signal ‘

Output . ¢
Enzyme Matrix
Figure 1.1 Schematic diagram showing the functionig of a biosensor device.

As shown in Figure 1.1, the first step in the abmentioned interaction is the
specific complex formation of the immobilised bigically active substance, called
the enzyme, with the target analyte. The complemédion causes physiochemical
changes such as change of layer thickness, refadatidex, light absorption or

electrical charge. These changes may be indicajesndans of opto-electronic
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sensors, potentiometric sensors, or field effestdistors. After the measurement, the
initial state must be regenerated by splitting e tomplex (Scheller and Schubert

1992:7-9; Evtugyret al 1998:467).

The following sequence of processes takes plab®sensors:

() specific recognition of the analyte;

(I transduction of the physiochemical effect causedheyinteraction with the
receptor into an electrical signal;

(1 signal processing and amplification.

In operation the biosensor measures the changeeiedncentration of a co-
reactant that reacts with the analyte or a co-mduhich is produced with the
analyte of a biological reaction (e.g. enzyme riea¢t When we have the use of an
electrode as a transducer in a biosensor, therediectconverts the change in
concentration of a product of a biological reactimio an electrical signal (Karube &

Nomura 2000:178).

1.3 Self-Assembling Monolayers (SAMS)

Self-assembled monolayers are ordered moleculagmddes, which are
formed by the adsorption of active surfactants solal surface, i.e. a solid electrode.

This technique provides an elegant route to th@gvetion of well-defined organic
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assemblies on solid surfaces. The monolayers amefbdue to a specific interaction
between a terminal functional group and a spesiii¢ace.

The use ofl-alkanethiols as SAMs on a gold surface is formegdtle
adsorption of the monolayers from solution onto goéd surface. Alkanethiols are
composed of molecules with ten or more carbon atpensalkyl chain, and they are
highly ordered and densely packed. Besides theyitiminatedl-alkanethiolsw-
substitutedl-alkanethiols of the formula HS(GHX, where X is, for example, a
halogen atom, or a hydroxyl, amino, carboxylic aeister, or nitrile group, have also
been employed as well as mixed monolayers-alkanethiols with different terminal
substituents. The uses of SAMs include several rddgas such as their ease of
preparation, stability, and the possibility of oducing different chemical
functionalities. They further allow the preparatiah surfaces with tailor-made
properties, since monolayers with the appropriéiengcal functionality with some
molecular level control, can be used (Chellappath @nsaka 2001:44; Mazur &
Krysinski 2001:3963; Yourdshahyatal 2001:1; Brutcet al. 2003:53).

The formation of SAMs on gold electrodes has yidldery promising results for
the construction of electrochemical biosensorsathentages of which are:
0] improved electrocatalysis,
(i) freedom from surface fouling, and
(i)  prevention of undesirable reactions competing kiady with the desired
electrode process.
Particular emphasis has been placed on alkanettunblayers, which are known

to form well-ordered assemblies that can be usdthtoobilise protein close to the




Chapter 1 Introdtion 41

electrode surface, with a high degree of contr@rdkie molecular architecture of the
recognition interface. Alkanethiols have also bemwdified to include electroactive

moieties (for mediator or electron transfer funejioso that the SAMs can be used
for electrical wiring or communication between ttezlox-active enzymes and the
electrode surface (Kermaet al. 2002:39-40; Zhanget al. 2002:150; Brutoet al.

2003:53).

1.4 Conducting Polymers

The type of organic materials, called conjugatelyrpers, has attracted a lot
of attention lately, as materials for possible aggtions in micro-electronic devices.
The reasons for this are their unique propertiesvansatility. Since the discovery of
polythiazyl, (SN), as the first conjugated polymer, the idea of gigpolymers for
their electrical conducting properties has creatatth interest since then. Other
conducting polymers having-electron conjugated structures, such as polyanilin
(PANI), polypyrrole (PPY), polythiophene (PT), phlyan (PFU), poly¢-phenylene)
(PPN) and polycarbazole (PCB) have been synthesmeg@ossible use in micro-
electronic devices (Palyt al 2000:111; Saxena and Malhotra 2003:293-294).

Polyaniline (PANI) as conducting polymer has betmnlied the most because
of its widespread application in micro-electronievites. The PANI molecule

consists of two segments, a flat structure of twmé groups and a quinoid ring (see
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Figure 2.27). It also contains tetrahedral segmeht&o amine groups, which in turn
separates three benzenoid rings (Laska 2004:13).

It is furthermore possible to transfer PANI by redeactions into states of
strongly differing electrical conductivity. Due this characteristic property, PANI
and other conducting polymers have also been fiedsas organic metals. Recent
developments has seen the use of conducting padyaterctive layers in chemical
sensors, since there is evidence that adsorbedngkeules and organic vapours
cause a change of electrical conductivity in thémer matrix of organic metals.
Conducting polymers further lends itself to diret¢ctrochemical deposition onto
certain surfaces. This type of deposition alsovalthe preparation of films at a well-
defined redox potential in the presence of a gieamter ion, which in turn defines
the level and characteristics of the doping reactiPruneanuet al. 1999:2733;

Mathebeet al. 2004:115; Reemtst al. 2004:320).

1.5 Thick film electrodes

Currently different technologies exist to develdpck-film biosensors for
pesticide detection (Josht al. 2005:54; Albereda-Sirvergt al 2001:36). Albareda-
Sirventet al. (2000:154) divide these different technologie® ititree categories of
(i) multiple-layer deposition with biological deptien by hand or electrochemically,

(ii) using screen-printing techniques of composites or pastes in two or more steps
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with biological deposition done by screen-printilfig) using a one-step deposition
layer also called the biocomposite strategy. Onth@fmain aims of this work was to
develop an electrode, which can be exposed to mrgatutions containing potential
inhibitors without having the polymer layer separgtfrom the electrode surface,
after use or drying thereby using polyvinyl acetasethe binder to circumvent this
problem. Cellulose acetate is known to be usedsysthetic resin in screen-printing
inks to improve printing qualities or as a seleetmembrane over platinum anodes to

reduce interferences (McGoveshal.2005:659; Haret al. 1999:7).

1.6 Pesticides

The Environmental Protection Agency (EPA) of theAu&fines a pesticide as
follows:

“A pesticide is any substance or mixture of subsésn

intended for preventing, destroying, repellingnaitigating

any pest. Pests can be insects, mice and otheradg)im

unwanted plants (weeds), fungi, or microorganisikes |

bacteria and viruses. Though often misunderstood to

refer only to insecticides, the term pesticide applies

to herbicides, fungicides, and various other substs used

to control pests. Under United States law, a petics also
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any substance or mixture of substances intendedsi®mas a

plant regulator, defoliant, or desiccant.”

(EPA 2006).

Greenhalghet al. (1980:2563) defines a pesticide as a compoundcératbe
used to effectively control the target organismdagritical period of time during its
growth and is then degraded to products that arenleas to humans and other
organisms. Ideally that is what is expected frostip&les that they will degrade in as
short a time as possible but it is not the casalfqresticides.

Pesticides are used extensively in the agriculsector for the eradication of
unwanted insect and pests, thereby enhancing fomtuption. With this widespread
use of pesticides in the public and agriculturamdms, severe environmental
pollution and potential health hazards have in@easmcluding severe acute and
chronic cases of human poisonings. The World He@ltganisation (WHO) has
estimated that the incidence of pesticide poisaniing developing countries has
doubled during the past 10 years. Although in 188%eloping countries accounted
for only 15% of the worldwide use of pesticides,timese countries over 50% of
pesticide poisoning cases occurred due to misusa@éf al. 2003:255; Abdollahéet
al. 2004:29; Deet al.2005:185).

Organophosphate pesticides have been used ag&irsdspectrum of insects
and on food crops, in residential and commercidddmgs, on plants and lawns and
for mosquito control. Carbamate pesticides haven heiglely used against insects,

fungi and weeds, as well as on agricultural crapb@n residential lawns. Since their
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has been an increase in the amount of pesticidadgedpo agricultural commodities,
serious concerns have been raised about the imgaask to human health.
Carbamates form part of the major classes of pdsicsynthesized on a large
scale worldwide because of its broad biologicalvagt Due its worldwide use,
concerns have been raised about the exposure @iepéom the pesticide during
manufacture and application (&t al. 2004:547). Carbamates and organophosphates
are pesticides known to inhibit insect acetylchediterase (AChE) activity, but they
also strongly interfere with neural transmissioms ather organisms, including
humans. These pesticides therefore represent at@bteazard for the environment
and human health, requiring continuous assessnagrat, monitoring (Albareda-

Sirventet al. 2001:35; Chouglet al.2001:4; Del Carl@t al.2004: 651).

1.7 Objectives of the Study

The main objective for the research presentedigndissertation is to expand
the current existing knowledge base of both thesgay and chemical properties of
organic phase amperometric biosensors for the tilmtecf organophosphorous and
carbamate pesticides in organic solvents. Secomalintroduce the novel use of a
self-assembled monolayer (SAM) immobilised on adgelectrode for thick-film

biosensor configuration and construction.
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Motivation
This will be done to obtain information and a coetplunderstanding of the
physical and chemical properties of organic phaspesometric biosensors for the
detection of organophosphorous and carbamate jgesticn organic solvents. The
detection of pesticides in non-aqueous environméis been reported but few
publications refer to the use of immobilised AChBsiensors in non-aqueous media.
Organophosphorous pesticides are characterisedltwy golubility in water and a
higher solubility in organic solvents. It is forighfact that the extraction and
concentration of pesticides from fruits, vegetablets. are carried out in organic
solvents. It is known that some enzymes, e.g. gleaaxidase, work well in both
water and organic solvents, while other enzymesire@ minimum amount of water
to retain catalytic activity. To circumvent the plem of hydrophilic solvents
stripping the enzymes of essential water of hydmathecessary for enzymatic
activity, it is recommended that 1-10% water beealltb the organic solvent for
sufficient hydration of the active site of the emgy (Klibanov 2003:428; Andreescu
et al. 2002:173; Wilkinset al. 2000:789; Palchettet al. 1997:316; Iwuohaet al.
1995:756).
Areas that were considered are:
€)) To assess critically the use and implementationthef prepared AChE
thick-film biosensor to real organophosphate anthamaate pesticide
samples in aqueous mixtures of organic solvenigcefone, acetonitrile,

ethanol, n-hexane, and diethyl ether.
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(b)

(©)

Identification of the factors, which could result the successful and
optimum use of the AChE thick-film biosensor tolreeganophosphate
and carbamate pesticide samples.

To use the information gained during the courséhif work, to provide

information on whether the AChE thick-film biosens@an be applied to
detect real organophosphate and carbamate pestidgideindustrial

samples.

Approach

(ii)

(iii)

(iv)

Certain key research questions for this study wigstified, which includes:
Preparation of an electrode platform for biosertgmstruction by employing
a self-assembled monolayer (SAM) of the thiol chieercaptobenzothiazole
(MBT), coated on a gold (Au) electrode surface.

Construction of novel thick film electrodes by eomyhg a self-assembled
monolayer (SAM) of the thiol called mercaptobenzatble (MBT) as the
first layer in the sequential layer-by-layer biosenconstruction.

The use of the conducting polymer called polyagiliPANI) or its
derivatives as a mediator for enzyme immobilisation the biosensor
construction.

The use of acetylcholinesterase (AChE) as enzymenimobilisation in a
polymer matrix of polyaniline (PANI) and its derixges, e.g. polyd-

methoxyaniline) (POMA), or pol®5dimethoxyaniline) (PDMA), in the
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v)
(Vi)

(Vi)

(Vi)

(i)

construction of enzyme electrodes and correspondmmgsensors for

organophosphate and carbamate pesticide detection.

Employing the principle of enzyme inhibitionrfthe design of the biosensor.

Characterisation of the biosensors by dc andr@tammetric techniques in
phosphate buffer and aqueous mixtures of orgamvests.

