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Abstract

Stochastic (i.e. random and quasi-random) optical fields may contain distributions of optical vortices that are represented by non-
uniform topological charge densities. Numerical simulations are used to investigate the evolution under free-space propagation of
topological charge densities that are inhomogeneous alongone dimension. It is shown that this evolution is described by a diffusion
process that has a diffusion parameter which depends on the propagation distance.
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1. Introduction

The spatial information in an optical beam is distorted when
the beam propagates through a turbulent medium. The slight
variations in the refractive index, caused by the turbulence, in-
troduce random phase modulations to the optical beam. Over
a distance the accumulated phase modulations eventually cause
distortions in the optical beam that manifest as intensity fluctu-
ations, called scintillation.

The distortions in such a scintillated beam can, to some ex-
tent, be corrected with an adaptive optics system [1, 2], which
measures the continuous phase distortions and then removes
them with a continuous deformable mirror. The problem with
this approach comes in with strong scintillation, when the phase
distortions are severe enough to give rise to the spontaneous
generation of optical vortices [3]. Before removing the contin-
uous phase distortions in strongly scintillated beams, onefirst
needs to remove the optical vortices.

An optical vortex [4, 5] is a singularity (branch point) that
can exist in the phase function at points on the cross-section of
strongly scintillated beams, causing the intensity at these points
to vanish. These points are actually lines along the direction
of propagation and around these lines the wavefront has a heli-
cal shape. The handedness of the helical wavefront is referred
to as the topological charge of the optical vortex and is repre-
sented by the signed integers±1. (Topological charges of larger
signed integer values can in principle also appear, but theyare
unstable in scintillated beams and generally decay into vortices
with topological charges of±1.) Vortices in an optical field can
be annihilated and created in oppositely charged pairs (vortex
dipoles).

To address the challenge of removing unwanted optical vor-
tices it is necessary to understand the collective behaviorof op-
tical vortices in strongly scintillated beams, as well as inother
optical vortex fields. As a starting point one can consider op-
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tical speckle fields, which are better understood. When a co-
herent optical beam is scattered from a rough surface the scat-
tered light forms a speckle field. The phase function of such a
speckle field contains numerous phase singularities that prop-
agate along with the field as optical vortices. A speckle field
can therefore also be represented as a random optical vortex
field. The properties of optical vortices in random optical fields
(speckle fields) have been studied extensively [3, 6, 7, 8, 9]. It
is known that the vortex density in such a speckle field is in-
versely proportional to the coherence area of the beam [6]. It
is also known that the topological charge in these beams is dis-
tributed in such a way that nearest neighbors tend to have op-
posite topological charges [8], with the result that the nettopo-
logical charge over any area of such a beam is minimized. The
vortices in such a field are constantly being annihilated andcre-
ated, but the average number of vortices in the field remains
constant during propagation. One can therefore consider the
random vortex distribution in a speckle field as a system in equi-
librium — the rate of vortex dipole creation is balanced by the
rate of vortex dipole annihilation.

On the other hand, a strong scintillation process causes the
number of vortices in the beam to increase constantly. In other
words, the rate of dipole creation exceeds the rate of dipole
annihilation. For this reason a strongly scintillated beamdoes
not represent a system in equilibrium while it is propagating
through a turbulent medium. An optical beam that has been
scintillated by a turbulent medium can however reach a stateof
equilibrium if it is allowed to propagate through a subsequent
medium without turbulence. In such a case the average vortex
density would reach a fixed value that is maintained during fur-
ther free-space propagation, which implies that the equilibrium
is restored.

