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Abstract—We investigate the relationship between SVM hy- the SVM hyperparameters [3]-[7]. We continue this search by
perparameters for linear an_d _RBF kernels and classification considering the problem from two different perspectives. (
accuracy. The process of finding SVM hyperparameters usu- \yg pglieve that a better understanding of the role of the SVM

ally involves a gridsearch, which is both time-consuming and .
resource-intensive. On large datasets, 10-fold cross-validatio hyperparameters can enable one to select better boundaries

grid searches can become intractable without supercomputers Within which to search for the optimal hyperparameters and
or high performance computing clusters. We present theoretical (b) we consider a simple algorithm where we use scaling

and empirical arguments as to how SVM hyperparameters scale arguments derived from the SVM error function to adapt

with N, the amount of learning data. By using these arguments, hyperparameters obtained on a subset of the data.
we present a simple algorithm for finding approximate hyperpa- The paper is oraanized as follows: In section Il. we will
rameters on a reduced dataset, followed by a focused line search pap 9 : ’

on the full dataset. Using this algorithm gives comparable results 9ive a brief overview of the role of the different SVM
to performing a grid search on complete datasets. hyperparameters, and then investigate SVM behaviour over

a wide range of hyperparameter values in section Ill. The

relationship between the hyperparameters and the amount of
The Support Vector Machine (SVM) is a popular pattertraining data, as well as a novel hyperparameter tuningestya

recognition algorithm, first introduced in its current foim will be discussed in section IV, followed by experiments in

1995 [1]. It entails the optimization of the following errorsection IV-D, testing the proposed tuning strategy.

function:

I. INTRODUCTION

II. ROLE OFRBF AND LINEAR KERNEL

o lew n ng_ 1) HYPERPARAMETERS
w2 i ' Two popular kernels and their corresponding hyperparam-
eters will be discussed: the linear and radial basis functio
subject to the constraints (RBF) kernels.
The linear SVM has no kernel parameters, hence the only
yi(wle; +wo) > 1-¢ parameter to be tuned & from Eq. (1).C penalizes samples
&>0,i=1,..,n @) that are either misclassified, or which fall within the margi

) ] surrounding the separating hyperplane. High valuesCof
The dot product in Eq. (1) lends itself to the use of the Kerngloyig thus give more weight to the misclassification term

trick: ) in Eq. (1). Very large values of” would thus change the
inw — Z Z iy K (4, @) (3) behaviour of an _SVM to _th_at_of a perceptron algorithm, since
ieSV jesSv the emphasis shifts to minimizing the sum of all errors. $mal

values ofC give more weight to the margin term, with — 0

Depending on which kerndt is used, SVMs usually have one€NSUring that the margin gets maximized (= 0 is not

or two hyperparameters which need to be set to approprig@nSible for non-separable problems).

values in order to achieve optimal classification accuracy. 1€ Same arguments f6r apply to the case where an RBF

Choosing appropriate values can be a very expensive proc&§&nel is used. The RBF kernel

as one needs to iterate over a wide range of parameters or ,

combinations thereof. For very large datasets such as tié DF K (@i, @j)ppr = e 1=l (4)

age-classification dataset, full grid-searches are itabdhe

without large computing clusters [2], and can thus be alows the SVM to construct non-linear decision boundaries

prohibiting factor in using SVMs. by transforming the data into some high dimensional feature
Much work has been done to circumvent the expensive gggace. In addition t@’, one has to search for optimal values

search approach by finding more efficient ways of choosimg v, which controls the kernel width.
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Fig. 3. 10-fold cross validation accuracy for linear SVMsaiagtlog(C).
Fig. 2. Density estimates for the distance to the nearesthbeigwhen All functions seem to converge after some sufficiently highigeof C.
randomly samplingV points from a and10 dimensional normal distribution
with zero mean and unit variance. Note the weak relationsetpéeny and
N.

IIl. SVM BEHAVIOUR ACROSS A LARGE SPECTRUM OF
HYPERPARAMETER VALUES

Keerthi et. al [8] investigated SVM behaviour at very sma
and large values of the SVM hyperparameters. In this secticé 08
we will extend and verify some of the insights they presente =
with the aim of identifying reasonable boundaries withii & °7
which one could expect to find the optimal hyperparameté

values. 2 06—
A. Linear Kernels :Iﬁip(l)ti:d
Keerthi et. al observed that for linear SVMs, after some su o -- -:Z?gSolar
ficiently high value ofC' > C*, the cross-validation accuracy Diabetis
seems to converge to a value close to (if not at the) optinr 04n e :I(rar;gmean

accuracy. This implies that a8' — oo, Egyy — C) . & -8 -6 -4 -2 0 2 4 6

We repeated and confirmed this observation on a numt.. log(©)

of datasets, as dlsplayed In F_'Q- 3_‘ The results a!so Imj_lcﬁg. 4. Normalized number of support vectorsivg(C). It is clear that for
that C' — 0 leads to poor classification accuracy. Fig. 4 givesnall C, the algorithm does not learn much and assigns almost allpast
some insight into why this is true in practice: the suppoptpport vectors.

vector machine learns very little for small values @fand

assigns almost all training points as support vectors (seve

underfitting). As the value of is increased, the SVM starts The optimal region within which to search for the hyperpa-
to approximate the true decision boundary (see Fig. 1). rameters values is evidently whefgis large andy is small.

