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Abstract—We investigate several approaches aimed at a more tence types suggests that context modelling (and thus co-
detailed understanding of co-articulation in spoken utterances. articulation) plays a significant role in the accuracy ofesge
We find that the Euclidean difference between instantaneous recognition systems — thus, also in their need for largaitigi

frame-based feature values and the mean values of these feagsr It is clearl t ht ficient b
are most useful for these purposes, and that low-order polynoin corpora. It Is clearly not enough to see a suflicient number

als are able to model the between-phone transitions accurately. Of phone samples: it is necessary to see enough samples in
Examples of typical transitions are presented, and shown to give contexts sufficiently similar to what is observed in theitegt

useful insights on the measurable effects of co-articulation. data.
I. INTRODUCTION [ Subset] Gender] % Accuracy |

. . sa male 88.78
With current _te_chnology, it is generally agre_ed thafc large ca | female Q7 47
amounts of training data are required to achieve high ac- Si male 61.24
curacies in speech-recognition systems: state-of-théaye- sX male 61.13
vocabulary systems are trained with hundreds to thousahds o o Igmg:g gg'gg
hours of data. However, it is not clear just why so much data Total - 6598

is required: is it because of inherent variability in speake TABLE |

channel conditions, speaking styles, etc., or because ef th  Typical accuracies of different sentences in TIMIT testdzt
complexity in representing cross-phone co-articulaticnua

rately, or for some other reason? This issue is theoreticall

important, and also crucial for the development of systems i \we would like to gain a more detailed understanding of
resource-constrained environments. these contextual effects. Towards this goal, we have dpedio

An interesting hint on this matter is provided by the perfory number of tools that allow us to assess how phonemic context
mance of typical Hidden Markov Model (HMM) systems onnfluences the production of speech sounds, when expressed
different sub-corpora of the TIMIT corpus [1]. In partictula jn terms of the standard features used for speech recognitio
we have repeatedly found that performance is substantigliythis paper we introduce these techniques, and demamstrat
better on the so-called speaker-independent senten@sa(ththeir usefulness in analysing co-articulation effects.
subset, where the same prompts are recorded by all trainingrhe paper is structured as follows: We first discuss some
and testing speakers) compared with the speaker-depenggpited research in section Il. In section Ill we describe th
sentences (the: subset, where different prompts are recordeghecific techniques we use to analyse contextual effects. We
for different speakers, and each of the sentences is thys offlen describe the experimental set-up that we use to test the
recorded once). In Table | we list phone recognition acdesac yalidity of these techniques and to perform initial expezits
obtained for subsections of the testing data containing tfesection IV. Our results are presented in section V, folidw

indicated sentences. All accuracies are obtained USing Wa summary of our main observations and a preview of
same HMMs, constructed from the training set. (Table | al§gture work, in section VI.

contains the results for ther sentences, which were read by

small subsets of the speakers — these clearly behave sjmilar Il. BACKGROUND

to the speaker-dependent sentences.) While the importance of modelling contextual effects for
Since these sub-corpora are subjected to the same intemge vocabulary speech recognition has long been under-

and inter-speaker sources of variability, the large aayurastood [2], these effects are typically modelled implicitithin

difference between thea sentences and the other two sema more general statistical framework. Attempts to model



contextual effects explicitly as phone transition trapeigts values. We experiment with the Pearson correlation coefftci
have been met with mixed success [3]. Most of these aftre Euclidean distance, and the dot product between two
proaches attempt to overcome the limitations of standavdctors.