Determination of organophosphorous and cardi@mpesticide residues in
appropriate standard samples.

Application and characterisation of the consted AChE biosensor to real

samples containing organophosphate and carbanstieipes.

The specific aims/objectives of this thesis are:

Coating of a gold (Au) electrode with a meraanzothiazole (MBT) self-
assembled monolayer (SAM) followed by charactensavf the Au/MBT
electrode. This will be followed byn situ electropolymerisation ofb-
methoxyaniline ¢-anisidine) (OMA) and 2,5dimethoxyaniline (DMA)
monomers on the AuU/MBT SAM electrode, in the presef a surfactant of
poly(4-styrene sulphonic acid) (PSSA), in order to agaredghe polymer on
the electrode surface. In a different reaction,stepitu electropolymerisation
of aniline as monomer on the Au/MBT SAM electrodethe absencef a
surfactant will be performed, in order to polymerithe polymer on the
electrode surface and to get a polymer that istootsoluble in aqueous
solution. The synthesis will be followed by electiemical characterisation

of either polyaniline (PANI), poly-methoxyaniline) (POMA) or poly,5
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(ii)

(i)

(iv)

v)

(vi)

dimethoxyaniline) (PDMA) polymer films on the Au/MBSAM electrode,
employing cyclic voltammetric measurements, in & K. phosphate buffer,
KCI (pH 7.2) solution and a 0.1 M HCI solution.

Construction and characterisation of the Au/MBT/P®MSSA/AChE and
Au/MBT/PDMA-PSSA/ACHhE thick-film biosensors with aiylcholine
(ACh) as substrate, employing cyclic voltammetigyare wave voltammetry
and differential pulse voltammetry as techniques.

Application and characterisation of the Au/MBT/PONRSSA/AChE and
Au/MBT/PDMA-PSSA/ACHE biosensors to detect standanghnophosphate
(e.g. diazinon, chlorpyrifos) and carbamate (earbafuran and carbaryl)
pesticides in 0.1 M phosphate buffer, KCI (pH &@lutions.

Construction, characterisation and optimisatiorihef Au/MBT/PANI/AChE
thick film biosensor with poly(vinyl acetate) (PVA@s the final binder
coated on top of the biosensor using acetylthionkathloride (ATChCI) as
substrate, employing cyclic voltammetry, square avaxoltammetry and
differential pulse voltammetry as techniques.

Application and characterisation of the Au/MBT/PANChE/PVAc
biosensor to standard organophosphate (e.g. dimazioblorpyrifos) and
carbamate (e.g. carbofuran and carbaryl) pesticides 0.1 M phosphate
buffer, KCI (pH 7.2) solution, and aqueous mixtuoésorganic solvents of
acetone, acetonitrile, ethanothexane and diethyl ether.

Application and characterisation of the Au/MBT/PANChE/PVAc

biosensor to real organophosphate (e.g. diazindarpmyrifos) and carbamate
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(e.g. carbofuran and carbaryl) pesticide samplesagoeous mixtures of

organic solvents of acetone, acetonitrile, ethamblexane and diethyl ether.

1.8 Layout of the Thesis

The thesis is divided into the following chapters:

Chapter 1 An introduction to the dissertation‘dtercaptobenzothiazole-on-
Gold Biosensor Systems for the determination chilmeghosphate
and carbamate pesticide compounds’given and the main aims and
objectives, as well as the layout of the dissentais provided.

Chapter 2 A review of literature surrounding theéesces of biosensors, self-
assembling monolayers, conducting polymers, thick-tbiosensor
configuration, and pesticides is presented.

Chapter 3 The sample preparation and experimeptalcedures for the
preparation of the gold electrode, self-assemblingnolayer
formation, in situ electropolymerisation of the polymers onto the
electrodes, and the biosensor construction arepted.

The electrochemical characterisation of the biosensnstruction and
pesticide detection were done using techniques saghcyclic
voltammetry, Osteryoung square wave voltammetry difigrential

pulse voltammetry techniques.
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Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

The results for the Assembling and Qpéition of Polyaniline-Based
Enzyme Biosensors prepared on gold thiol-modifiéettendes are
presented and discussed.

The results for the Analysis and Applice of an
Acetylcholinesterase-Polg{methoxyaniline) Biosensor for the
Determination of Selected Organophosphate and GwteaPesticide
Compounds in 0.1 M Phosphate buffer ( pH = 7.2)n8abolution are
presented and discussed.

The results for the Analysis and Applcat of an
Acetylcholinesterase-Polyaniline Biosensor for Bretermination of a
Series of Organophosphate and Carbamate Pesticddgdlinds in
Aqueous Organic Solvent Solutions are presentedimcdssed.

Conclusions, Recommendations, and Futoré

References
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CHAPTER 2

Literature Review

2.1 Introduction

Due to ever-increasing environmental pollution aorsy demand for
environmental monitoring technologies has surfa®edter can be polluted by toxins
(e.g. cyanide, heavy metals or pesticides) andébrophicants (e.g. phosphate or
nitrogen compounds). The effect of eutrophicantsvater leads to overgrowth of
plants and toxic algae, thereby making the watsuitable for drinking or industrial
uses. The monitoring of these contaminants in whgs become an extremely
important task, considering the impact that potuteater would have on our
everyday lives (Karube & Nomura 2000:177; Keanal 2002:103).

The increasing use of pesticides adds to enviroteh@noblems. Pesticides
are very toxic compounds and is known to be redptendor many ecological
problems and damages to human health. The intengsee of pesticides in
agriculture, medicine and industry has significathntributed to the environmental
problems experienced with pesticide applicationg@oik & Franko 1999:569;

Montesinoset al 2001:231; Andreescet al. 2002:169).
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Several established techniques exist for pestidielection, which include
high performance liquid chromatography (HPLC), gasomatography (GC) coupled
to mass spectrometry (GC-MS) and other analyteghniques. The rational behind
the development of biosensors is not to compete thi#é aforementioned techniques,
but rather to complement them by providing fast afidctive detection of pollutants
onsite in field analysis (Albareda-Sirveat al. 2001:35; Wilkinset al. 2000:786).
Sotiropoulouet al. (2005a:199) indicate that enzyme-based bioseltsws emerged
as the most promising technology for direct pedéanonitoring. Mulchandarat al.
(2001:225) has also concluded that biosensors, hwbperate on the inhibition of
cholinesterases, offer the highest sensitivity.

Environmental pollutants, whether they are readégradable or recalcitrant,
are expected to continue to be widespread in tlusystem over the next three
decades or even longer. In this regard, environahebtosensors represent a
significant breakthrough to help with the monitgriof pollutants in contaminated
matrices. This is because the sensors have theuauradpility to measure the
interaction of specific compounds with biologicgsgems through highly sensitive

bio-recognition processes (Keagieal 2002:103).
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2.2. Sensors

2.2.1 Introduction to Chemical Sensors

A chemical sensor is different from a physical s@uncer in that it provides the
user with information about the chemical naturé®ftnvironment. This sensor may
consist of:

a physical transducer (e.g. a thermistor or pideotec crystal),

or reference electrode (e.g. a Ag/AgCl wire) atiige,

and a chemically selective membrane, film or |lagtehe sensing tip.

A chemical sensor is defined as:

“a device which furnishes the user with informatiloout its environment; it

consists of a physical transducer and a chemicsglgctive layer’(Diamond

1998:2-3).

The composition and form of the chemically selextlayer is of crucial
importance to the construction and functioninghaf $ensor, as it also determines the
effectiveness of the sensor. It further controks gklectivity, sensitivity, lifetime and
response time of the sensor (Diamond 1998:2).

The differentiation between chemical and biosensoesdifficult task, but it
is said that a biosensor is different, since itonporates a biological entity (e.qg.
enzyme, antibody, etc.) as a fundamental part ef dbnsing process (Diamond

1998:3).
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2.2.2 Introduction to Biosensors

Biosensors are currently used to replace convealtianalytical methods of
sample analysis, which tend to be complicated, -ioresuming, expensive and not
suitable forin situ monitoring (Kuklaet. al 1999:213; Reagt al 1996:450; Evtugyn
et al. 1998:465; Andreescet al. 2002:169).

Problems have also surfaced with stability and aepcibility in using
biosensors, due to the inherent instability of katenials used as sensing elements. In
this regard several intelligent immobilisation nmedhk that may help to overcome
these difficulties have emerged. See section 2.35.

Various biosensors for the detection of insectiidee currently described in
literature. Some of these sensors include theviatig (Andreesctet al. 2002:169-
170):

1) Biological sensors based on organophosphate hydrolghich catalyse the
hydrolysis of organophosphorus pesticides wpthitrophenyl substituents
into a direct detectable compound calteditrophenol.

1)} The determination of pesticides based on theirbitiny effect on enzyme
activity has also been reported. This involvesdeerease of enzyme activity
caused by inhibition, which is correlated to the@antration of pesticides in
the sample or their metabolites in the sample. Jigase-based or

Acetylcholinesterase-based sensors have been gedefor the detection of
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enzymes inhibitors with a detection limit in thenge of micromolar
concentrations.

1)) Many of the traditional methods refer to the usecbblinesterases (ChE),
acetylcholinesterase (AChE) or butyryl-cholinester@BuChE). They are the
real biological target of main organophosphorus eadbamate insecticides,

representing 40% of the world market of these elss$ compounds.

2.2.3 Components of Biosensors

2.2.3.1 Transducer

The physiochemical change of the biologically axtimaterial that results
from the interaction with the analyte, need to baverted into an electrical output
signal by an appropriate transducer. Broadly applie transducers may be used for
this purpose, which indicate general parametersh sas reaction enthalpy
(thermistor), mass change (piezo-electric crystal)ayer thickness (reflectometry).
In the case of potentiometric and amperometricteddes, a specific output signal is
achieved relating the analyte being detected. Tdtenpiometric and amperometric
sensors can be used for species such’a®H, CO,, NH; or H,O,, or with optical

methods such as photometry or fluorimetry (Scheltet Schubert 1992:10).
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2.2.3.2 Biomaterials: Use of Enzymes

Enzymes play an important role as biomaterialsbiosensors and it is this
role that is discussed in the following paragragfrszymes are often referred to as
biocatalysts since they play an important role linttee biochemical reactions that
make up the complexity of living systems. Enzym&alyaed reactions exhibit higher
reaction rates than uncatalyzed reactions, tygicall® to 10“ times greater.
Furthermore, these reactions can normally occueunelatively mild conditions of
temperature and pH. On the other hand, there am ealzymes that can function
under extreme conditions of temperature and pH, iaiglthose properties that are
often exploited for commercial and other applicasio

Enzymes display a range of specificities, as sonzgraes react only with a
single molecule (or substrate). This is referredlisolute specificity. This quality can
be used as a key factor in the selection of anrmaezipr use in a specific sensor.
Other enzymes may react with a variety of subsratel in that way can be used in
other specific reactions (Diamond 1998:133-134).

In enzymes, substrate recognition depends on shegiehing between the

enzyme and its specific subtrate as illustrateéigure 2.1.
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Figure 2.1 Schematic representation of a substrateénding to an enzyme.