For a more comprehensive understanding of the statistical
behaviour of optical vortices one also needs to consider quasi-
random fields where the vortex distributions are not spatially
uniform. For this purpose one needs to investigate inhomo-
geneous vortex distribution, unlike the homogeneous distribu-
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tions that are obtained in speckle fields and scintillated beams.
Very little is known about the evolution of inhomogeneous vor-
tex distributions in quasi-random optical vortex fields. Random
and quasi-random optical field are here collectively referred to
as stochastic optical fields. The optical vortices in such stochas-
tic optical beams can be represented by statistical number den-
sities for each of the two topological charges. These number
densities are not only functions of the propagation distance, but
also depend on the lateral coordinate due to there inhomoge-
neous nature. They can be used to define the topological charge
density of the optical vortex field. It is given by the difference
between the positive vortex number density and the negative
vortex number density.

In this paper, we develop a differential equation to de-
scribe the evolution during propagation of one-dimensional
non-uniform topological charge densities in stochastic optical
fields, that are generated by direct phase modulation. This
equation is a diffusion equation. (We deliberately exclude drift
effects. See Section 4.) The diffusion coefficient is investigated
with the aid of numerical simulations of the propagation of such
vortex fields. The dominant Fourier components of the numer-
ically simulated evolution of such topological charge densities
are extracted to confirm the diffusive behavior.

The current work builds on previous work [10, 11]. In
Ref. [10] an investigation was made into the restoration scale
of the optical vortex density in an inhomogeneous vortex field,
however the work there did not address the underlying dynam-
ics, apart from a qualitative discussion based on a vortex plasma
model. The work of Ref. [11] considered the evolution of the
vortex density in a homogenous vortex field after the equilib-
rium is destroyed by removing the continuous phase, without
providing any quantitative model for the underlying dynamics.

The current work considers the evolution of the topological
charge density (not the vortex density) in an inhomogeneous
stochastic vortex field and it specifically addresses the theoret-
ical aspects of the underlying dynamics that has not been con-
sidered before.

2. Topological charge density and vortex density

Recently, an optical vortex plasma model was proposed for
the evolution of optical vortex fields during propagation [10].
In this model, positive and negative vortices are represented by
their number densities,np(x, y, z) and nn(x, y, z), respectively.
The hypothetical neutral bound state number density, which
was also introduced in Ref. [10] will not be considered here.
The vortex plasma model has been used [11] to provide a qual-
itative explanation for the evolution of homogeneous vortex
fields that are perturbed away from equilibrium. Due to the fi-
nite extent of an optical beam, as well as random variations that
may exist in the beam, the assumption of a homogeneous field is
not in general valid. It is therefore necessary to include spatial
variations in the densities of the optical vortices. To understand
the collective behavior of the optical vortices, one needs to un-
derstand how the spatial variations affect local changes in the
densities as a function of the propagation distance.

By implication, topological charge is topologically con-
served — the net flow of topological charge into a closed vol-
ume is zero. This suggests that one can associate a conserved
current with each of the densities. These densities are con-
served up to the difference between the number of creations
and annihilations. The conserved currents therefore obey the
following equations,

∂znp(x, y, z) + ∇ · Jp(x, y, z) = C −A (1)

∂znn(x, y, z) + ∇ · Jn(x, y, z) = C −A, (2)

whereJp(x, y, z) andJn(x, y, z) are transverse currents that are
associated withnp(x, y, z) andnn(x, y, z), respectively;C andA
respectively represent the creation and annihilation events, and
∇ = ∂x x̂ + ∂yŷ.

One can use the conservation equations to eliminate the de-
pendence on the creations and annihilations. This is done by
subtracting Eq. (2) from Eq. (1) and work instead with the topo-
logical charge density,D(x, y, z) = np(x, y, z) − nn(x, y, z). The
resulting conservation equation for topological charge density
is,

∂zD(x, y, z) + ∇ · JD(x, y, z) = 0, (3)

whereJD(x, y, z) = Jp(x, y, z) − Jn(x, y, z), which is the trans-
verse topological charge current, associated withD(x, y, z). The
conservation equation in Eq. (3) is a direct mathematical ex-
pression of the conservation of topological charge.