B. RBF Kernels

The results from the linear SVM seem to hold with regard to
C for the RBF kernel. From fig. 5, it seems that for arbitrarily In this section we will discuss the relationship between the
large C, a line search ovey would yield results close to that SVM hyperparameters andl, the amount of training data. We
of the optimal accuracy one can obtain with an exhaustivé gsvill show that there is a useful relationship betwe@nand
search. N which can be exploited in cases where there is too much

It is also evident that very large values pflead to severe training data to perform a normal grid search in an acceptabl
overfitting and a steep corresponding drop in accuracy, evamount of time (an extensive grid search on the DFKI problem
for large C. Small values ofC lead to poor classification for example will take approximately 4 months if performed on
accuracy irrespective of the value of a single PC).

IV. HYPERPARAMETERS VSN
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Fig. 1. Graphical illustration of support vectors (highiigd) on an artificial dataset &%is increased fromi0~2 to 104, while ~ is kept constant at0—9-5.

It is clear that ag” is increased, the SVM starts to approximate the true bouneiween the classes, as the support vectors become more tatestion
that boundary.

A. CvsN accuracy systematically increases as the amount of data is

Consider the SVM error function in Eqg. (1): as the numbéjrecreased. )
of training samples is increased, the width of the optimal 1€ larger the dataset, the more reliable one can expect
separating boundary, and thus the first term in that equatié'ﬂ's relatlo.n'shlp to be. Care should be tqken in cases where a
should remain approximately constant. Since the fractighgh classification accuracy can be obtained though (hence a
of marginal or misclassified samples will also depend onfMall percentage of misclassifications), since the prababf
weakly onN for large enoughV, the summation in the secondS€!€cting & subset with a representative distribution ofses
term will grow linearly with N. Hence,C' should be inversely Which will be misclassified becomes less likely.
proportional toN to maintain a constant balance between the
two terms. B.yvsN

From Fig. 6, this relationship can be seen to hold on aThe relationship between optimal kernel widths aNdis
sufficiently large dataset (in this case the image class$ifica known to be weak in well-studied problems such as kernel
dataset from the UCI database). In particular, notice haav thensity estimation (see section 3.4, [9], where a relaligns
lower range forC' from within which one can obtain optimal y o N'/% is derived). This can be understood from the weak
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Fig. 5. Contour plots depicting the CV accuracy over a widggeaoflog(C') andlog(v) for the UCI diabetes, Thyroid, Heart and German datasets.
dependence of nearest-neighbour distancesNonTypical « Select a subset of the training daM,,;, and find the
examples are shown in Fig. 2, where we see thaida optimal hyperparameters using 10-fold cross-validation
fold increase inV only increases the median of the nearest- « AdaptC,,; by scaling as foIIowsC;u” = Cyup - ]J\\,’f“f’

neighbour distance by a factor &f(five dimensions) and a « Using C7,;, do a line-search in a narrow region around
factor of 2 (ten dimensions). We therefore expect a similarly  ~,,; to find v

weak relationship between the optimaland N for SVM . Experimental Analysis

training. For the purposes of this paper we consequently ) . .
assume that a narrow line search around a value obtained oftll e €xperiments reported in this paper were con-

a subset of the data will suffice to obtain the optimal kerndlicted on the IDA benchmark repository (available at hittp:/
width www.fml.tuebingen.mpg.de/Members/raetsch/benchmari)

) o ) the results compared with those reported in [7] and [10]. We
C. Algorithm for finding optimal hyperparameters on a subsgfig not however follow the experimental setup they proposed
of the data since it is not clear that the training and test sets were
Given the relationships mentioned in sections IV-A anithdependent.
IV-B, we propose the following strategy for finding the optilm  We have thus taken the complete dataset (concatenation of
hyperparameters on very large datasets: the first train and test sets) and divided it int6 test sets,
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Fig. 6. Contour plots showing the results of a grid search warying amounts of data. Fig. 6a shows a contour plot forfathe data, with every subsequent
figure generated with half the amount of data of the previoos | this fashion, Fig. 6d is generated with an eighth ofadheount of data used for Fig. 6a.

TABLE |

THE 10-FOLD CROSSVALIDATION ERROR RATES OBTAINED USINGSVMS WITH RBF KERNELS. * -y LINE SEARCH WITHOUT C ADAPTATION.