If any changes in the conformation of the enzymeuod will interfere with
its ability to bind substrate and catalyse readtidinzymes are not changed by the
catalytic reactions in which they participate andemnzyme molecule can be used
repeatedly. The binding site for the substratehtood@nzyme is called the active site.
Some enzymes may have other binding sites, whielcalied control sites that can
interact with other molecules. These other molecubay improve or interfere with
the enzyme’s ability to recognize and bind its stahs. Enzymes may also have co-
enzymes that will assist in the functioning of a&afic enzyme and they serve as

hydrogen or electron acceptors (Mathews and Vanl¢ld990:351).
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2.2.3.2.1The Kinetics of Enzymatic Catalysis

An enzyme is nothing but a catalyst and consequenttannot alter the
equilibrium of a chemical reaction. This means that enzyme accelerates the
forward and reverse reaction by precisely the staoer. The rate of catalysi¥,
varies with the substrate concentration, [S], whicthe case for many enzymes. This

is shown in Figure 2.2 (Stryer 1975:111; Mathews ¥an Holde 1990:358).
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Vmax
Reaction Va2 /./"
velocity, — [------- =
a I
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1 Ky >
Substrate concentration, [S]
Figure 2.2 A graph of the reaction velocity,V, as a function of the substrate

concentration, [S], for an enzyme that obeys Michdis-Menten kinetics
(Vimax is the maximal velocity andKy, is the Michaelis constant).
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Figure 2.2 indicates that at a fixed concentratobnenzyme,V is almost
linearly proportional to [S] when [S] is small. Qine other hand, at high [S], V is
nearly independent of [S]. Using the above datanbe Michaelis and Maud Menten
(Stryer 1975:110; Mathews and Van Holde 1990:3p8)posed a simple model to
account for these kinetic characteristics. Assuntireg a specific ES complex is a
necessary intermediate in catalysis, the modelqs®eg for the kinetic properties of

many enzymes is:

k1 k3
E+S= ES- E+P e 21

In equation 2.1 an enzyme, E, combines with a safesS to form an ES
complex, with a rate constant Kt is also assumed that none of the product tever
the initial stage (Stryer 1975:111; Mathews and Vwoide 1990:357). What was
needed is an expression that relates the rate tafys&s to the concentration of
substrate and enzyme and the rates of the indiveteps. We may thus express the
reaction rate or velocity, defined as the rateoofrfation of

products as:

V =k[ES] Egn. 2.2
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In equation 2.2 the catalytic rate is equal togheuct of the concentration of
the ES complex anks. When ES is expressed in terms of known quantitiesrates

of formation and breakdown of ES can be written as:

Rate of formation of ES kl[ES] Eqgn. 2.3

Rate of breakdown of ES fk, +k, )[ES] Eqn. 2.4

The catalytic rate under steady-state conditiosiishbe considered, since in
a steady state the concentrations of intermediates stay the savhde the
concentrations of starting materials and produstschanging. This will occur when
the rates of formation and breakdown of the ES dernpre equal, so that equation

2.3 is equal to equation 2.4, as follows:

kl[E][S] = (kz + ks)[ES] Eqn. 2.5

When equation 2.5 is rearranged, it can be writer{Stryer 1975:111-112,;

Mathews and Van Holde 1990:359-362):

[ES]:( [E]([S]

k2 + ks)/ k1 Eqn. 2.6
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Equation 2.6 can be simplified by defining a newstant,Ky, called the

Michaelis constantso that equation 2.6 then becomes:

— kz + ks
M Eqn. 2.7
k1

When equation 2.7 is substituted into equationiftben becomes:

[E9 = [Els]

M

Eqgn. 2.8

When the numerator is examined in equation 2.8ait be deduced that the
concentration of uncombined substrate, [S], is vexgrly equal to the total substrate
concentration. This will only be if the concenteatiof enzyme is much lower than
that of the substrate. Furthermore, the conceotraif uncombined enzyme, [E], is
equal to the total enzyme concentration, Binus the concentration of the ES

complex, as shown in equation 2.9.

[E]=[E;]-[ES] can 28

On substituting equation 2.9 for [E] into equatibB, the expression becomes,
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[Es|=(E]-[Essl/Ku ez

When equation 2.10 is solved for [ES], it changgs t

e9=[e ) St

that can also be written as:

es]=[e 151

When this expression for [ES] is substituted irqoation 2.2, we get

V =Kk, [ﬁET] %IS][-I-SiLM Eqn. 2.13

The maximal rate Vmax IS obtained when the enzyme sites are saturatéd w

substrate, in which case [S] is much greater tKan so that [S)/([S] +Kwu)
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approaches 1. When this happens, equation 2.13gebkato (Stryer 1975:112;

Mathews and Van Holde 1990:359):

Vmax = k3 [[ET] Eqn. 2.14

Therefore, when equation 2.14 is substituted imqoagon 2.13, theMichaelis-

Menten equatiolis obtained:

_ [s]
V =V ﬁS]-I-—KM Eqn. 2.15

Equation 2.15 accounts for the kinetic data giveRkigure 2.2, so that at low
substrate concentration, when [S] is much less g/ = [S]Vima{ Km. This means
that the rate is directly proportional to the sudist concentration. On the other hand,
at high substrate concentration when [S] is mudkatgr tharKy, V = Vinax This
indicates that the rate is maximal, and independéstibstrate concentration. It can
further be deduced from equation 2.15 that wheng®Ju, thenV = Vma/2. This
indicates thatKy is equal to the substrate concentration at whehréaction is half

of its maximal value.
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Determination of Vmax and Ky by varying the substrate concentration

If an enzyme operates according to the scheme givequation 2.1, then the
Michaelis constantKy, and themaximal rate Vmax, Can be readily derived for rates
of catalysis at different substrate concentratidnsorder to simplify analysis, the
Michaelis-Menterequation can be transformed into one that givesagéght line plot.
When the reciprocal of both sides of equation 24slfaken, it gives the following

equation (Stryer 1975:113; Mathews and Van Hold#01361-362):

1 Kyl
Vmax [S] Egn. 2.16

1_
V V..
From equation 2.16 it is deduced that a plot of ¥évsus 1/[S] will give a straight

line with y-intercept equal to ¥ax and slope equal tdy/Vimax as shown in Figure

2.3.
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Figure 2.3 A graph of 1V versus 1/[S]. The slope iKy/Vmax the y-intercept is
1N ax @nd the x-intercept is -1Ky,.

The linear graph shown in Figure 2.3 is obtainedubiyng a double reciprocal plot,
which is calledthe Lineweaver-Burk plofA Lineweaver-Burk graph is also an easy
way to test whether you have adherence to Michaddisten kinetics and allows
easy evaluation of the critical constants showednation 2.16 (Mathews and Van
Holde 1990:362).
The Lineweaver-Burk plot does have one major diaathge, in that it

requires a long extrapolation to determifg, with corresponding uncertainty in the
results. To eliminate this disadvantage, altermativays of plotting the data are

sometimes used. If equation 2.15 is rearrangedtimdorm:
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K, [V

max W Eqn. 2.17

and a graph o¥ versusV/[S] is plotted, it yields what is called &adie-Hofstee plot

as shown in Figure 2.4 (Mathews and Van Holde 138X).

A
‘.\VmaJKM
VI[S]
. slope = -Ky
.\" Vmax
N, / >
V
Figure 2.4 An Eadie-Hofstee plot ol versusV/[S], to obtain V. at

(V/[S]) = 0 andKy, from the slope of the line.

2.2.3.2.2Types of Enzyme Inhibition

Different types of inhibition can be observed betwdhe enzyme’s active

site, an inhibitor and a selective substrate fepecific enzyme. As known, a number
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of substances can cause a reduction in the raae ehzyme catalysed reaction such
as an inhibitor. This loss of activity caused byirdmbitor can occur either reversibly
or irreversibly. If it is reversible, activity malye restored by the removal of the
inhibitor, while if it's irreversible the loss ottvity is time dependent and cannot be
recovered during the timescale of interest durimg teaction. When the inhibited
enzyme becomes totally inactive, irreversible iitfob behaves as a time-dependant
loss of enzyme concentration leading to a loWegx for the reaction. If incomplete
inactivation occurs time-dependent changes mayhbserged in both th#&lichaelis
constantKy, and themaximal rate Vimax.

The effect of reversible inhibitors is importantr fmost enzyme-catalysed
processes and it can be explained in terms of alsiextension to the Michaelis-

Menten reaction scheme.

E+s. M. Ec 08O P
+I:[IKi K;IIH

El ESI
Egn. 2.18

where the reversible inhibitor is represented bgd the inhibitory (dissociation)

constant¥; andK;' are expressed as
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_[El]
[ [El] Egn. 2.19

and,

r [ESI]I
Ki :% Eqn. 2.20

If it is assumed that none of El or ESI is reactmdorm product, equilibrium
between El and ESI is allowed, although it makesetccontribution to the rate

equation as it must be equivalent to the equiliarastablished through:

EI+S s E+S+| = ES+| = ESI Eqn. 2.21

It should also be noted that inhibitors may changé the pH of the solution and
result in the independent variation of bétrandK;' with pH

(http://www.Isbu.ac.uk/biology/enztech/inhibitiomti). Some of the types of

inhibition and its enzyme kinetics are explainedhia following paragraphs.
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@) Competitive Inhibitors

This type of inhibitor refers to a compound thattsea close structural and
chemical similarity to the substrate of the enzyrmed this similarity causes the
inhibitor to bind to the enzyme’s active site irgteof the substrate. However, it
should be noted that the subtrate and inhibitor rexeidentical and therefore the
enzyme will be unable to convert the inhibitor im@duct and it will just block the
active site of the enzyme as illustrated in Fig2ife Also, if the substrate binds to the
active site before the inhibitor, the inhibitorirecapable of binding to the enzyme

(http://orionl.paisley.ac.uk/kinetics/Chapter 3/dea® 1.html;

http://campus.northpark.edu/biology/cell/enzymeanlht

subetrate

Figure 2.5 Schematic representation of a competitevinhibitor blocking the active site
of an enzyme for its substrate.
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In terms of enzyme kinetics it is found that fongmetitive inhibition,K;' (Egn. 2.20)
is much greater than the total inhibitor concemraaind the ESI complex (Eqn. 2.21)
is not formed. Since both the substrate and intiilmbmpete for binding to the active
site of the enzyme, the inhibition is most notideadt low substrate concentration but
can be overcome at sufficiently high substrate eotration as the value Ofyax

remains unaffected. The rate equation can thexessed as:

Vmax [ﬂS]
Ko™ +[S]

Egn. 2.22

whereK PP represents the appard®y; for the reaction, which can be expressed as:

app _ [1]
K =Kn 1+K_ Eqn. 2.23

m
i

It should be noted that the competitive inhibitealts some structural similarity to the
substrate and is often a reaction product. In¢hie there is product inhibition that
can cause a substantial loss of productivity whig/h ldegrees of conversion are
required. Using equations 2.22 and 2.23 the rateatean for product inhibition can

then be derived as:
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V — Vmax |:[S]

Km 1+ﬂ +[S] Eqgn. 2.24
K

p

(http://www.Isbu.ac.uk/biology/enztech/inhibitiomtl).

(b) Non-competitive Inhibitors

A non-competitive inhibitor is able to bind to tkentrol site of an enzyme
and partially block the active site or alter theash of the enzyme completely as
shown in Figure 2.6. In some cases the inhibitan@&y bind so firmly to the enzyme
that it is not easily removed and in this caseeiipanently disrupt the functioning of
the enzyme molecule and acts as a poison. In o#ss the inhibitor attaches to the
enzyme for a brief period only and temporarily WBecthe enzyme’s activity

(http://campus.northpark.edu/biology/cell/enzymeanlht




Chapter 2 Literature Review 73

suhstrate

Figure 2.6 Schematic representation of a non-comgéve inhibitor
altering the shape of an enzyme.

