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Abstract—One of the goals of text-to-speech (TTS) systems is to
produce natural-sounding synthesised speech. Towards this end
various natural language processing (NLP) tasks are performed
to model the prosodic aspects of the TTS voice. One of the
fundamental NLP tasks being used is the part-of-speech (POS)
tagging of the words in the text. This paper investigates the
effects of POS information on the naturalness of a hidden Markov
model (HMM) based TTS voice when additional resources are
not available to aid in the modelling of prosody. It is found
that, when a minimal feature set is used for the HMM context
labels, the addition of POS tags does improve the naturalness
of the voice. However, the same effect can be accomplished by
including segmental counting and positional information instead
of the POS tags.

I. INTRODUCTION

The development of text-to-speech (TTS) voices for
resource-scarce languages (RSLs) remains a challenge today.
RSLs suffer from the problem of little available electronic data,
such as texts and recorded speech, and linguistic expertise,
such as phonological and morphosyntactic knowledge. The
Lwazi project in South Africa [1] is a large-scale endeavour to
gather and apply such human language technology resources
for all eleven of the official South African languages. One of
the current TTS goals of the Lwazi project is to produce more
natural voices.

The naturalness of a TTS voice is primarily determined by
prosody [2][3]. Prosody includes phrase breaks, sentence-level
stress and intonation [4], and possibly word-level stress or tone
as well. Central to the modelling of most of the above effects
stands part-of-speech (POS) tagging. To elaborate:

« Word-level stress is dependent on the POS of the word,
for example, in English, nouns often carry stress on dif-
ferent syllables than verbs [S]. This is true for word-level
tone as well (which, in addition, requires a morphological
analysis for finer grained information, such as tense, on
top of the basic POS category [6]).

« Sentence-level stress requires a syntactic structure [4] of
which POS information is a building block. Even a simple
conteni-function word rule requires the POS of a word
to categorise it.

o Phrase breaks can either be predicted from chunking [4],
which in turn requires POS tagging, or directly from the
POS tags themselves in a hidden Markov model (HMM)
approach to modelling the junctures [7].

« Aspects of intonation, such as the sentence-final pitch
of questions, may benefit from identifying, for example,
question (“WH™-) words in English through POS tagging.

Solving the POS problem is, therefore, a prudent first step
towards meeting the goal of natural TTS voices. But, in the
light of the scarceness of resources, the question arises whether
it is perhaps possible to circumvent the traditional approaches
to prosodic modelling by learning the latter directly from the
speech data using POS information. In other words, does the
addition of POS features to the context labels of an HMM-
based synthesiser improve the naturalness of a TTS voice?

This is the question we aim to answer in this paper. HMM-
based voices are trained from English and Afrikaans prosodi-
cally rich speech. The voices are compared with and without
POS features incorporated into the HMM context labels,
analytically and perceptually. For the analytical experiments,
measures of prosody to quantify the comparisons are explored.
It is then also noted whether the results of the perceptual
experiments correlate with their analytical counterparts.

The rest of the paper is structured as follows: in Section II
the related work of POS tagging and TTS synthesis is dis-
cussed. In Section IIT the experimental setup and results are
recorded. Finally, Section IV draws some conclusions about
the results.

II. RELATED WORK
A. Part-of-Speech Tagging

A POS tag is a linguistic category assigned to a word in
a sentence based upon its morphological and syntactic—or
morphosyntactic—behaviour. Words are grouped into POS
categories according to the affixes they take (morphologi-
cal properties) and/or according to their relationship with
neighbouring words (syntactic properties) [8]. Example POS
categories common to many languages are noun, verb, ad-
Jjective and adverb. Words are often ambiguous in their POS
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categories. The ambiguity is normally resolved by looking at
the context of the word in the sentence.

POS tagging is the automatic assignment and disambigua-
tion of POS categories to words in electronic text. It is a
prominent topic in NLP which has been well investigated,
since it is a fundamental first step to subsequent syntactic,
semantic and other NLP procedures, in applications such as
TTS, information retrieval and grammar checking.

