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Abstract—We investigate the relationship between SVM hy-
perparameters for linear and RBF kernels and classification
accuracy. The process of finding SVM hyperparameters usu-
ally involves a gridsearch, which is both time-consuming and
resource-intensive. On large datasets, 10-fold cross-validation
grid searches can become intractable without supercomputers
or high performance computing clusters. We present theoretical
and empirical arguments as to how SVM hyperparameters scale
with N , the amount of learning data. By using these arguments,
we present a simple algorithm for finding approximate hyperpa-
rameters on a reduced dataset, followed by a focused line search
on the full dataset. Using this algorithm gives comparable results
to performing a grid search on complete datasets.

I. I NTRODUCTION

The Support Vector Machine (SVM) is a popular pattern
recognition algorithm, first introduced in its current formin
1995 [1]. It entails the optimization of the following error
function:
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The dot product in Eq. (1) lends itself to the use of the Kernel
trick:
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Depending on which kernelK is used, SVMs usually have one
or two hyperparameters which need to be set to appropriate
values in order to achieve optimal classification accuracy.
Choosing appropriate values can be a very expensive process,
as one needs to iterate over a wide range of parameters or
combinations thereof. For very large datasets such as the DFKI
age-classification dataset, full grid-searches are intractable
without large computing clusters [2], and can thus be a
prohibiting factor in using SVMs.

Much work has been done to circumvent the expensive grid
search approach by finding more efficient ways of choosing

the SVM hyperparameters [3]–[7]. We continue this search by
considering the problem from two different perspectives. (a)
We believe that a better understanding of the role of the SVM
hyperparameters can enable one to select better boundaries
within which to search for the optimal hyperparameters and
(b) we consider a simple algorithm where we use scaling
arguments derived from the SVM error function to adapt
hyperparameters obtained on a subset of the data.

The paper is organized as follows: In section II, we will
give a brief overview of the role of the different SVM
hyperparameters, and then investigate SVM behaviour over
a wide range of hyperparameter values in section III. The
relationship between the hyperparameters and the amount of
training data, as well as a novel hyperparameter tuning strategy
will be discussed in section IV, followed by experiments in
section IV-D, testing the proposed tuning strategy.

II. ROLE OF RBF AND LINEAR KERNEL

HYPERPARAMETERS

Two popular kernels and their corresponding hyperparam-
eters will be discussed: the linear and radial basis function
(RBF) kernels.

The linear SVM has no kernel parameters, hence the only
parameter to be tuned isC from Eq. (1).C penalizes samples
that are either misclassified, or which fall within the margin
surrounding the separating hyperplane. High values ofC

would thus give more weight to the misclassification term
in Eq. (1). Very large values ofC would thus change the
behaviour of an SVM to that of a perceptron algorithm, since
the emphasis shifts to minimizing the sum of all errors. Small
values ofC give more weight to the margin term, withC → 0
ensuring that the margin gets maximized (C = 0 is not
sensible for non-separable problems).

The same arguments forC apply to the case where an RBF
kernel is used. The RBF kernel

K(xi,xj)RBF = e−γ‖xi−xj‖
2

(4)

allows the SVM to construct non-linear decision boundaries
by transforming the data into some high dimensional feature
space. In addition toC, one has to search for optimal values
of γ, which controls the kernel width.
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Fig. 2. Density estimates for the distance to the nearest neighbor when
randomly samplingN points from a5 and10 dimensional normal distribution
with zero mean and unit variance. Note the weak relationship betweenγ and
N .

III. SVM BEHAVIOUR ACROSS A LARGE SPECTRUM OF

HYPERPARAMETER VALUES

Keerthi et. al [8] investigated SVM behaviour at very small
and large values of the SVM hyperparameters. In this section,
we will extend and verify some of the insights they presented
with the aim of identifying reasonable boundaries within
which one could expect to find the optimal hyperparameter
values.

A. Linear Kernels

Keerthi et. al observed that for linear SVMs, after some suf-
ficiently high value ofC > C∗, the cross-validation accuracy
seems to converge to a value close to (if not at the) optimal
accuracy. This implies that asC → ∞, ESVM → C

∑
i ξi.

We repeated and confirmed this observation on a number
of datasets, as displayed in Fig. 3. The results also indicate
thatC → 0 leads to poor classification accuracy. Fig. 4 gives
some insight into why this is true in practice: the support
vector machine learns very little for small values ofC and
assigns almost all training points as support vectors (severe
underfitting). As the value ofC is increased, the SVM starts
to approximate the true decision boundary (see Fig. 1).

B. RBF Kernels

The results from the linear SVM seem to hold with regard to
C for the RBF kernel. From fig. 5, it seems that for arbitrarily
largeC, a line search overγ would yield results close to that
of the optimal accuracy one can obtain with an exhaustive grid
search.