In the enzyme kinetics observed for non-competitilebition it is observed thd;
(Eqn. 2.19) is now much greater than the totalbinbi concentration and the El
complex (Eqn. 2.21) is not formed. This is the caken the inhibitor binds to a site
which only becomes available after the substratgi(SEqn. 2.25 has bound to the
active site of the enzyme. It should be noted thit inhibition is most commonly
encountered in multi-substrate reactions where itiébitor is competitive with
respect to one substrate (e.g) But uncompetitive with respect to another (eg. S

In this case the reaction scheme can be represewntide following equation:

E+S <« ES+S, <« ESS, - produc

E+S « ES +1 « ES|]| #S Eqn. 2.25
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From Eqn. 2.25 it is deduced that the inhibitionmigst noticeable at high substrate
concentrations ( and cannot be overcome as both the valuég.gfandKy are

equally reduced. The rate equation can then beeeged as:

AL S
K app +[S] Egn. 2.26

whereVmax ™ and K 2P represents the apparéWax andKn, for the reaction, which

can be expressed as:

Vv

Vapp — max
mex 1+ [1] Eqn. 2.27
K/
and
Kapp — Km
m 1+ [1] Eqn. 2.28
KI

It should be further noted that the specificity stamt remains unaffected by the
inhibition and normally the uncompetitive inhibit@lso bears some structural
similarity to one of the substrates, which is often reaction product

(http://www.Isbu.ac.uk/biology/enztech/inhibitiormtl).
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2.2.3.2.3Various methods for immobilisation of bimolecules

The biomaterial component of a biosensor can ba&elivinto two distinct
groups called catalytic and non-catalytic. The Ilgéta biomaterials includes
enzymes, micro-organisms and tissues, while noaiytat biomaterials includes
antibodies, receptors and nucleic acids, etc (Shatnal. 2003:307). When used in
sensors the biomaterials of enzymes, multi-enzymenptex, tissues, micro-
organisms, organelles, cell receptors, antibodiesleic acids or whole cells are
responsible for recognition of the analyte. Verynate quantities of the biomaterials
are required in biosensor construction but thetypwi the biomaterials play a vital
role in the reliability of the biosensor (Sharetaal. 2003:308). In the construction of
a biosensor, there is a need for electrons to pges® the enzyme-based
biocomponents to the amplifier or microprocessas for this reason that the reagent
layer in a biosensor forms an essential componEm. creation of these layers
requires the immobilisation of the recognition edams to be used for detection and
various methods are available for immobilisatiorthe biomolecules. However, not
all of these methods are appropriate for biosemsanufacturing but the most
commonly used immobilisation techniques for desigrand development of specific
sensors include physical adsorption, entrapmenérmolecular cross-linking and

covalent binding as shown in Figure 2.7 (Shaetnal. 2003:308).
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When the technique o@dsorptionis used, the enzyme is adsorbed onto
substrates such as cellulose, silica gel, glasgrotyappatite and collagen as

illustrated in Figure 2.7 (Sharned al. 2003:308).

4 = Tres e E
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& Covalent binding

Cross-linking

Figure 2.7 Various methods used for enzyme immobdation (Sharmaet al.2003:308)

When entrapmentis used, a polymeric gel is prepared in a solutiost
contains the biomolecules that becomes trappednnitie gel matrix as shown in
Figure 2.7. Matrices that can be used for thisr@gre include polyacramide, starch,
nylon and siliastic gel (Sharned al. 2003:308).

In using cross-linking as technique, intermolecular cross-linking of

biomolecules is done using bi-functional or multkftional reagents such as
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glutaraldehyde, hexamethylene di-isocyanate, If|Gedd-2,4-dinitrobenzene,
(Sharmeet al. 2003:308).

With covalent bindinga functional group in the enzyme that is not esak

for its catalytic activity is used. Normally the ateophilic functional groups present
in amino acid side chains of proteins such as amiadboxylic, imidazole, thiol,

hydroxyl, etc. are used for coupling (Sharetal. 2003:308).

2.2.4 Electrochemical Biosensors

Since electrochemical transduction has becomeablajlthe mass production
of low-cost, disposable devices using either tlackhin film technologies has been
possible. This has made electrochemical sensirtgragsopen to miniaturisation and
widespread application (Morrin 2002:20).

One of the most widely-used features in electroéb@m biosensor
construction, is the method of electronic coupli@gween the redox enzymes and the
transducer itself. Developing new techniques anthaus has been the subject of
intense research and new methods for shuttlingtrelex between enzymes and
electrodes have been evolving since the 1960ddrbeginning the biosensors was
based on the electroactivity of the enzyme sulestoatproduct to deliver thrst
generationbiosensors. This was followed by the integratiba cedox mediator into
the sensor to deliver treecond generatiobiosensor, which was able to eliminate

matrix interferences. Whethird generationbiosensors was developed, the mediator
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was removed to provide superior selectivity andlitain direct electron transfer onto

the transducer (Morrin 2002:21).

2.2.4.1 First generation electrochemical biosensors

Biosensors that were based on the Clark model @renonly referred to as
the first generation biosensors. These biosensors are based on thet dire
electrochemical detection of substrates or prodattn enzymatic reaction. In the
original glucose enzyme biosensor, molecular oxyge&s used as the oxidising
agent. Since oxygen is of low molecular weighgetved as the electron acceptor by
shuttling electrons between the enzyme redox sititlae electrode surface, as shown

below (Morrin 2002:20):

B-D-glucose + © -S2 , D-gluconic acid + HO, Eqgn. 2.29

The biosensor was constructed by covering a platielectrode with a polyethylene
membrane that is permeable to oxygen. The glucaskase was then sandwiched
between this membrane and a cellulose acetate raembwhich is permeable to
both oxygen and glucose. The oxygen was then redusmg voltammetry and the

cell current was directly proportional to the oxggsncentration (Morrin 2002:21):
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O+te —» Q -0.6 V vs Ag/AgCl Eqn. 2.30

Alternatively, the measurement of hydrogen peroxide be carried out by applying

a positive potential (Morrin 2002:21):

HO, __ , 2H+26+0, 0.6V vs Ag/AgCl Eqn. 2.31

The last approach was then used to develop thé dwmshnmercially available
electrochemical biosensor.

Some limitations were experienced in using oxygermlactron acceptor due
to its limited solubility and environmental fluctien. Since high potentials are
required for oxidation, it can cause the measuréroemterfering species such as
ascorbate. These and other problems experiencede dresearch into the
development of other novel mediated sensorssacdnd generatiohiosensors came

into existence (Morrin 2002:21).

2.2.4.2 Second generation electrochemical biosensor

One of the drawbacks of first generation biosens@s the use of a too high

potential during operation, which saw the focusdtstg to the use of other mediators.

New mediators were used consisting of small aatidecules that could diffuse in
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and react with the active site of the enzyme, fedld by diffusing out and reacting
with the electrode surface, thereby shuttling etett between the enzyme and the
electrode. The use of ferrocyanide as an altermatadox couple enabled the
shuttling of electrons to the electrode surface aiuininated the problems
encountered of oxygen and hydrogen peroxide monggMorrin 2002:21-22).
Ferrocene derivatives rank as the most successédiators been used in
second generatiohiosensors (Morrin 2002:21-22). Their successhmattributed to
the fact that they react rapidly, exhibit reversililinetics, have a low oxidising
potential and are stable in the reduced and oxddieems. In Figure 2.8 a cyclic

diagram of a ferrocene-mediated biosensor for glecoonitoring is shown.

Fc' GOXreq % Gluconolactone
I e é % GOXox Glucose
Fc
Figure 2.8 A ferrocene-mediated biosensor for gluse: Glucose is oxidised by GOx. GOx
becomes reduced during this process but is immedily reoxidised by the F¢
mediator. This mediator, which has become reducedtFc is reoxidised directly

at the electrode surface. The current flowing throgh the electrode is an
amperometric measurement of the glucose concentrati (Morrin 2002:22).

A number of soluble mediators have also been iategrinto immunosensors with

peroxidase as common enzyme tracer label. Suitaigldiators described for this
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peroxidase coupled amperometric detection areden®, iodine, hydroquinone and
tetrathiafulvalene (Morrin 2002:22).

Second generation biosensors saw further progesss tmade with the use of
flexible polymers onto which mediating functionadg were bound. This paved the
way for the use of mediators that were bound anddcaot diffuse or leach into
solution, thereby improving biosensor stabilityg8od example is ferrocene that has
been used as an integral part of a cross-linkirlgagoylamide as shown in Figure
2.9. The ferrocene-cross-linked-polyacrylamide geklike material that provides an
excellent medium for encapsulation of actives eregmvhile the ferrocene provides

a non-diffusional electron-transfer mediator (Mor2002:22-23).

—{CH— (|3H b= CH,—CH J—{CH,—CH}—
CO

Z0 I
| hiH
" Fe (I:CI
[*lJH
(D i
Figure 2.9 A cross-linked polyacrylamide gel contaiing ferrocene

(Morrin 2002:22).
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2.2.4.3 Third generation electrochemical biosensors

Trends in research then moved away from solubleiated towards direct
enzyme-electrode coupling in order to produeagentless biosensotbat are now
known asthird generationbiosensors. In third generation biosensors, néfnsional
mediators (i.e. there is no shuttling of mediatar® used. These biosensors saw a
three-way shuttling of the electrons from the eneyradox centre to the electrode
surface, known as non-diffusional type couplinge Tatter was achieved by forming
a biocomplex with a large redox polymer. These dmssrs should operate in a
potential window that is close to the redox potntif the enzyme itself, in order to
be less prone to interfering reactions as was eperd in second generation
biosensors (Morrin 2002:23).

Conducting polymer-based biosensors consisting ahmabilised
biomolecules in electropolymerised films is gainihggh importance, since the
discovery of electractive polymers two decades agofirst these materials were
heralded for their high conductivity-to-weight @tbut later the fascination turned to
their unique chemical properties. These polymers loa synthesised under mild
conditions and enable a range of biological mosef{eg. enzymes, antibodies, and
whole living cells) that can be incorporated inte fpolymer structure. Furthermore,
the unique electronic properties of conducting pwys, allow direct and interactive
communication with the biochemistries incorporatedproduce a range of analytical

signals (Morrin 2002:23-24).
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The transition metals osmium and ruthenium haven m@®rdinated within
polymers to produce examples of new generationebgs's. The electroactivity of
these polymers is associated with the reversilexd®ehaviour of the metal centres.
These sensors see the biomolecule being “molegwaréd” onto the sensor surface,
with non-diffusionally mediating species bound amd) polymer chains. This results
in direct electrical communication between the bieoule and the electrode surface
(Morrin 2002:24).

The electronically conducting polymers have perhdgsen the most
fascinating of the electrofunctional polymers as da use in analytical devices is
concerned. Conducting polymers are capable of imclg as electron transfer
mediators and redox changes are not localised sgieaific centre but are rather
delocalised over a number of conducting polymerugso Examples of these
polymers are polyacetylene, polypyrrole, polyamland polythiophene as shown in

Figure 2.10 (Morrin 2002:24-25).
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Figure 2.10 Structures of some electronically condiing polymers.

Both electrochemical and chemical oxidative polyisaion techniques can be
employed in the synthesis of conducting polymerecttochemical synthesis is
rapidly becoming the preferred method in applicato@cause of its simplicity and
increased reproducibility, especially in the cadepolyaniline. Electrochemical
polymerisation is generally employed by galvanaéstatpotentiostatic or
potentiodynamic methods. Electrode surfaces comynaséd for electrochemical
synthesis of conducting polymers include carboatipim, gold, indium-tin oxide
coated glass and palladium (Morrin 2002:25).

Polyaniline can be grown on the surface of an eddet by either using a
potentiostatic or a potentiodynamic technique. lpogentiodynamic fashion, a more

homogeneous film is achieved. In a potentiodynamatinique, cyclic voltammetry
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has found application in biosensor developmentgustANI-modified electrodes.
PANI has also been doped with polyvinylsulphonaterthance the morphology and
electrical conductivity of the polymer at non-acigiH, thus rendering it ideal for the
application in enzyme electrodes or immunosenshvaoha et al 1997:750-751;

Killard et al 1999:110-111; Morrin 2002:26).

2.2.5 Overview of Differentiation in Sensors

To date different types of sensors exist, dependmthe method of operation
and the field of application. Some of these differeensors will be explained in the

following paragraphs.

2.2.5.1 Amperometric sensors

Amperometric biosensors are classified as analytiesices making use of a
biological material as a biological catalyst, usedcombination with an electrical
transducer. The sensor responds to an analyte sanaple and interprets its
concentration as an electrical signal via a biaalisystem connected to an
electrochemical transducer. The range of biologncaterial used, also referred to as
catalysts include enzymes, antibodies, chemorexeptell organelle and cellular

tissue (Diamond 1998:119).
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With an Amperometric biosensor, the magnitude cfpomise depends on a
number of factors, including:

kinetics of the enzymatic reaction,

the construction of the enzyme electrode, and

the mode of operation of the electrode.

