Lateral Difusion of the Topological Charge Density in Stochastic Gjptteelds

Filippus S. Roux
CSR National Laser Centre, PO Box 395, Pretoria 0001, South Africa

Abstract

Stochastic (i.e. random and quasi-random) optical fieldg coatain distributions of optical vortices that are repreged by non-
uniform topological charge densities. Numerical simwalasi are used to investigate the evolution under free-spapagation of
topological charge densities that are inhomogeneous alnaglimension. It is shown that this evolution is describgd Hiffusion
process that has aftlision parameter which depends on the propagation distance.
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1. Introduction tical speckle fields, which are better understood. When a co-
herent optical beam is scattered from a rough surface ttie sca

The spatial information in an optical beam is distorted whentered light forms a speckle field. The phase function of such a
the beam propagates through a turbulent medium. The sligi#peckle field contains numerous phase singularities that-pr
variations in the refractive index, caused by the turbudeme-  agate along with the field as optical vortices. A speckle field
troduce random phase modulations to the optical beam. Ovean therefore also be represented as a random optical vortex
a distance the accumulated phase modulations eventuakgca field. The properties of optical vortices in random opticelds
distortions in the optical beam that manifest as intensitgtfl-  (speckle fields) have been studied extensively [3, 6, 7,.8It9]
ations, called scintillation. is known that the vortex density in such a speckle field is in-

The distortions in such a scintillated beam can, to some exversely proportional to the coherence area of the beam {6]. |
tent, be corrected with an adaptive optics system [1, 2]clwhi is also known that the topological charge in these beamsis di
measures the continuous phase distortions and then removietbuted in such a way that nearest neighbors tend to have op-
them with a continuous deformable mirror. The problem withposite topological charges [8], with the result that thetopb-
this approach comes in with strong scintillation, when thage  logical charge over any area of such a beam is minimized. The
distortions are severe enough to give rise to the spontaneowortices in such a field are constantly being annihilatedcaad
generation of optical vortices [3]. Before removing thetion  ated, but the average number of vortices in the field remains
uous phase distortions in strongly scintillated beams,foee  constant during propagation. One can therefore consider th
needs to remove the optical vortices. random vortex distribution in a speckle field as a systemin-eq

An optical vortex [4, 5] is a singularity (branch point) that librium — the rate of vortex dipole creation is balanced by th
can exist in the phase function at points on the cross-seofio rate of vortex dipole annihilation.
strongly scintillated beams, causing the intensity atehpesnts
to vanish. These points are actually lines along the dacti
of propagation and around these lines the wavefront has-a he
cal shape. The handedness of the helical wavefront is esferr
to as the topological charge of the optical vortex and iseepr
sented by the signed integers. (Topological charges of larger
signed integer values can in principle also appear, but éiney
unstable in scintillated beams and generally decay intboes
with topological charges a£1.) Vortices in an optical field can

On the other hand, a strong scintillation process causes the

umber of vortices in the beam to increase constantly. laroth
ulords, the rate of dipole creation exceeds the rate of dipole
annihilation. For this reason a strongly scintillated bedoas
not represent a system in equilibrium while it is propagatin
through a turbulent medium. An optical beam that has been
scintillated by a turbulent medium can however reach a stiate
equilibrium if it is allowed to propagate through a subsatgue
L ; : . medium without turbulence. In such a case the average vortex
b.e annihilated and created in oppositely charged pairsg(xor density would reach a fixed value that is maintained durimg fu
dipoles). , ) ther free-space propagation, which implies that the duoyitim

To address the challenge of removing unwanted optical VOIis restored.
tices it is necessary to understand the collective beha¥iop-
tical vortices in strongly scintillated beams, as well astner For a more comprehensive understanding of the statistical

optical vortex fields. As a starting point one can consider opPehaviour of optical vortices one also needs to considesiqua
random fields where the vortex distributions are not sgtial

uniform. For this purpose one needs to investigate inhomo-
Email address: fsroux@csir.co.za (Filippus S. Roux) geneous vortex distribution, unlike the homogeneousidistr
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tions that are obtained in speckle fields and scintillateshise By implication, topological charge is topologically con-
Very little is known about the evolution of inhomogeneousvo served — the net flow of topological charge into a closed vol-
tex distributions in quasi-random optical vortex fieldsnBam  ume is zero. This suggests that one can associate a conserved
and quasi-random optical field are here collectively refgémo  current with each of the densities. These densities are con-
as stochastic optical fields. The optical vortices in suoblsis-  served up to the flierence between the number of creations
tic optical beams can be represented by statistical nundyer d and annihilations. The conserved currents therefore abey t
sities for each of the two topological charges. These numbebllowing equations,
densities are not only functions of the propagation distahat