Approaches to automatic tagging include rule-based and sta-
tistical ones. The former use either hand-crafted rules [9][10],
which require intricate linguistic knowledge, or rules learned
from data [11][12]. The latter are data-driven and use statistical
methods, such as Markov models [13] or maximum entropy
models [14], to determine the lexical probability (for example,
without context, address is more likely to be a noun than
a verb) and contextual probability (for example, after to,
address is more likely to be a verb). Both approaches
to POS tagging are, therefore, very resource-intensive tasks
(either in terms of human resources or data resources), and it
is a prominent engineering problem in NLP to optimise the
use of such resources.

B. Text-to-Speech Synthesis

TTS is the generation of speech signals from text. It
comprises the following stages (adapted from [4]):

1) Text segmentation splits the character stream of the
text into more manageable units, namely sentences and
tokens (the written forms of the unique words yet to be
discovered). The processes are called sentencisation and
tokenisation, respectively.

2) Text decoding decodes each token into one or more
uniquely pronounceable words. Non-standard word to-
kens such as numbers, dates and abbreviations are
classified and expanded into their standard word natural
language counterparts in a process called rormalisa-
tion. A special case of homograph disambiguation then
disambiguates homographs among the token expansions
that are not homophones.

3) Text parsing infers additional lexical, syntactic and
morphological structures from the words which are
useful for the pronunciation and prosodic modelling
stages to follow. The tasks include POS tagging (see
Section II-A), chunking (parsing of non-overlapping
phrases) and morphological analysis (identification of
stems and affixes in words).

4) Pronunciation modelling models the pronunciation of
individual words. It maps the words to their constituent
phonemes, either by looking up known words in a lexi-
con or by applying grapheme-to-phoneme (G2P) rules to
unknown words. Syllabification divides the words into
syllables. Word-level stress or tone, depending on the
language type, is then assigned to the syllables.

5) Prosodic modelling predicts the prosody of the whole
sentence, namely the phrasing (pauses between phrases),
sentence-level stress (a phenomenon of connected
speech: certain words in a phrase are stressed according

to their word-level stress, at the expense of reducing the
word-level stress of the other words) and intonation (the
melody or tune of an entire sentence).

6) Speech synthesis encodes the above information into
speech waveforms. Hidden Markov Model-based syn-
thesis is a statistical parametric technique which uses
the source-filter paradigm to model the speech acous-
tics: the source models the glottal waveform (a pulse
train for voiced sounds and random noise for unvoiced
sounds) and the filter models the formant resonances
of the vocal tract. Excitation (inter alia fundamental
frequency or F0), spectrum and duration parameters
are estimated from recorded speech and modelled by
context-dependent HMMs. The contexts considered are
phonetic, linguistic and prosodic. The excitation and
spectrum parameters are used in the excitation genera-
tion and synthesis filter module to synthesise the speech
waveform [15].

TTS voice quality is deemed acceptable according to two
performance criteria: intelligibility and naturalness. Intelli-
gibility measures how understandable the speech is to a
listener, that is to which degree the listener will be able
to recount the original words in the text. Typical methods
employed to evaluate intelligibility include comprehension and
transcription tests. Naturalness measures how much the TTS
voice sounds like the voice of a human. Methods of evaluation
include perceptual tests where a listener rates a single utterance
or compares two utterances relatively.

A multilingual TTS system, called Speect [16], has been
developed for the Lwazi project. In the first phase of the
project, Speect incorporated the following modules in its
natural language processing (NLP) front-end:

« Whitespace-based tokenisation,

o G2P rules,

o Syllabification and

« Punctuation-based phrase break insertion.

The digital signal processing (DSP) back-end was a unit-
selection synthesiser. For each language, a small speech cor-
pus was recorded with neutral prosody. The neutral prosody
compensated for the few examples that would be present per
unique type in the unit-selection database. Using just these
few resources, baseline intelligible voices for all the languages
could be synthesised [1].

Towards producing more natural voices, Speect 1S now
exploring the HTS engine [17][18] as HMM-based synthesiser
for more and, hopefully, better control over the voices (the
parameterisation allows for manipulation). Furthermore, the
speech corpora are going to be larger (albeit still very small
compared to those of majority languages) and prosodically
richer.