The response obtained from the electrode can éineiffusionally or kinetically
controlled. When it is kinetically controlled, tlemzyme loading is sufficiently low
that the response depends on the concentratiomayfimee and the kinetics of the
enzymatic reaction. There are limitations to thisdm of operation as response
saturation occurs at low substrate concentrationemthe electrode is diffusionally
controlled, it possesses very high enzyme loadisgsh that the current is
independent of small changes in enzyme concentradi® a consequence, the current
response is then a function of analyte concentratmd diffusion (Diamond
1998:119-120).

Several new approaches and different techniquee baen investigated in the
design and construction of amperometric biosensBeseral of these biosensor
designs are listed below.

Nuneset al. (1999:37-38) constructed an improved biosensolomering its
enzymatic charge and thereby lowering the subswitethe purpose of increasing
sensitivity and stability. This biosensor used oledterase on a chemically modified
carbon paste electrode for trace determinationadbamates in fruit, vegetable and

water samples.
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Tsai and Doong (2005:1796-1800) have constructealay-based biosensor for
the simultaneous analysis of multiple samples & ghesence of multiple unrelated
analytes. They developed an array-based enzymaticab biosensor for the
simultaneous determination of pH, urea, acetyleloliand heavy metal
concentrations.

Quintino et al. (2005:215-216) have constructed a new stable gRisensor
using glassy carbon and gold electrodes modifigti wetraruthenated Ni-porphyrin
by electropolymerisation in alkaline medium. Theported that the sensor presents
favourable characteristics for the oxidative calyof sugarsyery low detection
limit, a wide linear response region, high frequerad analysis, simplicity and
reproducibility of preparation.

In another study, Chaat al. (2005:784-785) have developed an amperometric
gas sensor using a three-electrode configuratiothBomeasurement of hydrogen in
the atmosphere containing carbon monoxide. Ingéisor the working electrode was
based on a platinum black electrode that was diggbsi a porous Teflon substrate.

Tao et al. (2005:332-333) developed an amperometric hydrogeroxide
biosensor using hemoglobin immobilised in a polginophenol) film at a iron—
cobalt hexacyanoferrate-modified gold electrodeHgD, sensing.

Erdem et al. (2000:349-350) developed an amperometric horssnadi
peroxidase-modified carbon paste electrode (HRP)}@#Ehe analysis of drugs with
oxidisable groups (e.g. acetominophen, epinephripgiogallol, pyrocatechol,

resorcinol) in the presence of® in solution.
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Wang et al. (2003:255-256) developed an amperometric orgarsgifamus-
hydrolase biosensor for flow injection measuremeafterganophorous compounds.
This study illustrated a microfabricated thin filiosensor coupled to a flow-
injection operation for fast, sensitive and selectnonitoring of organophosphorus
compounds.

Deo et al. (2005:185-186) developed a carbon nanotube-ordersmhorus
hydrolase (CNT-OPH) electrochemical biosensor lieramperometric determination
of organophosphate pesticides. This sensor emplingedbility of the CNT modified
electrodes to promote the oxidation of phenolic pounds (includingp-nitrophenol
that is the product of the OPH reaction) and toimise surface fouling that is
associated with the oxidation processes occuritigea¢lectrode surface.

Chough et al (2002:273-274) reports another amperometric
organophosphorus hydrolase (OPH) biosensor ford#termination of parathion,
paraoxon and fenitrothion using OPH immobilisedaonylon net in direct contact
with a carbon paste electrode. The study demoesirdtat with nylon net a very
minimal amount of OPH is required for immobilisatjavhich is 100 times less as in

the case of optical or electrochemical sensor nustho

2.2.5.2 Thermometric indication with thermistors

The same enthalpy change that occurs in chemicatioms is exhibit by

enzyme-catalysed reactions. Inasmuch as they erdee reaction rate, they also
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enhance the rate of enthalpy change substantidtigrefore thermometric indication
is universally applicable in enzyme sensors. Onhe geaction step producing
sufficient heat is required and no “measurable’ctiea product must be formed
(Scheller and Schubert 1992:10).

For thermistors, several new approaches and differechniques have also
been reported and several of these new approachéstad below.

Chatterjee and Maiti (2001:294) have developed aitige temperature
coefficient (PTC) thermistor that functions withpeaur phase diffusion, which could
be very useful particularly for thin specimens.

Huanget al (2003:523) have developed a thick-film integratechperature-
humidity sensor and investigated the design, pegjwer and characteristics of such a
design in detail. They further presented the retethip between resistance-
temperature characteristics and the compositionthef negative temperature
coefficient thermistor materials.

In a study by Kimura and Toshima (2003:239), thayehdeveloped a new p-
n junction temperature-sensor operating on a cohsiaplied voltage, in which the
temperature-sensitivity of the sensors can be tejusy the forward bias-voltage of

the sensor.
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2.2.5.3 Potentiometric sensors

In the functioning of potentiometric sensor, a gaheperating condition of
near-zero current flow is maintained and it measutee difference in potential
between the working electrode and the referenagrelie. The transducer may be an
ion selective electrode (ISE), which is an eledtenical sensor, based on thin films
or selective membranes as recognition materiale dltput of a potentiometric
sensor is a potential difference as a function iofet It should be noted that
potentiometry is less sensitive than amperomettl widetection limit usually in the
order of millimoles (Hou 2005:17).

Enzyme-based biosensors, also known as enzymercglest may also
operate on the principle of potentiometry. In ptitanetry, the change in the voltage
that accompanies the reaction of the enzyme angdeaifg target compound, is
measured at constant current.

Varambaret al. (2005:94) explains that a potentiometric sensar galvanic
cell in which the sensor electromotive force (em$) measured and then
logaritmically correlated to the concentration lo¢ telectroactive species through the
Nernst equation.

Several new approaches and different techniques baen reported in the
development of potentiometric sensors and somehes$et approaches are listed
below.

In another study by Mashhadizadethal. (2004:1048), they have developed a

novel ion selective membrane potentiometric sefsothe direct determination of
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Fe(lll) in the presence of Fe(ll) ions. They preggathe new PVC membrane using 2-
[(2-hydroxy-1-propenyl-buta-1,3-dienylimino)-methyl-p-tolylazo-phenol
[HPDTP] as a suitable carrier.

Pijanowska et al. (2004:350-351), have developed a flow-through
potentiometric sensor for an integrated microdialgystem, which was designed as
part of a lab-on-a chip system and consists of @adialysis probe, a sensor array
and a calibration facility.

In another study by Moghingt al. (2004:169), a polymeric membrane sensor
for the potentiometric determination of vanadyl &/Oions was developed. In this
work new electrodes were prepared by incorporaginggw calix[4]arene derivative
into a plasticised poly(vinyl chloride) matrix.

Gupta and Agarwal (2005:730-731) have developegvpoll chloride (PVC)
based membranes containing a metalloporphyrin af0,55,20-tetrakis 4¢
methoxyphenyl) porphyrinatocobalt(ll) as electrogetmaterial in a potentiometric
sensor for arsenate. They further used dibutyl Ibpiwsphonate (DBBP), dioctyl
phthalate (DOP)1-chloronaphthalene (CN), tri-butyl phosphate (TBP) and tris(
ethylhexyl) phosphate (TEP) as plasticising solverdiators in the sensor for
arsenite determination.

In the work done by Tymecket al. (2004:3-4), screen-printed reference
electrodes for potentiometric measurements wereldped. This new method entails
the fabrication of Ag/AgCI/KCI reference half-calt planar format, in one fully
automated step, using screen-printing technologthowt additional chemical or

electrochemical steps.
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2.2.5.4 Conductometric sensors

In the operation of conductometric biosensors,sisgn is based on
measuring the time dependence of the change inuctiudy as a result of the
receptor recognition of its complimentary analyfee measuring signal reflects the
migration of all ions in the biofilm (Hou 2005:1 81

Several new approaches and different techniques haen reported in the
development of conductometric sensors and soméedet approaches are listed
below.

Sergeyevaet al. (1999:105-106) have developed molecularly impdnte
polymer membranes that contains artificial recagnisites for atrazine, prepared by
photopolymerisation using atrazine as a templatethacrylic acid as a functional
monomer and tri(ethylene glycol)-dimethacrylate a®ss-linker. Furthermore,
oligourethane acrylate was added to the monometunaixo obtain thin, flexible and
mechanically stable membranes.

Chouteauet al (2004:1089-1090) have developed a novel biosetisdris
based on the immobilisation of whole cé&hlorella vulgaris microalgae as the
bioreceptors on interdigitated conductometric etstts. The biosensor was used for
the testing of alkaline phospatase activity (APAY dhe detection of cadmium ions
in aquatic habitats.

Dable et al (2004:284)have demonstrated in their work the gquantitative,

multicomponent and multivariate calibration of noicotplate (MHP) conductometric
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sensors for binary and tertiary mixtures of lightegs in air. To differentiate between
analytes in the mixtures analysed, titanium andxiides (TiQ and Sn@) were used
in four element microsensor arrays with surfaceelised gold, while the SnO
consited of two grain structures.

Barkauskas (1997:1107) investigated and optimisediuctometric humidity
sensors wherein the sensing film of the devices prapared from polyvinylalcohol
and a graphitised carbon black dispersed phase. sEhsing film was further
investigated in terms of composition, thermal ezt and design.

In a study by Shvarest al. (2001:500) a potassium-selective conductometric
sensor has been constructed using potassium-selesémbranes for potentiometric
ion-selective electrodes, which were studied innggedance mode. The results have
shown that the bulk resistance of the thin memizaoie 20-250um thickness

depends on the composition of the aqueous batbingan.

2.2.5.5 Opto-electronic sensors

The basic type of opto-electronic sensor combingist-conducting fibres
(optic fibres) with techniques such as spectropinetoy, fluorimetry or
reflectometry. This enables the sensors to indichéages of optical parameters such
as light absorption, wavelength, or refraction deccurring in that part of the

measuring medium immediately surrounding the fibfeese devices incorporate
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either a single or a dual optical fibre bundle floe incident light and for the light
beam to be measured (Scheller and Schubert 1992:13)

Several new approaches and different techniques bhaen reported in the
development of opto-electronic sensors and soméhese approaches are listed
below.

In a study by Di Nataleet al. (2000:220-221), a porphyrins-based opto-
electronic nose for the detection of volatile oigasompounds have been developed.
The study involved the development of thin filmgddferent metallophorphyrins that
was used as sensing materials in the constructioptaal sensors for the detection
of different volatile organic compounds (VOCS).

In another study by Wolfbeist al. (1998:17), they have developed a sensing
scheme that is capable of measuring the ten pagasnabst important in the analysis
of blood gases, electrolytes and enzyme substriateshis sensor detection is based
on the variation in the decay time of the luminesee of a single class of
luminophores, namely the ruthenium diimine compéexeurthermore, the set of
luminescence decay time based chemical sensorsogedefor clinical applications
have shown that when it is operated within a lichiteange of modulation frequencies,

the sensors are consistent in terms of spectrosmagyanalytical wavelengths.
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2.2.5.6 Calorimetric sensors

The automotive industry has seen a growing interegixhaust constituent
sensors because of increasingly stringent emisstandards and the regulatory
requirement for catalytic converter self-diagniodisis for this reason that the
calorimetric sensor has been considered for usenasxhaust hydrocarbon sensor.
When a calorimetric sensor is used in combinatigh warious diagnostic strategies,
it has shown to be able to determine the determradf converter catalysts. The
principle, on which a calometric sensor operateghat of a direct proportionality
between the heat generated by catalytic exothergaictions and the concentrations
of hydrocarbons in the exhaust. In a calorimeteics®r, a thermocouple measures the
temperature rise caused by exothermic reactior@apared to other hydrocarbon
sensing techniques, such as mixed potential eldwetroical sensors and
electromotive force (proton pumping) electrochernisansors. The calorimetric
sensor also offers several advantages for exhaudications. It has a simple
chemistry and a well-understood principle, followeg the device essentially
measuring the heating values of hydrocarbon matscugiving rise to a signal
proportional to the total hydrocarbons, therebyahimg reliable readings of overall
hydrocarbon concentrations from engine to engirg @nverter to converter. The
calorimetric sensor can also be fabricated with iararmachining technique to
improve the output signal and response time, asphaved to be ideally suitable for
diesel exhaust applications where the engine isatge in the far lean oxygen region

and the exhaust flow rate is fairly constant. Femthore, the high oxygen
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concentration in the diesel exhaust provides adatixie environment for catalytic
combustion, which is needed for the calorimetricsee (Wu and Micheli 2004:291).