HMM approaches (especially the state-based independenc&hese measures are defined as follows. For any two random
assumption) either by incorporating explicit trajectsreithin  variablesX andY the Pearson correlation coefficient is given
an HMM framework [4] or by explicitly defining longer term by:

variable length segmental models [5]. Related researels tri Cov(X,Y)
to uncover the underlying articulatory trajectories prcidg pPxy = Toxoy (1)
speech, in an attempt to better model acoustic change with whereCou(X,Y) = E[(X — ux)(Y — py)]

fewer parameters [6].
All the above approaches aim to develop better acous@iod . and o indicate the mean and standard deviation of
models of speech. Much less work is available related to &ach of the variables. The Euclidean distance is given by:
analysis of co-articulation effects as a tool towards aebett -
understanding of speech resource requirements, the fdcus o Z (25 — yi)?
the current paper. P

)

[1l. TECHNIQUE where z; and y; are the separate dimensions of the
In this section we describe our analysis technique in génerdimensional random variable¥ andY’, and the dot product
list some of the parameters that can be varied, and discasshl:
design choices made. n
The essence of the analysis technique is to identify reéeren XY = Z TiYs 3)
values per phone, and then track the trajectory with which i=1
the audio signal diverges from these reference values o@r Tracking trajectories

time. We expect these reference values to act as if they arg;cn of the above measurements are used to obtain two
‘targets’, with some form of transition occurring from Ongjiscrete values per frame (measuring the difference froen th
target to the other over time. We are interested in deteniniyq reference values on either side of the transition boyda
whether different types of transitions occur, and whethgg orqger to create a trajectory from the frame-based valwes,
similar transitions are observed over similar phone clssg g polynomial function using least-squares estimatiomisT

across multiple speakers. approach effectively minimizes the squared edirgiven by:
A. Reference values n )
Typical ASR systems utilize frame-based feature vectors E = Z [p(2) = yil (4)
=1

such as Mel-Frequency Cepstral Coefficients (MFCCs) or
Linear Predictive Coding (LPC) coefficients to represemt tvhere|p(z;) — y;|* are the squared residuals.
speech signal effectively. In this work we utilise MFCCs The order of the polynomial is an important factor to
normalised to have zero mean and unit variance as our ing@nsider, with higher order polynomials quickly leading to
features. (For each feature vector, normalisation is pexéd oVverfitting. We describe the trajectories formed near ftems
by subtracting the mean and dividing by the standard deviatiboundaries in terms of a 3rd order polynomial function and
of the unprocessed feature values.) All MFCC vectors afély fit the frame sequence closest to the phone boundary.
generated using the same parameters as the system describégiis done in order to prevent interference from additiona
in section IV-B. co-articulation to the left and right of the phone transitio
As reference values, we calculate the mean of the né€ing analysed. (Only the closest 50% of monophone frames
malised feature vectors over all monophones in the traini@dge used in our experiments, effectively describing a digha
corpus. ASR alignments are always used to associate firistic measure meant to obtain a balance between ingudi
feature vectors with corresponding phone labels, leading t Only the relevant part of the trajectory and still retaining
selection of feature sections that would normally be setbctsufficient frames for analysis.)
during the ASR training process. Different means can beln order to model a phone transition, two trajectories — one
calculated by either summing over all speakers or only oveing each reference variable as target — are constructed.
monophones of the specific speaker. In addition, all frames i b \Measuring co-articulation effects
monophone can be used, or only the central frames (assxd)ciateIn order to analyse co-articulation effects, we measure:
with the centre states of the HMM alignments, assumed to be ' '

more stable as target values, and less subject to co-attcyl ~ ° the g_oodness of fit per trajectory,
effects). « the difference between monophone reference values, and

_ « the trajectory slope at the transition boundary.

B. Difference measures We analyse these measurements over all test data, and for spe
Various analytical functions may be used to calculate the esific phone classes. We also report on the standard deviation

tent in which each frame diverges from the respective refare of these measures as an indication of intra-class varabili