III. EXPERIMENTS
A. Common Setup

This section describes various aspects common to all the
experiments that follow.
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1) Taggers: The fast, accurate HMM tagger HunPos [19]
is incorporated into Speect to obtain the POS information at
synthesis time. For English, the tagger is trained on a 40,000-
token subset of the Penn Treebank WSJ corpus [20] using
a reduced set of 18 tags. The tagger obtains an accuracy of
95.90% on a separate 10,000-token test set from the same
corpus. For Afrikaans, 40,000 tokens of the balanced corpus
developed in [21] are used as training data. The tagset is
reduced to 17 tags. The tagger is 94.64% accurate on the
test set of 10,000 tokens, also from the corpus. The reason
for the small training corpora is to emulate the impact of a
resource-scarce environment on POS tagging accuracy.

2) Voices: The data requirements for voice building are
recorded speech segmented into utterances (spoken sentences),
and transcriptions thereof, For the English voice, data from
the CMU_ARCTIC speech synthesis databases (available at
http://festvox.org/cmu_arctic/) is used: the speaker is “US
bdl”, a United States English-speaking male. The data consist
of 1,132 utterances. For the Afrikaans voice, speech data
recorded in-house for the Lwazi project is used; the speaker is
female. The number of utterances is 1,005. For each voice 100
random utterances from the data are selected for testing; the
remainder is used for training. These corpora are also quite
small because the recording process is very cumbersome in
terms of obtaining enough utterances at a sufficient quality.

An HTS voice is built in a two-stage process: phonetic
alignment and HMM training. The phonetic alignment is
performed by the Speect NLP front-end and an additional tool
(as part of a toolkit released with Speect) that uses forced-
alignment based on HTK [22]. The NLP front-end maps
the transcriptions to phoneme sequences. The alignment tool
allows model initialisation from manually aligned speech data
transcribed in a different language or phoneset by mapping
to broad phonetic categories. This is highly beneficial as a
bootstrap for the alignment of a small corpus of an RSL [23].
The TIMIT corpus [24] is used as bootstrapping data.

The HMM training from the aligned utterances is performed
by the demonstration script released with the HTS engine.
It uses HTS version 2.1 [17] to build the models for the
hts_engine API version 1.02 [18]. The script is only slightly
altered to accommodate Speect as a front-end.

The question file of the demonstration script is mostly used
as is for the model tying decision tree. Only the POS-related
questions are modified to reflect the tagsets chosen in Sec-
tion ITI-A1 and, for the Afrikaans voice, the phonetic category
questions are altered to reflect the Afrikaans phoneset.

The HTS context labels utilise by default a set of linguistic
features defined in [25] and included in the demonstration
package. The full context labels comprise, inter alia, fea-
tures based on the identities of the current and neighbouring
phonemes, the number and relative positions of phonemes,
syllables, words and phrases, whether syllables are stressed or
not, and the POS of words.

The voices are built using two versions of the context labels:
one with maximum features and the other with minimum fea-
tures. The maximum feature set comprises all of the features

provided by the demonstration package, including the segmen-
tal counting and positional features, but excluding the stress
and intonation-related ones (so that prosody is not modelled
explicitly but only implicitly by the POS information). The
minimum features only include the phonemic identities. For
the experiments, the two versions are then used with and
without POS information.

3) Analytical Test: In order to measure the prosodic effects
of POS information on synthesised speech, it is necessary to
understand what the physical manifestations of prosody are.
Duration, pitch (F0) and intensity have been shown to be
acoustic correlates of prosody [2][26]. These three measures
are used to determine the closeness of each synthesised utter-
ance to its natural speech counterpart from the 100-utterance
test set:

a) Duration: The natural speech utterance is phonetically
aligned to determine the duration of each phoneme. For
each phoneme, the corresponding duration of the synthesised
utterance is subtracted and the absolute value is taken to
represent the distance between the natural phoneme and the
synthesised phoneme.

b) Pitch: The FO contour of the natural speech utterance
is extracted with Praat [27] and divided according to the
aligned durations so that each phoneme is assigned its corre-
sponding section of FQ values. For the synthesised utterance,
the HTS engine is forced to use the same duration alignments
and output the synthesised FO values. The distance between
the natural and the synthesised phoneme is taken as the Mean
Squared Error (MSE) of the synthesised FO values ng to the
natural ones fy:

MSE (fo) =F [(f;—fo)z} (1)
where

Ex]= ZP:‘Ei

1 . 1
= == E xz; ifp=— (2)
n< n

Any differences involving undefined FO values are taken as
zeros in the summations.