also depend on the lateral coordinate due to there inhomoge- OMp(X.Y.2) + V- Jp(X.y. 2)
neous nature. They can be used to define the topologicaleharg ~ d:M(X,y,2) + V - In(X, Y, 2)
density of the optical vortex field. It is given by theffdirence

between the positive vortex number density and the negativ¥€réJp(x.y.2) andJn(x,y, 2) are transverse currents that are
vortex number density. associated witlmy(X, y, 2) andns(X, y, 2), respectivelyC andA

respectively represent the creation and annihilation tsyamd

= X+ 0.

One can use the conservation equations to eliminate the de-
Thi endence on the creations and annihilations. This is done by

equation is a dfusion equation. (We deliberately exclude drift SuPtracting Eqg. (2) from Eq. (1) and work instead with theotop
logical charge densityp(X,y, 2) = np(X,¥,2) — M(X,y,2). The

effects. See Section 4.) Théftlision codicient is investigated X , / . )
with the aid of numerical simulations of the propagationdts ~ '€Sulting conservation equation for topological chargesity
is,

vortex fields. The dominant Fourier components of the numer=
ically simulated evolution of such topological charge deées 8,D(%Y,2) + V- Jp(x,Y,2) = 0, 3)
are extracted to confirm theftlisive behavior.

The current work builds on previous work [10, 11]. In whereJp(X,Y,2) = Jp(X,Y,2) — In(X, ¥, 2), which is the trans-
Ref. [10] an investigation was made into the restoratioiesca verse topological charge current, associated Witk y, 2). The
of the optical vortex density in an inhomogeneous vortexifiel conservation equation in Eqg. (3) is a direct mathematical ex
however the work there did not address the underlying dynampression of the conservation of topological charge.
ics, apart from a qualitative discussion based on a voriesnph One can also consider the vortex density, which is defined as
model. The work of Ref. [11] considered the evolution of thethe sum:V(x,y, 2) = ny(X, Y, 2) + Nn(X, Y, 2), giving a conserva-
vortex density in a homogenous vortex field after the equilib tion equation that still contains the creations and anaitahs,
rium is destroyed by removing the continuous phase, without
providing any quantitative model for the underlying dynasni N (XY, +V-Jv(xy,2) =2(C-A), (4)

The current work considers the evolution of the topoIogicakNhere the vortex curremdy(x,y,2) = J
charge density (not the vortex density) in an inhomogeneou&ssociated WitN(x, Y, 2). e
§tochastic vortex field and'it specificqlly addresses thertite only the topolocj:jic’:al charge density is further considered |
ical aspects of the underlying dynamics that has not been CORhis paper.
sidered before.

C-A 1)
C-A, 2

In this paper, we develop a ftkrential equation to de-
scribe the evolution during propagation of one-dimendiona
non-uniform topological charge densities in stochastitcap
fields, that are generated by direct phase modulation.

p(X.Y,2) + In(X, Y, 2) is

3. Numerical simulations
2. Topological charge density and vortex density

In the next section results are presented that were obtained

Recently, an optical vortex plasma model was proposed fofrom numerical simulations that simulate the paraxial acal
the evolution of optical vortex fields during propagatio®][1  propagation of a monochromatic optical field. These simula-
In this model, positive and negative vortices are represtby  tions were used to investigate the evolution of distribusgiof
their number densitieg)p(x, y, 2) andny(X,y, 2), respectively. optical vortices in these optical fields.
The hypothetical neutral bound state number density, which The numerical beam propagation algorithm that is used here,
was also introduced in Ref. [10] will not be considered hereis an implementation of scalar fifiaction theory based on
The vortex plasma model has been used [11] to provide a qualourier optics [12, 13]. The procedure itself consists oé¢h
itative explanation for the evolution of homogeneous vorte steps: first the input optical field is Fourier transformeabo
fields that are perturbed away from equilibrium. Due to the fi-tain the angular spectrum; then this angular spectrum isi-nmul
nite extent of an optical beam, as well as random variatioas t plied by the propagation phase function, which depends en th
may exist in the beam, the assumption of a homogeneous field distance of propagation; finally the output field is recanstied
not in general valid. It is therefore necessary to includgtiagp  at the output plane by performing an inverse Fourier tramsfo
variations in the densities of the optical vortices. To ustind  on the modified angular spectrum.