IV. EXPERIMENTAL SET-UP HMM-based phone transition boundaries used in the next

A. Overview section.

Frame-based values can be calculated using any of the V. RESULTS
difference measures and reference mean variables describe
above. In order to ensure that we are constructing meaﬂingﬁl Overall accuracy of measures
representations of the modelled acoustics, assessmehtof t In order to evaluate the effectiveness of the trajectory
difference measures are required. In essence, given spedificking technique, the frame-based values are analysibd wi
reference mean variables (corresponding to the phoneslabelgard to: (1) their ability to separate classes to the lsft a
of a transition) tracked trajectories must yield the bestsgimle right of the known phone transition boundary, and (2) the
separability of the frame-based features to the left anht rigoroximity of the trajectory-based transition boundary he t
of a transition boundary. (Some transition classes havh su¢MM-based transition boundary.
strong co-articulation effects that separation is acoabhyi 1) Class separability:lt is possible to measure the average
constrained. This will typically be the case for very similadifference from each reference value (the average of tinecfra
sounding phones.) In our first set of experiments, reporteadsed values) to the left and right of the (known) transition
on in section V-A, we use class separability and boundabpundary, and perform phone classification based on therdliff
tracking to evaluate the overall accuracy of our technique. ence between these two values. Table Il indicates the number
Extraction of meaningful trajectories from the frame-lshseof phone transitions for which both of the phones are cayrect
values is achieved using polynomial functions. The différeclassified using the various difference measures described
ways in which these trajectories categorise different$ypke in section 11I-B. It is found that, while all three differeac
acoustic change is investigated in our next set of experisnermeasures provide fair class separability, the Euclidestaxice
reported on in section V-B. outperforms both correlation and the dot product.
Co-articulation effects manifest differently for differe  Switching to the state level boundaries (indicatedA&R
phone contexts. To understand how co-articulation phenamesentre in the table) results in an even further improvement
can be analysed based on the constructed trajectories,iwe dor the Euclidean distance, but not for the other measures.
duct experiments considering broad phone transition efassThis shows the presence of two opposing effects: (1) station
as reported on in the final part of the results section (sectiary components at phone centres and (2) encoding of co-

V-C). articulation in the reference variables. At the phone entr
] less co-articulation yields more separable trajectones)e
B. Speech data and alignments longer trajectories are likely to reveal more informatioithw

We use the TIMIT speech corpus [1] for all of the experregard to the particular phone.
iments discussed below. The corpus consist§30f speakers  The observed classification accuracy (averaged over all
from eight major dialect regions in the United States. Fargv phone classes) &1.3% when using the Euclidean distance as
speaker there aré0 utterances resulting in a total numbedifference measure is surprisingly high, given the simtyliof
of 6300 utterances. The corpus is divided into a standatte classification technique. For the remainder of our aisly
training and testing set. For the training data there 32& we mainly report on results obtained using the Euclidean dis
male and136 female speakers giving a total @62 training tance. Similarly, we focus on the use of speaker-independen
speakers. The types of sentences that were read is divitied imonophone means as reference values. Calculating a cemplet
three partssz, si andsa. MIT designed thet50 phonetically set of classification results, given the different optiorfs o
balancedsz sentences, while the: sentences formi890 reference values, yield only slightly better classificatior
phonetically diverse sentences designed at SRI. Finally tspeaker-specific means or means based only on central frames
test set consist 0of68 speakers, selected so that no speakéve find the speaker-independent monophone means more
appears in both the training and test set. robust because of the large amount of data available in the
In order to generate accurate phone transition boundari¥gjning corpus.
we obtain automatic alignments using a standard HMM-based

ASR system trained using the training set of the TIMIT Difference # Correct | % Accuracy
. . measure classifications
corpus. For this purpose we build a context-dependent cross .
. . . . Euclidean 40 558 77.1
word phone recogniser using tied triphone mod&?Bl\_/IFCC Correlation 39 190 745
features are used, which includg@ MFCCs and their first and Dot product 36 644 69.7
second order derivatives. MFCC parameters include a window Euclidean (ASR centre) | 42 747 813
. f daf afo ivelv. C | Correlation (ASR centre) 37 585 715
size of25ms and a frame rate dfoms respectively. Cepstra Dot product (ASR centre 31 074 59.1