¢) Intensity: The intensity contour is extracted in similar
fashion to the FO contour. Praat is used for both the natural
speech and synthesised utterances, the latter once again being
aligned on the phoneme boundaries of the former. The distance
between the phoneme sections of intensity values is also the
MSE.

When comparing two TTS voices, for example with and
without POS information, the one voice is deemed more nat-
ural than the other for a particular utterance if its synthesised
version is closer to the natural speech counterpart than the
synthesised version of the other voice.

An experiment is thus compiled from the test set by synthe-
sising the 100 test sentences with both voices. Each utterance
pair is scored by counting the number of phonemes that are
closer to the natural speech for a particular measure. The
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utterance with the highest number of phonemes wins, and the
corresponding voice is accredited with that test sentence for
the measure. The voice accredited with the most test sentences
in the end is then more natural. The evaluation takes place on
the sentence level, because prosodic effects normally range
across several words (as noted in the exposition on prosodic
modelling in Sections I and II-B). Finally, McNemar’s test is
used to examine the statistical significance of the result.

McNemar’s test is a chi-square test for paired sample data
[28].1t is calculated as follows:

2 (|lB—C|—0.5)2
- B+C

x? has a chi-squared distribution with one degree of free-
dom (if B+ C is large enough). To test for significance, x? is
compared to the appropriate chi-square table value. A result
of probability greater or equal to 0.05 is generally considered
to be significant. Lining up this boundary probability with one
degree of freedom in the table gives a value of 3.841.

Let n; be the number of utterances accredited to the first
voice and ng to the second voice. McNemar’s test can then
be applied by setting B = n; and C = ny. If x? > 3.841
the winning voice is significantly more natural than the other
voice. If x® < 3.841 the result is insignificant and the two
voices can be said to be similar in their degree of naturalness.

4) Perceptual Test: A perceptual test is also set up in an
effort to validate the analytical results. Respondents are asked
to listen to pairs of utterances from the test set. In a pair
the two utterances, A and B, are synthesised from the same
sentence, but each by a different TTS voice. The respondents
must then choose which utterance out of the pair sounds more
natural relatively, or if both sound the same (without listening
to the original natural speech). Duration, pitch and intensity
are not distinguished; only an aggregate judgement is required.

This “A versus B” approach (with McNemar’s test for
significance) is preferred above a mean opinion score (with the
Wilcoxon signed rank test [29] for significance) that is used,
for example, in the Blizzard Challenge [30]. The reason is
that it is more robust against respondent subjectivity: different
respondents are more likely to judge the same utterance out
of a pair as more natural than assign it the same score on a
scale of 1 to 5.

McNemar’s test can be used in reverse to calculate how
many pairs will be needed to obtain a significant result. Recall
that

X (3

(IB = C| - 0.5)?

B+C
is required for statistical significance. This may be rewritten

in terms of the total number of pairs N:

(zN —0.5)?

yN
where N = |B — (|, the ratio of N estimated to be equal
to the difference between the discordant pairs. For fixed y,

the smaller this difference (or x) is, the bigger N must be for
significance. yN = B + C, the ratio of N estimated to be

> 3.841 4)

>3841 z,y€e0,1] (5)

equal to the sum of the discordant pairs, in other words, the
number of pairs not judged equal in naturalness. For fixed z,
the smaller this sum (or y) is, the smaller N needs to be for
significance. A change in z varies NV to a greater degree than
a change in y does.

For conservative estimates of x = 0.2 and ¥y = 0.8,
N > 82. Nevertheless, a large safety margin is built into
the test by setting N = 200. The 200 pairs are divided up
among 10 respondents so that each respondent must listen to
20 pairs. The 20 sentences that make up the pairs are randomly
selected from the 100-utterance test set, such that every two
respondents listen to a unique subset.

For the two languages, the 20 respondents are mother-
tongue speakers with an average age of between 30 and 35.
Out of the 10 English respondents, 6 are male and 4 female.
7 Afrikaans respondents are male and 3 female. A website
facilitates the playback of the audio samples and recording of
answers.

B. Experiment 1: POS Effects Using Maximum Features

The first experiment compares the naturalness of two
TTS voices of which the HTS context labels use
the maximum features. The English voices are dubbed
eng_maxlab_nopos for the version without POS informa-
tion, and eng_maxlab_pos40k for the version with POS
information. Similarly, the Afrikaans voices are named
afr_maxlab_nopos and afr_maxlab_pos40k. The aim is to
observe the effect of the POS information in an already
feature-rich environment for maximum benefit.