One can also consider the vortex density, which is defined as
the sum:V(x, y, z) = np(x, y, z) + nn(x, y, z), giving a conserva-
tion equation that still contains the creations and annihilations,

∂zV(x, y, z) + ∇ · JV(x, y, z) = 2(C −A) , (4)

where the vortex currentJV (x, y, z) = Jp(x, y, z) + Jn(x, y, z) is
associated withV(x, y, z).

Only the topological charge density is further considered in
this paper.

3. Numerical simulations

In the next section results are presented that were obtained
from numerical simulations that simulate the paraxial scalar
propagation of a monochromatic optical field. These simula-
tions were used to investigate the evolution of distributions of
optical vortices in these optical fields.

The numerical beam propagation algorithm that is used here,
is an implementation of scalar diffraction theory based on
Fourier optics [12, 13]. The procedure itself consists of three
steps: first the input optical field is Fourier transformed toob-
tain the angular spectrum; then this angular spectrum is multi-
plied by the propagation phase function, which depends on the
distance of propagation; finally the output field is reconstructed
at the output plane by performing an inverse Fourier transform
on the modified angular spectrum.

The input optical fields are sampled complex-valued func-
tions, consisting of 512× 512 samples, that represent the beam
cross-section in the plane where the optical vortex distribution
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Figure 1: The physical setup that is being simulated, showing an example of a
typical phase function that is used in the direct phase modulation process.

is defined. Physically this optical vortex distribution is pro-
duced by direct phase modulation that can either be accom-
plished by a spatial light modulator (SLM) or a phase-only
diffractive optical element (DOE). The simulated setup is illus-
trated in Fig. 1. A plane wave illuminates a phase-only DOE or
an SLM (shown as a transmissive device) that only modulates
the phase of the plane wave. The resulting optical field afterthe
phase modulation, would initially have a uniform amplitude,
just like the plane wave that was incident on the DOE or SLM.
Therefore, the complex-valued input function in the simulation
also have a uniform amplitude (intensity), with a phase function
that typically looks like the inset shown in Fig. 1. Note thatthe
stochastic aspect of the field is introduced by the quasi-random
locations of the phase singularities in the phase function with
which the incident plane wave is modulated. Although it is
quasi-random, the distribution of the topological chargesof the
vortices is given by some predetermined function, such as a
cosines function.

To avoid edge effects and aliasing the complex-valued func-
tions are always produced with periodic boundary conditions.
In other words, the opposite edges of such a function match
each other continuously, so that the function could be used to
tile the infinite two-dimensional plane to produce a continuous
function (apart from the phase singularities). As a result the
optical field does not expand during propagation.

The numerical procedure then propagates the initial func-
tion through free-space over progressively larger distances. The
propagation distance is incremented in steps to determine the
effect of the propagation distance on the evolution of the topo-
logical charge distribution. For each step the topologicalcharge
density is obtained by computing the location and topological
charge for every vortex in the beam. This is done through a nu-
merical implementation of the curl of the gradient of the phase
function,

D(x, y) =
1
2π
∇T × ∇Tθ(x, y), (5)

where∇T is the two-dimensional gradient operator on thexy-
plane. The resulting topological charge densityD(x, y) is a two-
dimensional sampled function that is zero everywhere except at
the locations of the vortices, where it is equal to±1, indicating
the topological charge of the vortex. The Fourier transformof
this topological charge density is used to extract the amplitudes
of the pertinent Fourier components of the topological charge
density. All Fourier transforms are performed numericallyus-
ing a Fast Fourier Transform procedure.

In all the numerical analyses the wavelength was chosen
small enough to stay within the paraxial limit and avoid the
limitations that exist for topological charge densities [14].

4. Lateral motion of optical vortices during propagation

To determine the dependence of the currents on the number
densities, one can investigate the transverse motion of individ-
ual optical vortices in the beam. We are particularly interested
in how the motion of a vortex is influenced during propagation
by properties of the beam in the vicinity of the vortex. Fluc-
tuations in the phase and amplitude in the region surrounding
a vortex, would in general influence the motion of the vortex
[15, 16]. These fluctuations can be caused by other vortices in
the region or by the continuous variations in the beam itself.