Mean Normalisation (CMN) is applied. With regard to the TABLE I

modelling structure, each triphone model Basmitting states Number of correct classifications using mean frame-baséaesaand known
with 7 Gaussian mixtures per state and a diagonal covariance ASR boundaries

matrix. The system is used in forced alignment mode to output

state-level phone alignments. These alignments provide th



2) Boundary tracking:The evaluation technique describec
above relies on a known transition boundary. How close is tl o3
transition boundary identified by the tracked trajectofiesn
the version obtained from the HMM-based ASR system? V
evaluate this for different orders of polynomial functipusing
the crossing points of the two trajectories to identify idion
boundaries. : b =
Not all phone transitions produce pairs of trajectorieg th gl e e
Cross each Other Table ”I I|Sts the number Of phone trmt 23456 78910111213141516171819202122232425262728293031323334353637
that can be identified using polynomial function crossin sl e T
points. For the usable boundaries, the distance (in frams
between the identified and known phone transition bounslar
is calculated. This provides a clear indication of the baugd
tracking capability of these functions. (Note that the ASF
based boundaries are also estimates rather than an iodica o ]
of a ground truth.) T ELRE é1‘01‘11é1é:ln'51'61'7;53;{'1}31222‘12‘22‘32)2%262'72'&2'931}3'13‘23‘33‘43‘5363'7
In Table 1ll we also report on the goodness-of-fit)(for
the different polynomial functions, calculated by takifget S _ N
average of the mean square error values that describe fife - h;’g‘:;’;g%ﬁcm”es revealing strong co-artitatafor the vowel-
fit of the two individual polynomial functions. As higher P '
order functions are used to estimate trajectories, a clfiser
is obtained and the mean square error decreases. As this |

Phone transition: oy-er

e o s s s

Euclidean distance

lead to overfitting, we select a 3rd order polynomial for th S
remainder of our analysis: the shape of a 3rd order polynom air
lends itself well to describe the behaviour of a trajectoeam o
and crossing a phone boundary, and allows us to focus on A
co-articulation due to a single phone transition. ar
c3
c2 - - -
Measure # Usable % Usable E lef ° 71" 2I 3I 4 5 B 7 8 9 10 711 Ié Ié 7121 1‘5; 16 1‘7 187 197
(order) boundaries| boundaries (# frames)
Euclidean (1) 42552 80.9 6.345 1.828 B L S B S S S S A
Euclidean (2) 47 909 91.1 4.318 2.100 o . e,
Euclidean (3) 48 737 92.7 2.990 1.897 ghor . - 1
Euclidean (4) 49 312 93.8 2.311 1.846 B0 . . .
Correlation (1) | 41502 78.9 0.964 1.839 g * .
Correlation (2) 46 430 88.3 0.569 2.103 5 o ® +
Correlation (3) | 47 534 90.4 0.339 1.933 a0l . .
Correlation (4) | 48 101 91.5 0.240 1.871 . o ot N, .,
Dot product (1) 39 526 75.2 44.471 1.959 ’j'; e ]
Dot product (2) 46 079 87.6 25.051 2.314 Frames
Dot product (3)| 46 688 88.8 13.976 | 2.039
Dot product (4) 47 272 89.9 9.580 1.971
TABLE Il Fig. 2 Steep trajectory slopes revealing the definite itiansof the vowel-
Boundary tracking of phone transitions using differenteslof polynomial fricative class
functions