the collective behavior of the optical vortices, one needs- The input optical fields are sampled complex-valued func-
derstand how the spatial variationSeat local changes in the tions, consisting of 512 512 samples, that represent the beam
densities as a function of the propagation distance. cross-section in the plane where the optical vortex digtiGin



dimensional sampled function that is zero everywhere ebatep
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(4 density. All Fourier transforms are performed numericakly

limitations that exist for topological charge densitied][1

Plane wave vortex field
-

4, Lateral motion of optical vorticesduring propagation

L | To determine the dependence of the currents on the number
Figure 1: The physical setup that is being simulated, shgwimexample of a dens'“?s* one ,Can I,nveStlgate the transverse, motlon.wﬁmd
typical phase function that is used in the direct phase naidul process. ual optical vortices in the beam. We are particularly insézd

in how the motion of a vortex is influenced during propagation

by properties of the beam in the vicinity of the vortex. Fluc-
is defined. Physically this optical vortex distribution iB0p  tyations in the phase and amplitude in the region surrogndin
duced by direct phase modulation that can either be accomy yortex, would in general influence the motion of the vortex
plished by a spatial light modulator (SLM) or a phase-only[15 16]. These fluctuations can be caused by other vortices i
diffractive optical element (DOE). The simulated setup isAllus the region or by the continuous variations in the beam itself
trated in Fig. 1. A plane wave illuminates a phase-only DOE or  |ngpired by the successes of statistical physics, one can as
an SLM (shown as a transmissive device) that only modulateg,me that changes in the vortex number densities on the trans
the phase of the plane wave. The resulting optical field &fer o ge plane can either be produced by tHéugion of the vor-
phase modulation, would initially have a uniform amplitude tjces or due to a drift caused by some ‘force’. One can thegefo

just like the plane wave that was incident on the DOE or SLMrgpace the divergence of the current in Egs. (1-4) by the sum
Therefore, the complex-valued input function in the sirtiola ¢ 5 difusion term and a drift term.

also have a uniform amplitude (intensity), with a phase fiomc

X , ) Al In this paper we restrict ourselves to thédsion éfect. One
that typically looks like the inset shown in Fig. 1. Note thiz

. C oo can show that the mechanisms for lateral vortex drift [1, 16
stochastlc aspect of the f|e|d is |-n.troc.juced by the qua?-iffﬂn are always perpendicular to the variations in the vortekidis
locations of the phase singularities in the phase functih W, ions. As a result the drift mechanisms vanish when the dis

which the incident plane wave is modulated. Although it Syt tions only have a one-dimensional dependence. Hevee,
quasi-random, the distribution of the topological chamgfee 1y consider vortex distributions with one-dimensionaia-
vortices is given by some predetermined function, such as gonq

cosines function.

To avoid edge fects and aliasing the complex-valued func- by
tions are always produced with periodic boundary condgion
In other words, the opposite edges of such a function matc
each other continuously, so that the function could be used t
tile the infinite two-dimensional plane to produce a conins!
function (apart from the phase singularities). As a redt t tribution. For the topological charge densByx,y, 7) this is
optical field does not expand during propagation. given by e

The numerical procedure then propagates the initial func- ’
tion through free-space over progressively larger diganthe 8,D(%.Y,2) — kV2D(x,,2) = O, (6)
propagation distance is incremented in steps to deterrhime t
effect of the propagation distance on the evolution of the topowherex is an as yet unknown fliision codficient. This is sim-
logical charge distribution. For each step the topologibalge  ply the difusion (or heat) equation for two spatial dimensions,
density is obtained by computing the location and topolaigic where the propagation distanztakes over the role of the time
charge for every vortex in the beam. This is done through a nudimension. Note that Eq. (6) has the same form as Eq. (3); the
merical implementation of the curl of the gradient of thegha divergence of the currentis now replaced by the Laplacian.te
function, The solutions of the diusion equation are of the form,

It is reasonable to expect that thefdsion process is caused
random motions of the optical vortices, which can be mod-
lled by a random walk process. The detailed mechanism for
Fhese random motions then becomes unimportant. The change
in the distribution of vortices as a function of propagatitis-
tance should then be proportional to the Laplacian of the dis

D(xy) = %VT X V16(X,Y), (5) D(x, 2) = exp(-«|al’z) cos@ - X), (7)



wherex represents the position vector on the two-dimensionakEq. (7) is shift invariant irg, in a practical situation (as simu-
transverse plane araldenotes a two-dimensional spatial fre- lated by our numerical procedure) the shift invariance jdiex
quency vector. The distribution decays exponentially ata r itly broken by the fact that the beam is generated by a direct
that increases for distributions with larger spatial frexgcies. phase modulation (e.g. by a DOE located at a specific point
along the propagation direction). The subsequent evalwfo
the distribution after the DOE can therefore not be expettied
be shift invariant.