Several new approaches and different techniques bhaen reported in the
development of calorimetric sensors and some cktlapproaches are listed below.

The specific details of the sensor developed byaid Micheli (2004:291),
indicates that they have developed a calorimeaisar that utilises a thermoelectric
device, supported on a planar alumina substrates Jénsor operated on a highly
selective carbon monoxide (CO) catalyst and a mbectve platinum (Pt) catalyst,
and was able to detect either CO or hydrocarbotismgh selectivity.

In a study by Casegt al. (2003:114), the fabrication, characterisation gasl
response of a planar calorimetric combustible gasar is reported. This sensor
utilises thin film thermoelectric elements and @tes at ambient temperatures. The
basic principle on which the sensor operates icétalytic combustion of the analyte
gas and the heat that evolves during combustisnhsequently utilised to generate a

dc voltage at a semiconductor-inert metal Seehauttion.

2.2.5.7 Piezoelectric sensors

This type of sensor operates on the principle tthafrequency of vibration of
an oscillating crystal is decreased by the adsamptif a foreign material on its
surface. The crystal can be sensitised by covetriwgh material binding or reacting

with the analyte. Piezoelectric sensors are usedh® measurement of ammonia,
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nitrous oxide (N@), carbon monoxide, hydrocarbons, hydrogen, methaukphur
dioxide, and certain organophosphate compounds(gcland Schubert 1992:18).

Cui et al (2000:94) have shown that by combining quartz staly
microbalance (QCM) devices with interdigitated &lede sensor pairs, with both
devices containing conducting poly(pyrrole) coasing-D odour maps can be
constructed. Furthermore, they have constructe®la map to demonstrate the
feasibility of discriminating odourants and mixtareising a lower number of
combined sensors with a lower number of differeslymer coatings, compared with
single property measurement systems.

In the work done by Kim and Nam (1997:495) it waswn that a micro-
depth control system that does not require a posisensor but rather uses
piezoelectric voltage feedback can be developed.dBvice operates on the principle
of hysteresis, refers to a reference input voltdge is calculated by computer, and
then uses the actuator/sensor characteristicenbelectric materials.

Sun and Huang (2001:434-435) derived a formulattier modelling of the
behaviour of laminated composite beams with argnatied piezoelectric sensor and
actuator. The major goal of their work was to depeh set of governing equations
for laminated composite beams with piezoelectniteae using Hamilton’s principle
by introducing the electric potential function.

The work done by Halamedt al. (2005:337-338) reports the development of
piezoelectric affinity sensors for cocaine and tledterase inhibitors. The
functioning of these sensors is based on the foomatf affinity complexes between

an immobilised cocaine derivative and an anti-aoeaintibody or cholinesterase. To
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perform both binding reactions, a compound calledzbylecgonine-1,8-diamino-
3,4-dioxaoctane (BZE-DADOO) was immobilised on tharface of the sensor.
During the immobilisation step, pre-conjugated BBEDOO coupled with 11-
mercaptomonoundecanoic acid (MUA) via 2-(5-norbar@e3-dicarboximide)-
1,1,3,3-tetramethyluronium-tetrafluoroborate (TNTHJowed the formation of a

chemisorbed monolayer on the piezosensor surface.

2.2.5.8 Organic phase enzyme electrodes (OPEES)

Organic phase enzyme electrodes (OPEEs), also krasvorganic phase
biosensors, have been used for the analysis of @ongs such as cholesterol,
alcohols, organic peroxides and phenols. Thesdretlxs constitute a new class of
biosensor that can be used in cases where theraiebet matrices are insoluble or
scarcely soluble in aqueous media, thereby enabti@gnalysis of these compounds
in organic phase media (Campaneiial 2001:235).

Since in OPEEs the enzymes are insoluble in organleents, enzyme
immobilisation may often be achieved by simply absw it onto a solid or gel
support. Once the enzyme is absorbed, it is nblelieo desorbs from the surface and
immobilisation is easily achieved by impregnationtioe support medium by an
aqueous solution of the enzyme. It has therefotebaoome necessary for covalent

linking or entrapment procedures used in conveaticegueous-based systems.
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Moreover, organic solvents may attack the coval@nting of enzymes to the
support (Campanellat al 2001:236; Wang and Dong 2000:45).

Particles that are finely divided or macroporousigtires with large surface
areas may be used to absorb enzymes onto solidcssrfApplicable materials are
therefore alumina, graphite foil, carbon fibre, qas glass beads and porous glass
beads (Campanelkt al. 2001:235).

Another important aspect of immobilised enzyme®riganic solvents is the
possibility of the support altering the microenvinoent in the neighbourhood of the
enzyme. Hydrophilic supports, e.g. calcium alginatee compatible with enzymes
and can be used to increase the level of enzymeatigd. The use of highly polar
supports may limit the rate of mass transfer ofrbgtobic substrates to the enzyme
layer. This problem can be solved by using hydriyaheupports, e.g. polyurethanes,
but this may limit or reduce the compatibility wittydrophilic enzymes. Another
possible solution to the above problem is the u$egels based on photo-
polymerizable resins and urethane macromonomervaty the ratio between
hydrophilic and hydrophobic moieties in the monommiecules (Campanelkt al
2001:236).

Other important points concerning OPEES developsnard that a number of
studies (Campanelket al. 2001:238-339; Campanekl# al 1998:595-596) have been
done on good activities of several enzymes in hgldobic organic solvents and their
possible analytical advantages. Although the alieeslopments have been made,
the development and application of enzymatic bissesin organic solvents is still a

comparatively recent innovation. For the task alirect food moistening monitoring,
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various enzymes displaying organic-phase activipveh been considered and
tyrosinase was selected. The reason for the sateidtithe fact that tyrosinase has a
strong action in non-aqueous media and the lownpi@ledetection of its quinone
product, which in itself minimizes potential interénces from electroactive
constituents of food samples (Campanetlal. 2001:239).

Different OPEEs have recently been developed fodrdgen peroxide
determination in several polar (e.g. chloroformyl 4w polar (e.g. toluene) organic
solvents, using immobilised catalase as enzyme f@asilaet al 2001:240).

Inhibition OPEEs have also become the focus ofnestudies (Campanella
et al 2001:243) for example the amperometric deterrnonabf the extent to which
the catalytic reaction between®) and the immobilised peroxidase was inhibited by
pesticide compounds, working both in aqueous arghroc phases (i.e. toluene,

acetonitrile and chloroform).

2.2.5.8.1 Rationale for organic phase biosensors

The main objective and interest for the developmehtorganic phase
biosensors, arises from the limitations encounténethe detection of hydrophobic
analytes that are only sparingly soluble in waldrese hydrophobic analytes and
their matrices are readily soluble in organic sotge Other advantages arising from
the use of organic phase biosensors include:

(1) the elimination of microbial contamination,
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(i) reduced interference from water-soluble compounds,

(i)  an extended biosensor linear range,

(iv)  asolvent-induced change in the substrate spdgibfithe enzyme,

(v) immobilisation of the enzyme through adsorptionoambn-porous surfaces is
satisfactory as enzymes are unable to desorb fraset surfaces in non-
agueous media,

(vi)  and enhanced thermostability and sensitivity (Kbnaisd Magner 2006:117;
Li et al. 1998:69-70; Wanget al. 1991:2993; Cosnieet al. 1998:165;
Campanellat al. 1999:109).

The activity and specificity of enzymes can be egieely changed due to the
effects of organic solvents. This is due to the that the specificity of the enzymes
depends on non-covalent interactions such as hgdrdgnding, as well as ionic,
hydrophobic and van der Waals forces. Therefoeefdbtors that include the enzyme
immobilisation procedure, the means of communicabetween the transducer and
the enzyme (i.e. direct or mediated electron temsfand the physico-chemical
properties of the solvent used, are important sitiey can have a significant
influence on the micro-environment of the biocadalyKonash and Magner
2006:117; Klibanov 1989:141; lwuoleh al. 1995:662).

It should also be noted that some drawbacks withufe of organic solvents
do exist. These drawbacks include:

(1) inactivation of the immobilised enzyme moleculeg tlwdenaturation by the

non-agqueous surroundings,
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(i) and reduction in the rate of the enzymaticctem by the organic media
(Cosnieret al. 1998:165).

In fact, it should be noted that the activity ofzgmes in organic media is
strongly dependent on their hydration layer, which essential for their
conformational flexibility, thus necessitating these of water-organic solvent
mixtures in some cases (Cosné¢ral. 1998:165).

Campanellaet al. (1998:595) did further investigative work into the
functioning of enzymes in organic media and looketb a possible correlation
between biosensor sensitivity (i.e. enzymatic #gdivand indicators, such as the
dielectric constant value (DEC), or the Bgalue of the organic solvent used.

The detection of pesticides is often done in aqaesmlutions, but often these
compounds are characterised by a low solubilityvater and a higher solubility in
organic solvents. When solid matrices (e.g. fruéigetables, etc.) are prepared for
pesticide analysis, extraction and concentratiopesticides from these matrices are
commonly carried out in organic solvents. Therefdine ability of enzymes to work
in non-aqueous media is very important. The naamd amount of the organic
solvent affects the enzyme’s activity, but for soemzymes such as glucose oxidase
and tyrosinase, it was found that they function afiguwell in various organic
solvents as in water. However, in all cases thgmezrequires a minimum amount of
water to retain its catalytic activity. Cholinestee (ChE) has shown to be more
sensitive towards organic solvents, compared tgtheiously named enzymes. The
influence of organic solvents on free AChE activitgs been reported and few

publications refer to the detection of pesticidathvimmobilized AChE in organic
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media (Andreescet al. 2002:169-170; Ronzani 1993:3867; Fennetial. 1997:97-
99).

It was earlier stated that the immobilisation pohge is important since it can
influence the micro-environment of the biocatalyst. the case of hydrophilic
matrices they are compatible with enzymes and eansed to increase the level of
enzyme hydration, although polar supports may lithé rate of mass transfer of
hydrophobic substrates to the enzyme layer. Imibwk done by Konash and Magner
(2006:116-117) it was shown that using a polymerhsas Eastman AQ, which
combines hydrophilic and hydrophobic structuratdeas, the above-stated problem
can be solved.

Several new approaches and different techniques siace been reported in
the development of organic phase sensors.

Iwuohaet al. (1995:661) investigated the effects of polar orgaolvents on
the activity of tyrosinase that was entrapped poby(estersulphonic acid) polymer
matrix. They investigated the behaviour of an orgahase phenol sensor in the
solvents acetonitrile, acetone and tetrahydrofusantaining 20% v/v water, and
found that the enzyme electrode is effective inttlree media in the presence of 100
MM phenol.

In another study by Montesinet al. (2001:231-232) it was shown that a
disposable cholinesterase biosensor assembledreansprinted electrodes can be
manufactured. The biosensor was used to assessf¢ioe of three miscible organic

solvents (acetonitrile, ethanol, dimethyl sulfoXiden the acetylcholinesterase
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(AChE) activity and on the inhibitory effect of @gophosphorous pesticides on

AChE activity.