phone, similarly red crosses correspond to frame-basesval
for the second phone label and the phone transition boundary
B. Trajectory models as identified by the HMM-based ASR system is indicated as
From the results in Section V-A it can be seen that the vertical line.
underlying speech features (MFCCs) are co-articulated/in t  Figure 1 represents an example of the phone transition /oy/-
main ways: 1) Dynamics of change characteristics 2) acousfér/ within the vowel-vowel class, spoken by a male. Strong
contextual influence. These two effects may also interattt wiacoustic co-articulation over a relatively long period iohée
each other. is clearly visible for framed1 - 27. This results in a gradual
To show the prominent types of co-articulations observedhange and small slope values at the ASR boundary. From
we present four example figures. The plots show the statkedthe frame-based values, one can see that classification with
MFCC coefficients for all frames of the monophone transitiomegard to the mean value is still possible, assisted by the lo
the Euclidean frame-based difference values, as well as theation of the speech segment.
final diphone trajectories consisting of the two polynomial An example of a female /iy/-/s/ transition belonging to the
functions. Blue dots indicate frame-based values for tret fivowel-fricative class, is given in Figure 2. The MFCCs and
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Fig. 3. Abruptly changing trajectories of the vowel-stopoph transition Fig. 4. Low separability and strong co-articulation effegtield similar
class trajectories for the nasal-nasal class

frame-based difference values clearly show a definite itians
around frame numbers-10, indicating a large difference in
acoustic quality between the two phones. It is interesting,
to note that even for large acoustic change, co-articulated
features flowing well into both phones are present. Diphone
polynomial trajectories have steep slopes at the ASR baynda
and classification with regard to the average of the fransatba 4)
values is accurate.

There are also abrupt transitions, with very little co- )
articulation visible. A clear example comes from the vowel- 1able V shows the above values for different phone tran-
stop class (/aa/-/b/). Both MFCCs and frame-based differersition classeg constructed according to the CMU dictionary
values show very fast change within a small time period. cBhone groupings [7].
articulation effects with regard to this transition is seen  Ordering with regard to the steepness of the slopes, we
affect only 4 framesl8-22 and the frame-based values hav&ee that phone transitions with steep slopes also yield good
high separability (see Figure 3). separation for the mean difference between the reference

During all of the analyses (also see below) the nasal-na¥alues. Indeed we calculate the average of the frame-based
transition class tends to be problematic. From the MEC@lues for the vowel-fricative, vowel-affricate, nasatétive,
values shown in Figure 4, the straight lines indicate veRasal-affricates, to yield correct classification peragas of
similar acoustic quality for most of the frames and only grad1-6, 95.8, 84.4 and 92.1 respectively (Table V). Similarly,
ual changes. The frame-based difference values suppsrt the nasal-nasal class has a low separation of the average
finding, showing only gradual transition and bad separatiofi@me-based valued).(94 - see Table V) for the few phone
Co-articulation is seen to be present for all of the framet§ansitions £9.1%) that do yield correct classification. There
although this may be influenced by the similarity of the tw@'e exceptions to the rule. The nasal-liquid class has good
targets being tracked. The slopes of the polynomials hawe §gparability and steep slopes but classification of theageer
same sign and are very similar. frame-based values is &0.0%. In general, similar classes

In this section we demonstrated the use of trajectory modéfich as nasal-nasal or fricative-fricative) have the stk
to analyse co-articulation by presenting four very specifgeparability, as could be expected.
examples that are prototypical of the types of co-artiomat ~We observe that the standard deviations of the slopes,
observed in the larger corpus. In the next section we analy@@do2 to be similar in magnitude for particular phone classes,
some of these effects by averaging over broad phoneticasaséndicating a similar variability with respect to the intctass

] diphone transitions. Interestingly, the magnitude of the t
C. The effect of broad phonetic classes slopes are typically not equal, with the divergence from the

Different classes of phone transitions reveal interestirigst mean occurring more quickly than the approach towards
trajectory effects. Specifically, we evaluateparameters to the second mean. This co-articulation effect warrantshéurt
categorise the trajectories formed for different classes: investigation.

1) The slope of the polynomial function trajectory of the
first phone reference variable,
the slope of the polynomial function trajectory for the
second phone reference variable,

) the Euclidean distance of the monophone means (the

difference between the two reference values),

the standard deviatiom; of the first slope, and

the standard deviatiom, of the second slope.