Table I shows the results for English and Afrikaans. The
first column lists the measures and the second column the
total number of utterances evaluated. Columns 3 and 4 list the
number of utterances accredited to each voice and column 5
the number found equal. The last column lists the McNemar
x2-scores for significance (which are independent of the equal
counts).

TABLE 1
NATURALNESS RESULTS WHEN USING MAXIMUM FEATURES
Measure Utterances x°
Total | eng maxlab | eng maxiab | Equal
nopos posd40k
Duration 100 46 49 5 | 0.066
Pitch 100 52 42 6 | 0.960
Intensity 100 41 52 7| 1.185
Perception 200 72 83 45 | 0.711
Measure Utterances e
Total | afr_maxlab | afr_maxlab | Equal
nopos pos40k
Duration 100 48 47 5] 0.003
Pitch 100 48 45 7 | 0.067
Intensity 100 49 43 8 | 0329
Perception 200 72 74 54 | 0.015

The analytical figures across the two languages show no
significant bias towards a particular voice, and the perceptual
figures confirm this (there are basically as many votes for the
one voice as for the other). Therefore, it may be deduced
that the two voices are similar in their degree of naturalness
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and that the POS information has no effect when using
the maximum features. It may be that the POS effects are
“drowned out” by the other features, which inherently carry
similar information beneficial towards naturalness.

Finally, it is observed that the equal count among the
perceptual figures is proportionally much higher than among
the analytical figures. The simple explanation is that it is much
more difficult for respondents to hear a distinction between two
utterances than what it is to calculate the difference between
two discrete values.

C. Experiment 2: POS Effects Using Minimum Features

Since the use of the maximum features is suspected to
suppress the POS effects, it is prudent to retest the TTS voices
with reduced features in order to lift out the effects. The
English voice without POS information is eng_minlab_nopos
and with eng_minlab_pos40k. The corresponding Afrikaans
voices are afr_minlab_nopos and afr_minlab_pos40k. The
results are shown in Table IL

TABLE I
NATURALNESS RESULTS WHEN USING MINIMUM FEATURES
Measure Utterances X2
Total | eng_minlab | eng_minlab | Equal
nopos posd0k
Duration 100 51 44 5 0.445
Pitch 100 26 66 8 | 16.959
Intensity 100 46 46 8 0.003
Perception 200 76 101 23 3.391
Measure Utterances x°
Total | afr_minlab | afr_minlab | Equal
nopos posd40k
Duration 100 51 40 9 1.212
Pitch 100 15 79 6 | 42.896
Intensity 100 35 55 10 4.225
Perception 200 71 95 34 3.327

For both languages, pitch dominates the results by clearly
favouring the voices with POS information as more natural.
The near significant perceptual figures tend to suggest the
same. Of note is the disparate results for intensity: it manifests
as a deciding factor only for Afrikaans. It is unclear from this
experiment as to what the cause might be; see trends observed
in the rest of the experiments.

D. Experiment 3: POS Effects Using a Less Accurate Tagger

From the previous experiment it was seen that, when only
minimum features are available, adding POS information im-
proves the pitch component of naturalness. Within the context
of an RSL, the question now arises whether the same effect
is possible when a less accurate POS tagger, trained on fewer
resources, is used. The third experiment thus compares two
TTS voices, both with POS information on top of the minimum
features, but where the tagger of the one voice has been
trained on only 5,000 tokens. For English, the 5,000-token
tagger is 90.95% accurate and the corresponding voice is
called eng_minlab_pos05k. The voice of the normal 40,000-
token, 95.90% accurate tagger is called eng_minlab_pos40k.
For Afrikaans, the tagger trained on 5,000 tokens is 87.95%

accurate and its voice is dubbed afr_minlab_pos05k. The
voice of the 40,000-token, 94.64% accurate tagger used so far
is dubbed afr_minlab_pos40k. Table III shows the naturalness
results for this experiment.