2.2.5.8.2Enzyme behaviour in organic solvents

The use of enzymes in organic media (with low omader content) has been
one of the most exciting facets of enzymology icerg times and it has been
investigated by several scientists (Gupta and R@42575).

Water activity in nearly anhydrous media is veryportant. Less than a
monolayer of water is needed for an enzyme to staotving biological activity,
while the addition of more water molecules increab@logical activity. It was
further showed that the higher the water contenttlen enzyme, the higher the
reaction rate for the enzyme (Gupta and Roy 2004&2Z576).

Furthermore, the pH is also an important factoceithe correct protonation
state of the side chains of amino acids residugbefnzyme is important in non-
agueous media as well (Gupta and Roy 2004:2575)2576

The work by Krogeret al. (1998:219-220) indicated that for enzymes
operating in organic solvents, a major mechanisspbfent-induced disruption is the
disturbance of the enzyme hydration shell and watelecules associated with the
active centre of the enzyme. They further indicdbed solvents can be classified into

three groups, including:
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(1) water-immiscible solvents in which there is no iattion between the
enzyme and hydration shell,

(i) partially water-miscible solvents, which have tlyeltation shell removed, but
low levels of water in the bulk solution can pretenhnibition,

(i)  and water-miscible solvents which are mainly treolabls and when applied
pure, they can strip the essential water from tieyme.

They also indicated that significant free activityvas observed for

acetylcholinesterase (AChE) when it is dissolvedsolvents from the first two

categories, while the last category has provecetddstructive for AChE (Krogest

al. 1998:219-220).

Iwuohaet al. (1995:661) also reports that hydrophilic solvears understood
to strip enzymes of the essential water of hydnatieeded for enzyme activity. They
further indicated that when enzymes are operatedrganic media, the hydration
level of the active site of the enzyme should béentaaed.

In another study done by Chowdary and Prapulla32®Y) it was reported
that the polar nature of ethanol causes inhibitmhn enzymes, especially in
esterification reactions since it strips the hyidratayer around the enzyme surface,
resulting in low enzyme activity.

In the work done by Klibanov (2003:427), it is calgastated that in
hydrophobic solvents, enzymes have a higher enzgraativity than in hydrophilic
solvents. In the case of hydrophobic solvents a ¢hvsters of water molecules,
presumably mainly bound to charged groups on thiasei of the enzyme molecules,

are available for enzymatic activity. Hydrophiliolgents on the other hand, strip
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some of the essential water off the enzyme molsctiereby lowering the enzyme’s
catalytic activity. The lowering of enzymatic adtyv in organic media can be
prevented by adding small quantities of water te solvent. Furthermore, higher
catalytic activities for enzymes in organic solweate also obtained if the enzyme is
lyophilised from an aqueous solution of optimum faid enzyme activity, or if that
aqueous solution contains a ligand for the enzyme dyoprotectant (Klibanov
2003:427-428).

Since enzymes were able to function in non-aquesobgents, the optimum
biochemical parameters had to be defined for thetfaning of the enzymes in non-
aqueous solvents. In this regard, new correlatwege found between classical
indicators such as the ldg values of several solvents, as well as new engpiric
indicators. These empirical indicators included therent variation and the current
variation rate, which may be monitored with a bies® by dipping it directly into an
organic solvent. It was also found that neitherveol apolarity nor water
immiscibility by itself is essential for optimal ymatic activity, and that
immobilised enzyme preparations can exhibit inadasatalytic efficiency of at least
one to two orders of magnitude over lyophilized deve in low-water organic
reaction systems (Adanyi and Véaradi 2004:432-438t8n et al. 2000:114).

In the work done by Khmelnitskgt al. (1993:73) it was shown that micellar
enzymology (i.e. enzymes entrapped in reversedli@scan organic solvents) plays
an important part in the studying of the behavioluenzymes in organic media, since
several enzymes retain their catalytic propertig@nu entrapment in reversed

micelles. A common approach to produce enzyme-aantareversed micelles is to
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use the so-called injection method. This entaits itiiection of a small amount of
aqueous stock enzyme solution directly into théastmnt solution in organic solvent.
The next step involves the mechanical shaking iotirg} until a clear monophasic
system is formed in which enzyme molecules are rpaated in inner agueous
cavities of hydrated reversed micelles. It showddchbted that the enzymes remain in
a bulk aqueous solution during the time period ketwthe injection and actual

solubilisation of the enzyme.

2.2.5.9 Biosensors for inhibitor determination

Biosensors for the estimation of the content ofhitbrs involve a two-step

process, which involves the measurement of:
0] the initial response of a biosensor,
(i) and its decay after being in contact with the iitbibsolution (Evtugyret al.

1998:465).

This may result in a biosensor for the measureroémhibition being too
complicated. It is often the case that the mechanaf the enzyme-inhibitor
interaction is well-known, but the immobilisationf dhe enzyme and the
heterogeneous kinetics of the enzymatic reactidactfother parameters. These
parameters include the experimental kinetic parareadf inhibition and the optimal
conditions of the determination of inhibitors. & &also found that the analytical

characteristics of inhibitor determination are offtar from those obtained with native
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enzymes. However, with the high sensitivity of lgiesors, new opportunities exist
for purposeful modification of the sensitivity asdlectivity of the determination of
inhibitors (Evtugyret al. 1998:466).

Futhermore, with careful investigation of the sudg-inhibitor system of
both the native and immobilised enzyme, it is gassio optimise the measurement
procedure and the detection system. This enabkesldboration of the analytical
characteristics of the determination of inhibitarsd allows control of the dynamic
range and detection limits, depending on the padicanalytical problem to be
solved (Evtugyret al. 1998:466).

The inhibition degree (I %) is used to express ititebiting effect of the
chemicals on the response of the biosensor, dfeebitbsensor was in contact with
the sample tested. If the degree of inhibition a$ msed, the absolute value of the
response of a biosensor can be used for the aificalibration curves.

For irreversible inhibitors, an empirical linealibeation curve can be constructed by
plotting the inhibition degree (I %) or biosensesponse versus log With C being
the inhibitor concentration). In the case of rei@esinhibitors, a calibration curve is
plotted in linear coordinates of the inhibition deg (I %) versus the inhibitor
concentration (. For these constructed graphs, the sensitivityaobiosensor
towards an inhibitor can be defined as the sloptefcalibration curve (Evtugyet
al. 1998:468).

Three steps are involved in determining the inmpieffect and the inhibitor
concentration for inhibitor biosensors. These stapslve:

(1) the determination of the initial response valu¢hefconstructed biosensor,
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(i) incubating the biosensor in an inhibitor solutiorcgbation stage),
(i)  and the repeated determination of the reduced nsgpof the biosensor after

exposure to the inhibitor (Evtugwt al. 1998:468).

For the second stage it should be noted thatfeversible inhibitors, only the
inhibitor is present and no substrate, while the tbsulting decay of the enzyme
activity and of the response of the biosensor seenith the duration
of the contact (i.e. with the time of incubatioRpr reversible inhibitors, the working
solution will contain the inhibitor and the substraso that the incubation takes place
in the presence of the substrate. After the conguiedf stage three, the degree of
inhibition can be calculated as well as the retatiecrease of the response value of

the biosensor (Evtugyet al. 1998:468).

2.2.5.9.1 Choosing an enzyme for inhibitor determation

To choose an enzyme for inhibitor determination @mdestablish how it
affects the enzyme’s activity, the mechanism ofrthexic effect on living beings
should be considered. Specific enzymes and its aammbhibitors include the
following:

0] Since the cholinesterase of insects is the target the commercial
preparations of organophosphorus and carbamatecta@®aricides, the

presence of these pesticides may be determinedchatlimesterase.
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(i) The presence of dithiocarbamate fungicides can keermined with
biosensors containing aldehyde dehydrogenase, wikictonsidered as a
target.

(i) Itis known that herbicides suppress photosynthretctions and the activity
of tyrosinase and peroxidase as enzymes.

(iv)  Cyanide ions is known to inhibit the activity oktlenzyme called cytochrome
oxidase.

(v) Heavy metals are known to inhibit the activity aftalase (Evtugyret al.
1998:469).

In constructing any of the above biosensors forbitdr determination, it is
important to check on the commercial availabilifytoe enzyme preparations, the
stability of the enzyme during storage and apghbecatas well as the convenience of
the detection of the enzymatic reaction (Evtugyal. 1998:469).

Cholinesterase is one of the most popular enzyreed tor inhibitor determination,

since this enzyme catalyse the hydrolysis of thdurah neurotransmitter,

acetylcholine, which is commonly found in insectsd shumans (Evtugyret al.

1998:469).

Native or immobilised cholinesterase can be appiieda biosensor to
determine a wide range of pollutants, which inclutie organophosphorus and
carbamate pesticides, heavy metal ions, fluoridaBonic surfactants, and etcetera.
Furthermore, cholinesterases obtained from insetsnore sensitive to insecticides

than those obtained from mammals. On the other,lthedsolation of these enzymes
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and their stablisation are considered to be thékygeat in their practical application

(Evtugynet al. 1998:470-471).

2.2.5.9.2Kinetics of enzyme-inhibitor interaction

The mechanism of the enzyme-inhibitor determinatiays a vital role in
establishing the optimal procedure for the measargrof the inhibiting effect of an
inhibitor biosensor application. The enzyme-inkobiinteraction encountered for
irreversible inhibitors, results in the formatiod a covalent bond between the
enzyme’s active centre and the inhibitor. This ratdon means that the
decomposition of the enzyme-inhibitor complex resuh the destruction of the
inhibitor molecule via its hydrolysis, oxidationtce This destruction proceeds
stepwise as shown in Scheme 2.1 for phosphoryletietinesterase, which can be

accelerated by special reagents (Evtuglyal. 1998:471).

E+1

—— E- C E-1 CE
b .

Scheme 2.1 Reaction scheme of the enzyme-inhibiwsmplex for a
irreversible inhibitor, as for phosphorylated cholinesterase
(Evtugyn et al.1998:471).
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In the case of irreversible inhibitors, the folloygi equation can be used for
the determination of the inhibitor concentration)(@r the bimolecular rate constant
(kn) of the enzyme-inhibitor interaction as shown guation 2.32(Evtugyn et al.

1998:472):

In(v, /v,) =k, C,T Eqn. 2.32

Wheret is the incubation timey, andv;are the initial rates of an enzyme prior to and
after the contact of the enzyme with the inhibitesspectively. Equation 2.32 is valid
for a short incubation period (< 10-15 min) and when the concentration of the
inhibitor is much higher than that of the activategs of the enzyme.

In Scheme 2.2, the influence of a reversible intbitjor activator) on the two-
step enzyme reaction is presented. In this scheénsedssumed that the inhibitor
reacts with the enzyme of enzyme-substrate com@8&x,in a ratio 1:1 (Evtugyat

al. 1998:472).
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Scheme 2.2 Reaction scheme of the enzyme-inhibitwsmplex for a reversible
inhibitor (Evtugyn et al. 1998:472).

2.2.5.9.3Enzyme immobilsation and the role of suate factors

A very important part in the development of a bies® is the immobilisation
of the enzyme. If an immobilised enzyme can be usenhultiple applications, it
reduces the cost of measurement. Furthermore, molifised enzyme is more stable
towards extreme working conditions, such as highperature, and it can be easily
combined with an appropriate sensor in the biogeassembly (Evtugyret al.
1998:473).

The economic advantages are not so compellingnfabitor determination,
since inhibition implies that the enzyme activitgcdys and a limited number of
consecutive measurements with the same batch ofobiised enzyme can be
performed. However, certain conditions in the opegaof the inhibitor biosensor

can be optimised to obtain maximum response (Evietal. 1998:473-474).
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The content of the membrane influences the analytbaracteristics of the
determination of an inhibitor, which is more pronoad for thick membranes with a
high activity of the enzymes, such as for a getatilembrane. In the case of thin
enzyme films, which are formed directly on the #ilede surface, the diffusion
limitation is not as high. Furthermore, the resol$ained are much more affected by
the nature of the enzyme and by the specific enzyawivity. To this extent it was
found that with a pH-sensitive field effect transis(FET) covered with an ultra-thin
layer of cholinesterase and a potentiometric bissewith a replaceable membrane,
the detection limits of organophosphorus pesticatessimilar to each other for each
sensor respectively (Evtugwt al. 1998:475).