It is also evident that very large values ofγ lead to severe
overfitting and a steep corresponding drop in accuracy, even
for large C. Small values ofC lead to poor classification
accuracy irrespective of the value ofγ.
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Fig. 3. 10-fold cross validation accuracy for linear SVMs against log(C).
All functions seem to converge after some sufficiently high value of C.
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Fig. 4. Normalized number of support vectors vslog(C). It is clear that for
smallC, the algorithm does not learn much and assigns almost all points as
support vectors.

The optimal region within which to search for the hyperpa-
rameters values is evidently whereC is large andγ is small.

IV. H YPERPARAMETERS VSN

In this section we will discuss the relationship between the
SVM hyperparameters andN , the amount of training data. We
will show that there is a useful relationship betweenC and
N which can be exploited in cases where there is too much
training data to perform a normal grid search in an acceptable
amount of time (an extensive grid search on the DFKI problem
for example will take approximately 4 months if performed on
a single PC).
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(a) C = 10−2, γ = 10−0.5, Acc=94.4
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(b) C = 10−1, γ = 10−0.5, Acc=94.9

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) C = 100.5, γ = 10−0.5, Acc=95.55
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(d) C = 104, γ = 10−0.5, Acc=96.8

Fig. 1. Graphical illustration of support vectors (highlighted) on an artificial dataset asC is increased from10−2 to 104, while γ is kept constant at10−0.5.
It is clear that asC is increased, the SVM starts to approximate the true boundarybetween the classes, as the support vectors become more concentrated on
that boundary.

A. C vsN

Consider the SVM error function in Eq. (1): as the number
of training samples is increased, the width of the optimal
separating boundary, and thus the first term in that equation,
should remain approximately constant. Since the fraction
of marginal or misclassified samples will also depend only
weakly onN for large enoughN , the summation in the second
term will grow linearly withN . Hence,C should be inversely
proportional toN to maintain a constant balance between the
two terms.

From Fig. 6, this relationship can be seen to hold on a
sufficiently large dataset (in this case the image classification
dataset from the UCI database). In particular, notice how the
lower range forC from within which one can obtain optimal

accuracy systematically increases as the amount of data is
decreased.

The larger the dataset, the more reliable one can expect
this relationship to be. Care should be taken in cases where a
high classification accuracy can be obtained though (hence a
small percentage of misclassifications), since the probability of
selecting a subset with a representative distribution of samples
which will be misclassified becomes less likely.

B. γ vsN

The relationship between optimal kernel widths andN is
known to be weak in well-studied problems such as kernel
density estimation (see section 3.4, [9], where a relationship
γ ∝ N1/5 is derived). This can be understood from the weak
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(d) German

Fig. 5. Contour plots depicting the CV accuracy over a wide range of log(C) and log(γ) for the UCI diabetes, Thyroid, Heart and German datasets.

dependence of nearest-neighbour distances onN . Typical
examples are shown in Fig. 2, where we see that a64-
fold increase inN only increases the median of the nearest-
neighbour distance by a factor of3 (five dimensions) and a
factor of 2 (ten dimensions). We therefore expect a similarly
weak relationship between the optimalγ and N for SVM
training. For the purposes of this paper we consequently
assume that a narrow line search around a value obtained on
a subset of the data will suffice to obtain the optimal kernel
width

C. Algorithm for finding optimal hyperparameters on a subset
of the data

Given the relationships mentioned in sections IV-A and
IV-B, we propose the following strategy for finding the optimal
hyperparameters on very large datasets:

• Select a subset of the training dataNsub and find the
optimal hyperparameters using 10-fold cross-validation

• AdaptCsub by scaling as follows:C∗
full = Csub ·

Nsub

Nfull

• UsingC∗
full, do a line-search in a narrow region around

γsub to find γfull

D. Experimental Analysis

All the experiments reported in this paper were con-
ducted on the IDA benchmark repository (available at http://
www.fml.tuebingen.mpg.de/Members/raetsch/benchmark)and
the results compared with those reported in [7] and [10]. We
did not however follow the experimental setup they proposed,
since it is not clear that the training and test sets were
independent.

We have thus taken the complete dataset (concatenation of
the first train and test sets) and divided it into10 test sets,
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(a) 100% of data used
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(b) 50% of data used
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(c) 25% of data used
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(d) 12.5% of data used

Fig. 6. Contour plots showing the results of a grid search with varying amounts of data. Fig. 6a shows a contour plot for all of the data, with every subsequent
figure generated with half the amount of data of the previous plot. In this fashion, Fig. 6d is generated with an eighth of theamount of data used for Fig. 6a.