TABLE III
NATURALNESS RESULTS WHEN USING A LESS ACCURATE TAGGER
Measure Utterances x2
Total | eng_minlab | eng minlab | Equal
pos05k posd0k
Duration 100 48 46 6 | 0.024
Pitch 100 45 49 6 | 0.130
Intensity 100 39 55 6 | 2.556
Perception 200 69 94 37 | 3.683
Measure Utterances x°
Total | afr_minlab | afr_minlab | Equal
pos05k pos40k
Duration 100 46 46 8 | 0.003
Pitch 100 48 46 6 | 0.024
Intensity 100 44 53 3| 0.745
Perception 200 57 89 54 | 6.796

Pitch, the prominent measure in the previous experiment,
does not feature here for any of the two languages, nor
do any of the other analytical measures. These insignificant
differences between the voices with the more and less accurate
tagger may support the hypothesis that one can achieve the
same prosodic effects with the less accurate tagger (read
fewer resources). However, the perceptual figures do show a
bias towards the voices using the more accurate tagger, near
significantly for English and significantly for Afrikaans. This
mismatch between the analytical and perceptual results renders
the experiment inconclusive.

E. Experiment 4: Comparing Minimum and Maximum Fea-
tures

The final experiment revisits the implication of the first,
namely that the maximum features might compensate for
the effect of adding POS information. The minimum fea-
ture voices with POS information, eng_minlab_pos40k for
English and afr_minlab_pos40k for Afrikaans, are set
against the maximum feature voices without POS information,
eng_maxlab_nopos for English and afr_maxlab_nopos for
Afrikaans. The results are shown in Table IV.

TABLE IV
RESULTS OF THE COMPARISON BETWEEN MINIMUM AND MAXIMUM
FEATURES
Measure Utterances x2
Total | eng_minlab | eng maxlab | Equal
posd40k nopos
Duration 100 35 59 6 | 5875
Pitch 100 44 52 4 | 0.586
Intensity 100 46 46 8 | 0.003
Perception 200 69 104 27 | 6.880
Measure Utterances x°
Total afr_minlab | afr_maxlab | Equal
posd0k nopos
Duration 100 42 48 10 [ 0.336
Pitch 100 35 61 4 | 6,773
Intensity 100 61 34 5| 7.392
Perception 200 64 93 43 | 5.174
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The duration and pitch figures of the two languages suggest
that the maximum feature voices without POS information are
more natural (duration and pitch being significant for each
language in turn). The perceptual test results favour these
voices significantly as well. Therefore, the extra counting
and positional features in the maximum feature set not only
compensate for the POS information (they would then have
insignificant differences as a result), they improve the natural-
ness beyond what the POS tags can affect.

The Afrikaans intensity figures contradict this conclu-
sion, but, in the light of the same behaviour observed
in Section III-C, it might be a systematic anomaly of
afr_minlab_pos40k. It can possibly be ascribed to speaker
variability (choice) in the speech corpora of the two languages.
During the reinspection of the Afrikaans data, alignment
errors as a result of unexpected pauses, transcription errors,
mispronunciations and G2P errors were also found. Further
investigation is required before any conclusions can be drawn.

IV. CONCLUSION

It has been shown that POS information does contribute
to the naturalness (specifically in terms of pitch) of a TTS
voice when it forms part of a small phoneme identity-based
feature set in the HTS labels. However, the same effect, even
an improvement, can be accomplished by including segmental
counting and positional information instead of the POS tags in
the HTS labels—and no extra resources are used. Therefore,
it is not necessary to incur the cost of POS tagging when the
traditional route of prosodic modelling cannot be followed in
the development of a TTS voice. The experiments were limited
though to the Germanic languages of English and Afrikaans. It
would be prudent to test the effects on the other South African
languages, especially the tone-driven Bantu languages.

Notwithstanding the above results, it is problematic that
the correlation between the analytical and perceptual methods
is not yet clear-cut. This is because the analytical measures
did not always behave in a consistent way across the two
languages and the four experiments. The problem can be
addressed from both sides: either the perceptual tests should
be more fine-grained (that is duration, pitch and intensity must
be judged separately), or a new analytical framework can be
used where, for example, the three measures are combined
into a single one. The former is very difficult to achieve since
the human ear cannot discern such differences well. The latter
is possible by constructing a classifier such as the Gaussian
discriminative function presented in [26]. In either case, it
warrants a much more thorough study of the acoustic and
perceptual factors of prosody.
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