Another observation that explains the shape of the decay
curve is the fact that the same decay curve is seen in thesgever
propagation direction, when the beam is numerically propa-
gated backward. This symmetric behavior should manifest as
a mirror symmetry of the diusion equation along. When
z — -z, which implies thatD — -D, the same dierential
equation should be recovered. The expression in Eq. (6) does
not have such a symmetry. However, if théfgsion constant
x is replaced by an anti-symmetric function nfthe equation
will have the required mirror symmetry.

One can modify the dliusion equation in Eq. (6) to incor-
porate the explicit dependence on the propagation distdure
this purpose we assume that th&asion codficientx is a func-

5 I T ] j[ion of the propggation qlistange. The simplest function iha
Profgation distarce [RaVISIgh Firige] in agreement with the S|mylat|on results «{() = (z- ?O)Ko,
wherez, denotes the location of the DOE arglis a dimen-
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Figure 2: Decay curve as a function of the propagation digtaneasured in sionless constant.

Rayleigh ranged?/1, whered is the average separation distance between If we redefine thee-axis so that the DOE is locatedat 0,
vortices in the initial vortex distribution). The numericasults, obtained from  the modified difusion equation is given by,

the propagation of an initial cosines topological chargesitg, are shown by

squares. The error bars denote the standard deviationssolitldine shows a 9;D(x,Y,2) — K02V2 D(x,y,2) =0, (8)
Gaussian function fitted through the numerical data.

_ _ o and its solutions are of the form,
Several diferent input function were generated withfdi-

ent sets of parameters. All these input function containpd+t D(x,2) = exp(—@|a|222) cosg@ - X), 9)
logical charge distributions with a one-dimensional saidal 2
spatial dependence. This sinusoidal dependence repedsentvhich is in agreement with the numerical results shown in
the dominant Fourier components in the Fourier transform ofig. 2.
the topological charge density. Using the procedure empthi By varying the wavelength, initial vortex density and sphti
in Sec. 3, we produced curves for the decay of the dominarffequency of the topological charge density in our numérica
Fourier component as a function of the propagation distafice Simulations, we could verify that the dependence of therpara
subset of these results were used for the averaged decay cugters as presented in Eq. (9) is correct. We could also determ
shown in Fig. 2. For this subset the initial distributionscain- ~ how the constant, depends on these parameter. We thus ob-
tained exactly 800 vortices each (within the 54512 sam-  tained the empirical expressiap = £1?/d?, where{ is a con-
ple window), distributed in such a manner that the topologi-stant of order 11 is the wavelength andlis the average separa-
cal charge density forms a one-dimensional cosine along thiéon distance between vortices in the initial vortex distition.
x-direction, with exactly three periods fitting into the 54812  The value of that was obtained from the numerical data of 350
sample window. A wavelength of 1.667 sample spacings wasimulations, using a Monte-Carlo approach(is; 0.32+ 0.09,
used for this case. which is consistent with a value of &.

In Fig. 2 the squares represent the average (normalized) am-
plitude of thg dominant Fourier component as a function ofg. Summary and conclusions
the propagation distance, measured in Rayleigh ramg® {,
whered is the average separation distance between vortices in A diffusion equation is proposed that describes the evolution
the initial vortex distribution), and the error bars remmisthe  of stochastic optical fields with one-dimensional non-arii
standard deviations. The solid line is a least-squaresfiit i topological charge densities during free-space propagatihe
Gaussian function. It is apparent from the curve in Fig. 2,tha diffusion term contains a fiusion codicient that depends on
although these distributions do decay, their dependendbeon the propagation distance. Numerical simulations are pedd
propagation distance follows a Gaussian shape as opposedttinvestigate the shape of the decay curves. It was fourtd tha
the exponential decay indicated in Eq. (7). the difusion parameter is proportional to the propagation dis-

One can understand the shape of the decay curve as a matance. This is consistent with the symmetry requirements of
festation of a broken shift invariance. Although the s@aotin ~ the equation. When the beam profile is produced with direct



phase modulation, the random motions of the vortices are not
governed by a normal random walk process. Instead the size
of random motions seems to depend on the distance from the
plane where the direct phase modulation is introduced.
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