Transition group # Correct % Accuracy Transition group | Slope 1| Slope 2 | Diff reference o1 o2
classifications values
vowel-affricate 640 95.8 vowel-fricative 0.426 —0.236 3.064 0.510 | 0.516
vowel-fricative 8 268 91.6 VOWel'StOp 0.427 —0.203 2.925 0.603 0.592
vowel-semivowel 2 096 83.1 vowel-affricate 0.353 —0.205 2.964 0.432 | 0.398
vowel-stop 9 142 79.8 vowel-nasal 0.376 —0.164 2.493 0.639 | 0.635
vowel-nasal 5 005 76.5 vowel-semivowel 0.230 —0.180 2.413 0.490 | 0.515
vowel-vowel 1143 70.2 vowel-vowel 0.168 —0.182 2.561 0.292 | 0.289
vowel-aspirate 693 65.4 vowel-liquid 0.164 —0.175 2.551 0.349 | 0.388
vowel-liquid 4 790 62.9 vowel-aspirate 0.123 —0.063 2.122 0.440 | 0.466
nasal-affricate 03 021 nasal—lquId 0.347 —0.290 2.782 0.495 0.441
nasal-fricative 862 84.4 nasal-fricative 0.295 —0.317 2.819 0.531 | 0.485
nasal-semivowel 125 79.6 nasal-affricate 0.311 —0.289 2.486 0.303 | 0.313
nasal-aspirate 38 64.4 nasal-semivowel 0.566 0.001 2.108 1.311 | 0.924
nasal-stop 1 040 63.1 nasal-stop 0.254 —0.266 1.958 1.030 | 0.943
nasal-liquid 183 60.0 nasal-aspirate 0.230 0.008 1.792 0.690 | 0.896
nasal-nasal 23 29.1 nasal-nasal —0.226 | —0.394 0.983 1.553 | 1.746
liquid-affricate 53 100.0 liquid-fricative 0.499 —0.315 3.084 0.528 | 0.503
liquid-fricative 709 94.8 liquid-affricate 0.358 —0.341 3.308 0.642 | 0.482
liquid-stop 1969 839 liquid-stop 0.371 | —0.240 2.898 0.715 | 0.665
liquid-liquid 44 73.3 liquid-aspirate 0.102 —0.126 2.440 0.436 | 0.415
liquid-aspirate 30 65.2 liquid-semivowel 0.074 —0.084 3.030 0.241 | 0.262
fricative-semivowel 353 94.9 fricative-semivowel 0.259 —0.323 3.140 0.429 0.457
fricative_aspirate 70 75.3 friCatiVe-StOp 0.142 —0.154 1.760 0.427 0.444
fricative-stop 1 864 69.5 fricative-aspirate 0.253 0.073 2.037 0.424 | 0.596
fricative-fricative 270 59.3 fricative-fricative 0.057 —0.068 1.450 0.539 | 0.490
fricative-affricate 34 57.6 fricative-affricate 0.088 | —0.028 1.510 0.195 | 0.211
Stop_semivowel 408 72.6 StOp-Semivowel 0.006 —0.493 2.573 1.403 1.215
Stop_affricate 77 63.6 Stop-af'fl’icate 0.185 —0.107 1.630 0.332 0.308
stop_aspirate 52 45.6 StOp—aSpil’ate 0.059 0.260 1.583 1.080 1.300
stop-stop 227 35.0 stop-stop 0.119 —0.051 1.063 0.700 | 0.573
semivowel-affricate 9 31.8 semivowel-affricate| —0.063 | —0.510 2.951 0.556 | 0.320
semivowe|_aspirate 15 68.2 SemiVOWel‘aSpirate 0.321 0.0156 2.119 0.507 0.466
aﬁricate_aspirate 3 100.0 affricate—aspirate 0.503 0.096 1.635 0.301 0.362
[ total [ 40558 ] 77.1 ] TABLE V
TABLE IV Slopes of 3rd order polynomial functions at ASR diphonesitaom
boundary

Number of correct classifications using mean frame-baséaegaand known
ASR boundaries for specific transitions.
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