Dataset SVM Error (with approximate total CV experiment time in hh:m m in brackets) Total #
Ratsch 100% 50% 25% 12.5% samples
Image 2.7+£0.6 2.17 £0.23 (13:42) 1.95 + 0.29 (4:20) 1.86 £+ 0.38 (1:31) 2.34 £0.39 (0:43) | 2310
Image 2.08 £0.25 1.954+0.29 1.91 +0.29 1.734+0.31 2310
Splice 10.9+0.7 | 3.40£0.41 (113:35) | 3.56 & 0.50 (37:35) | 3.84 +0.57 (14:36) | 4.00 £ 0.60 (8:29) | 3175
Splice* 3.53 £ 0.46 3.62 +0.49 3.55 £0.45 3.56 £ 0.49 3175
Waveform | 9.940.4 | 8.52+0.43 (233:41) | 8.64 4 0.45 (40:2) | 8.7240.46 (7:11) | 8.44 £ 0.49 (3:12) | 5000
Waveformt 8.42+0.41 8.54 +0.38 8.62 £0.45 8.52 £ 0.44 5000
DFKI 54.98 (2883:41) 55.88 (430:9) 55.05 (97:45) 54.78 (38:6) 34843
DFKI* 55.19 55.08 54.95 55.00 34843

where for each test set, the rest of the data is considered pagtitioned into10 folds, each of which was used to find the
training set. For each fold, the training set was then agadptimal parameters with which to evaluate the correspandin



held-out test set. We thus performéd independent evalu-
ations, with each evaluation possibly having different SV}
hyperparameters. Our0-fold cross-validation approach also

necessarily assigned more training data to each model tt g5 i

was the case in the original partitions from [10] (we thuseha\

a 90 — 10 split where they aimed fo60 — 40 in general). 80 i
The encoding of some of the categorical features in tl > 75 |

IDA benchmark repository is also not well-suited to SVMs £

in that some categories which are conceptually equidiste§ 70 ]

are encoded as being ranked. We present our best res
with a proper encoding (in particular, each feature in tr
splice dataset was encoded as a 4-bit feature, which leads
significantly better classification accuracy).

The SVM error rates reported in [7] and [10] were average

95

65

55

" ——10-fold CV/|
over 100 partitions of the dataset and are represented as LOO CV
mean error observed with the corresponding standard @@viat 50— = - 05 15 25 35 45 55 65
in the first column of table I. All our results are presented ¢ log(C)
the mean error together with the corresponding standaed. err _

Also in table | are results obtained when using the aFg. 7. Cross-section of the contour plot of hyperparametsraccuracy

or both 10-fold cross-validation and leave-one-out cross-val@ati This

gorithm proposed in section IV-C as well as using only garticular cross-section was taken from one of the foldshefle.5% splice
line search, following a grid search. We tested this alfarit subset and depicts varyir@ vs classification accuracy with fixed at0.01.

using randomly selected subsets50f%, 25% and 12.5% of
the full training set respectively. The results obtainedreve
encouraging in that the SVMs were trained in a fraction of

Notice how the LOO CV estimate has much less variance than @Held
cross-validation estimate.

the time and using much less resources than what was th@ur results also indicate that a narrow line search over
case with the full grid-search. This is especially usefukveh without C' adaptation, (given initial parameters from a grid
one has a large dataset (such as DFKI) but with limitegkarch) is the safest approach to SVM training when one has
time and resources. The results withd@utadaptation is also large amounts of training data. The influence of noise on the
interesting in that it indicates that C adaptation somesimeelection of optimalC' needs to investigated further in order
hurts performance. This is especially true if a small optimgo fully exploit the relationship betwee@ and N .

value of C, close to the edge of a steep corresponding drop
on the contour, is found.
(1]

(2]

We presented theoretical and empirical arguments thas give
one more insight as to how to make intelligent choices
regarding the region within which to search for optimal hype [
parameter values. We also presented a simple algorithm that
uses scaling arguments derived from the SVM error function t
find the SVM hyperparameters in much less time and requirinﬁ]
much less resources. The scaling arguments with regafd to
and N are sensitive to underfitting in cases where subsets ald
selected from datasets that have little overlap, as can dre se
in table | for the case wher&2.5% of the data was selected
for the image and splice datasets respectively (note the low
error rates achievable on both datasets). By perfornfiig
fold cross-validation on each folds training set in order to
obtain the optimal hyperparameters, a too low valuekof [7]
may result in an underestimation of the value @f Fig. 7
shows how this happened for the case of one of the foldg)
of the splice dataset. Notice that when leave-one-out (LOO)
cross-validation was performed, the optimal valueCdfcan 9]
be seen to be very large, whered$-fold cross-validation
led to a complete underestimation 6f (small peak before [10]
C converges to a slightly lower value).

V. CONCLUSION
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