TABLE I
THE 10-FOLD CROSS-VALIDATION ERROR RATES OBTAINED USINGSVMS WITH RBF KERNELS. ∗ γ LINE SEARCH WITHOUT C ADAPTATION .

Dataset SVM Error (with approximate total CV experiment time in hh:m m in brackets) Total #
Rätsch 100% 50% 25% 12.5% samples

Image 2.7± 0.6 2.17± 0.23 (13:42) 1.95± 0.29 (4:20) 1.86± 0.38 (1:31) 2.34± 0.39 (0:43) 2310
Image∗ 2.08± 0.25 1.95± 0.29 1.91± 0.29 1.73± 0.31 2310
Splice 10.9± 0.7 3.40± 0.41 (113:35) 3.56± 0.50 (37:35) 3.84± 0.57 (14:36) 4.00± 0.60 (8:29) 3175
Splice∗ 3.53± 0.46 3.62± 0.49 3.55± 0.45 3.56± 0.49 3175

Waveform 9.9± 0.4 8.52± 0.43 (233:41) 8.64± 0.45 (40:2) 8.72± 0.46 (7:11) 8.44± 0.49 (3:12) 5000
Waveform∗ 8.42± 0.41 8.54± 0.38 8.62± 0.45 8.52± 0.44 5000

DFKI 54.98 (2883:41) 55.88 (430:9) 55.05 (97:45) 54.78 (38:6) 34843
DFKI∗ 55.19 55.08 54.95 55.00 34843

where for each test set, the rest of the data is considered the
training set. For each fold, the training set was then again

partitioned into10 folds, each of which was used to find the
optimal parameters with which to evaluate the corresponding



held-out test set. We thus performed10 independent evalu-
ations, with each evaluation possibly having different SVM
hyperparameters. Our10-fold cross-validation approach also
necessarily assigned more training data to each model than
was the case in the original partitions from [10] (we thus have
a 90− 10 split where they aimed for60− 40 in general).

The encoding of some of the categorical features in the
IDA benchmark repository is also not well-suited to SVMs,
in that some categories which are conceptually equidistant
are encoded as being ranked. We present our best results
with a proper encoding (in particular, each feature in the
splice dataset was encoded as a 4-bit feature, which leads to
significantly better classification accuracy).

The SVM error rates reported in [7] and [10] were averaged
over 100 partitions of the dataset and are represented as the
mean error observed with the corresponding standard deviation
in the first column of table I. All our results are presented as
the mean error together with the corresponding standard error.

Also in table I are results obtained when using the al-
gorithm proposed in section IV-C as well as using only a
line search, following a grid search. We tested this algorithm
using randomly selected subsets of50%, 25% and 12.5% of
the full training set respectively. The results obtained were
encouraging in that the SVMs were trained in a fraction of
the time and using much less resources than what was the
case with the full grid-search. This is especially useful where
one has a large dataset (such as DFKI) but with limited
time and resources. The results withoutC adaptation is also
interesting in that it indicates that C adaptation sometimes
hurts performance. This is especially true if a small optimal
value ofC, close to the edge of a steep corresponding drop
on the contour, is found.

V. CONCLUSION

We presented theoretical and empirical arguments that gives
one more insight as to how to make intelligent choices
regarding the region within which to search for optimal hyper-
parameter values. We also presented a simple algorithm that
uses scaling arguments derived from the SVM error function to
find the SVM hyperparameters in much less time and requiring
much less resources. The scaling arguments with regard toC

andN are sensitive to underfitting in cases where subsets are
selected from datasets that have little overlap, as can be seen
in table I for the case where12.5% of the data was selected
for the image and splice datasets respectively (note the low
error rates achievable on both datasets). By performingK-
fold cross-validation on each folds training set in order to
obtain the optimal hyperparameters, a too low value ofK

may result in an underestimation of the value ofC. Fig. 7
shows how this happened for the case of one of the folds
of the splice dataset. Notice that when leave-one-out (LOO)
cross-validation was performed, the optimal value ofC can
be seen to be very large, whereas10-fold cross-validation
led to a complete underestimation ofC (small peak before
C converges to a slightly lower value).
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Fig. 7. Cross-section of the contour plot of hyperparametersvs accuracy
for both 10-fold cross-validation and leave-one-out cross-validation. This
particular cross-section was taken from one of the folds of the 12.5% splice
subset and depicts varyingC vs classification accuracy withγ fixed at0.01.
Notice how the LOO CV estimate has much less variance than the10-fold
cross-validation estimate.

Our results also indicate that a narrow line search overγ

without C adaptation, (given initial parameters from a grid
search) is the safest approach to SVM training when one has
large amounts of training data. The influence of noise on the
selection of optimalC needs to investigated further in order
to fully exploit the relationship betweenC andN .
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