In the case of biosensors that are based on potestiic pH sensitive ion-
selective electrodes or field effect transistor&TE), the consideration of kinetic
limitations should be extended to the acid formrethe enzyme reaction. A pH shift
of 1 — 1.5 units in a weak buffer medium can beeoled in a membrane body. This
will cause changes in both the activity of an engyand in the kinetic parameters of
inhibition, which are also pH sensitive. Anothemiontant factor is the pH value of
the working solution, which is commonly selectedsé to the pH maximum of the
enzyme activity observed for a native enzyme. éf¢his a pH shift in the membrane
body, it results in an additional decrease in #esgivity of an immobilised enzyme
to the inhibitor, when compared to that of a natereyme in similar working
conditions (Evtugyret al. 1998:475).

For amperometric biosensors, the response of th&sé¢o various inhibitors

is often considered to be a linear function of &émzyme’s activity. Calculations of
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the kinetic parameters based on this assumptionnagood agreement with the
results obtained with traditional measurements lo¢ specific activity of the

immobilised enzyme (Evtugyet al. 1998:475-476).

2.2.5.9.4pH of the working solution

The pH value of the working solution is usually asdpd as the most
important factor in determining the performanceaobiosensor and its sensitivity
towards inhibitors. It is thus a rule that the plxaimum of the enzyme activity is
evaluated as most appropriate for the substraterduiuitor determination. And there
is agreement that the pH-dependence of the obsemaibhiting effect often
corresponds to that of the response of a biosefidars when enzyme sensors
utilising various esterases are constructed, theg anost sensitive to
organophosphates at the pH 8 — 9 when the respwingee biosensor is maximal
(Evtugynet al. 1998:475-476).

In the presence of multicharged ions, the inhibiteffect on the enzyme
cholinesterase is preceded by their partial hydislyand the formation of the
hydroxyl ions, MeOH. It therefore indicated that the pH maximum of ilifion
depends on the appropriate equilibrium constantdyafrolysis (Evtugynet al.
1998:478).

The importance of the pH value of the working soluthas been noted, but

the actual pH shift in a membrane body during thengtion of the response of a
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biosensor, is determined by the nature of the bsfiéution. The effect caused by the
use of a specific buffer on the inhibition degré#amed, can result from the change
of the capacity of the buffer or the ion strendtbr example, the use of borate buffer
for cholinesterase, demonstrate a weak inhibitiffigce of the enzyme. Furthermore,
the concentration of the supporting electrolyten as important for biosensor
response, as the pH value of the working solutibriygynet al. 1998:478).

It should be noted that there can be a shift ofptHevalue from the optimum
for the enzyme-substrate or enzyme-inhibitor inteoa, to meet the needs of
accurately detecting the enzyme reaction or théilgta of the sensor. Since
electrodes based on the composition of epoxy rasthcarbon is unstable in basic
media, the pH can be adjusted when this compostantaining cholinesterase is
used for inhibitor determination, and all measuretsi€an be performed at pH = 7.0
(Evtugynet al. 1998:478).

In the case of irreversible inhibitors, the incubatprocedure is performed
before the substrate is added to test the inhikifect, following the initial testing of
the biosensor with the same substrate. The conditid the initial response of the
biosensor, followed by the conditions of inhibitioand of the following
determination of the reduced response after inbinitcan differ and there are some
limitations that should be avoided. If a cholinease biosensor is incubated in a non-
buffered media at pH = 7 — 7.5, followed by deteration of the response in standard
conditions for this enzyme (e.g. phosphate buftepth 8.0), it will be possible to
detect both heavy metal ions and organophosphasiscpues. If incubation is done

in a phosphate buffer at pH 8.0 under the sameitonsl of response measurement,
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it will result in the selective determination ofganophosphates in the presence of
heavy metal ions. For the determination of orgawmsphates, incubation can be
conducted immediately in organic solvents that wesed for extraction of the
pesticides. The biosensor is then washed to elimitiee interfering influence of the
organic solvent on the response of the biosensstaimdard buffer solution (Evtugyn

et al. 1998:478).

2.2.5.9.5Measurements in organic media

The measurement of a biosensor's response in nogwag media has
become a very attractive prospect and the emplogfngnzymes in organic media
allows an increase in the solubility of non-polabstrates and or inhibitors. It further
allows shifting of the sensitivity of the enzymeswvards various substrates and
effectors (Evtugyret al. 1998:479).

It is a known fact that only a few enzymes retdipirt activity when the
content of water does not exceed a certain pergentdwo enzyme- based
biosensors, e.g. tyrosinase and peroxidase, hage Wwelely investigated for the
determination of various substrates and inhibitororganic solvents, containing
various amounts of water, acetonitrile, alcoholgl-dioxane, acetone, chloroform,
etc. Biosensors for measurements in organic savam subjected to more stringent
requirements for immobilisation of the enzyme. HEppropriate carrier used for the

immobilisation of the enzyme, should neither digealor swell in organic media and
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the immobilised enzyme must retain its activitytiie biosensor working conditions.
Several materials (e.g. polymers, membranes, &@ve been used for enzyme
immobilisation (Evtugyret al. 1998:479).

In biosensors, enzymes use the presence of a pladse for the establishing
of electric conductivity that is necessary for #&lechemical measurements. When
non-polar solvents are used, a two-phase soluésaltrwith the addition of water or
buffer, which can also be used since the orgares@lfiorms reversed micelles. These
micelles will contain a low amount of aqueous buBelution that will maintain the
enzyme activity and the electric conductivity (Eyyu et al. 1998:479).

It was found that most enzymes reduce their agtinithe presence of water-
miscible solvents. The use of these solvents fdltlve same goals as for the use of
organic media in measurements. That is the increfiselubility of the inhibitors to
be determined and the possibility of direct analysi extracts taken directly from
plants or soil, without having to evaporate theaoting agent, etc. It should be noted
that the maximum amount of solvent to be used énvtbrking solution depends on
the nature of the enzyme and the membrane mafEntigynet al. 1998:479).

In order to overcome the limitations of organicveoits, i.e. resulting in
insufficient electric conductivity and low enzymtalsility, the biosensor incubation
can be performed in organic media and the respmessurement after incubation in
aqueous standard or buffer solution. To do thissOaminute incubation time is
suggested for pure alkanesgs(€ GCi2), benzene, butyl acetate, ethyl ether and
acetonitrile since it does not significantly altlee activity of acetylcholinesterase. On

the other hand, solvents such as alcohols, dimetjphoxide and chloroform
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diminish the activity of the enzyme by 50 — 100%eTparameter 0§ was used to
characterise the influence of the solvent on theviac of the enzyme. LodP is
defined as the logarithm of the partition coeffitien a standard octanol-water two-
phase system, witR = (Csoven)octanol (Csovenjwater The highest enzyme activities (as
high as 120% for free enzyme and up to 115% for atmifised cholinesterase) were
obtained after the incubation in hydrophobic sotsewith logP > 4 for free and 2
for immobilised enzyme (Evtugyet al. 1998:479).

The role the organic solvent plays in the inhilmtieffect is unclear. In the
case of reversible inhibitors it may depend onh@rophilic/hydrophobic properties
of the substrate and inhibitor. While for irrevétsi inhibitors, the influence of the
organic solvent on the inhibiting effect is conseteto be lower than in the case of

reversible inhibitors (Evtugyat al. 1998:480).

2.2.5.9.6 Using enzyme effectors

This involves the incorporation of stabilisers aftectors of the enzyme in
the working solution during the biosensor assemblys area is most promising but
has been less investigated as one of the key idinsctfor progress in the
development of biosensors for the determinationnbibitors. As an example, the
detection limits of mercury (Il) that inhibits peddase from horse serum, can
decrease by a factor of 100, if the enzyme is fitsubated in a diluted solution of
thiourea. Moreover, this treatment of the biosenserents the interfering effect of

other heavy metals with the biosensor responsewatidthe choice of appropriate
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substrates this approach resulted in the developofenighly selective methods of
mercury determination with low detection limits (Egynet al. 1998:480).

Another example consists of the activating effedctacium ions and some
other doubly charged cations on the response ofesongetric biosensors, with
butyrylcholinesterase immobilised in cellulose ttetie and its sensitivity towards
irreversible inhibitors. The sensitizing effect daam observed within narrow limits of
experimental conditions of a pH between 9 and XDveith low concentrations of the

supporting electrolyte (Evtugyet al. 1998:480).

2.2.5.9.7 Future prospects of biosensors for inhitoir determination

It may seem that the practical application of imfoibbiosensors are currently
much more complicated than that of substrate bsxssnbut the potentialities of the
former type of biosensors are far from being extexlisThis is especially the case in
the application of biosensors for environmental owimg. Unlike the use of
conventional techniques and analytical equipment i8 sometimes costly and
cumbersome in transporting field samples to the il@hibitor biosensors make the
direct detection (without pre-concentration or skmpreatment) of dangerous
pollutants on-site and in the field possible. Thetedtion limits achieved in the
application of most inhibitor biosensors, referthe maximum permissible levels of
pollution in environmental samples. The ease of rafpm, simple response

measurement as well as user-friendly design, mh&set types of biosensors very




Chapter 2 Literature Review 121

attractive for the preliminary estimation of po#at levels in field conditions. The
use of inhibitor biosensors does not come witharhes limitations or problems,
which include:

0] the selectivity of response,

(i) the calibration of biosensors in multi-componentiag

(i) the influence of natural enzyme effectors,

(iv) and the directional regulation for biosensor perfance depending on

particular analytical problems (Evtuggtal. 1998:481).

Recent research calls for modes that provide furtingprovement of
biosensors based on well-known enzymes (i.e. cbsti@nase, peroxidase, tyrosinase,
etc.) applied to the development of novel sensarsstiucers for the better provision
of operating conditions (e.g. response time, lifetiof enzymatic membrane, etc.).
The sensitivity of the sensors can be improvedhay dptimisation of the working
conditions that may include the incorporation ofzygne activators into the
membrane or electrode material, as well as in thekiwg solution (Evtugyret al.

1998:482).

2.25.10 Thick film biosensors

2.25.10.1 Introduction

Recent years have seen increasing interest ingjplgcation of simple, rapid,

inexpensive and disposable biosensors for useeifiigtds of clinical, environmental
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or industrial analysis. To produce disposable leses thick-film technology is
generally considered. In thick-film technology l®asor configuration, one normally
sees layers of special inks or pastes that aresdtedcsequentially onto an insulating
support or substrate (Albareda-Sirvenal. 2000:153).

Different thick-film biosensor configurations havieeen proposed and
designed. All these planar configurations can bassified into three groups
(Albareda-Sirvenet al.2000:153):

0] multi-layer deposition with biological materiatleposition by hand or
electrochemically,

(i) screen-printing of composite inks or pastesngswo steps with biological
material deposition by screen printing,

(i)  one-step deposition layer using a biocompmsik or paste.

The thick-film technique comprises of a specifictioel of film deposition
namely screen printing, which is one of the oldests of graphic art reproduction.
The construction and production of sensors andebss's with the use of thick-film
technology is an emerging field. The sensing oivaanembrane and its adhesion to
the transducer layer is the most critical pointtive manufacturing of thick-film
biosensors (Albareda-Sirveet al. 2000:153).

The different layers in a thick-film biosensor cigfration can be classified
as follows:

(1) a conducting pad consisting of carbon ink or paste,
(i) the free enzyme or mixed with an entrapment agentross-linker and a

stabiliser or additive is applied in one or morgels,
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(i)  outer selector layer (used in some applicatiortsy tellulose or Nafion is
applied with the aim of avoiding any interferences,

(iv)  the mediators, stabilisers and additives