Inspired by the successes of statistical physics, one can as-
sume that changes in the vortex number densities on the trans-
verse plane can either be produced by the diffusion of the vor-
tices or due to a drift caused by some ‘force’. One can therefore
replace the divergence of the current in Eqs. (1-4) by the sum
of a diffusion term and a drift term.

In this paper we restrict ourselves to the diffusion effect. One
can show that the mechanisms for lateral vortex drift [15, 16]
are always perpendicular to the variations in the vortex distri-
butions. As a result the drift mechanisms vanish when the dis-
tributions only have a one-dimensional dependence. Hence,we
only consider vortex distributions with one-dimensional varia-
tions.

It is reasonable to expect that the diffusion process is caused
by random motions of the optical vortices, which can be mod-
elled by a random walk process. The detailed mechanism for
these random motions then becomes unimportant. The change
in the distribution of vortices as a function of propagationdis-
tance should then be proportional to the Laplacian of the dis-
tribution. For the topological charge densityD(x, y, z) this is
given by,

∂zD(x, y, z) − κ∇2D(x, y, z) = 0, (6)

whereκ is an as yet unknown diffusion coefficient. This is sim-
ply the diffusion (or heat) equation for two spatial dimensions,
where the propagation distancez takes over the role of the time
dimension. Note that Eq. (6) has the same form as Eq. (3); the
divergence of the current is now replaced by the Laplacian term.

The solutions of the diffusion equation are of the form,

D(x, z) = exp(−κ|a|2z) cos(a · x), (7)
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wherex represents the position vector on the two-dimensional
transverse plane anda denotes a two-dimensional spatial fre-
quency vector. The distribution decays exponentially at a rate
that increases for distributions with larger spatial frequencies.

Figure 2: Decay curve as a function of the propagation distance measured in
Rayleigh range (πd2/λ, whered is the average separation distance between
vortices in the initial vortex distribution). The numerical results, obtained from
the propagation of an initial cosines topological charge density, are shown by
squares. The error bars denote the standard deviations. Thesolid line shows a
Gaussian function fitted through the numerical data.

Several different input function were generated with differ-
ent sets of parameters. All these input function contained topo-
logical charge distributions with a one-dimensional sinusoidal
spatial dependence. This sinusoidal dependence represented
the dominant Fourier components in the Fourier transform of
the topological charge density. Using the procedure explained
in Sec. 3, we produced curves for the decay of the dominant
Fourier component as a function of the propagation distance. A
subset of these results were used for the averaged decay curve
shown in Fig. 2. For this subset the initial distributions all con-
tained exactly 800 vortices each (within the 512× 512 sam-
ple window), distributed in such a manner that the topologi-
cal charge density forms a one-dimensional cosine along the
x-direction, with exactly three periods fitting into the 512×512
sample window. A wavelength of 1.667 sample spacings was
used for this case.

In Fig. 2 the squares represent the average (normalized) am-
plitude of the dominant Fourier component as a function of
the propagation distance, measured in Rayleigh range (πd2/λ,
whered is the average separation distance between vortices in
the initial vortex distribution), and the error bars represent the
standard deviations. The solid line is a least-squares fit with a
Gaussian function. It is apparent from the curve in Fig. 2 that,
although these distributions do decay, their dependence onthe
propagation distance follows a Gaussian shape as opposed to
the exponential decay indicated in Eq. (7).

One can understand the shape of the decay curve as a mani-
festation of a broken shift invariance. Although the solution in

Eq. (7) is shift invariant inz, in a practical situation (as simu-
lated by our numerical procedure) the shift invariance is explic-
itly broken by the fact that the beam is generated by a direct
phase modulation (e.g. by a DOE located at a specific point
along the propagation direction). The subsequent evolution of
the distribution after the DOE can therefore not be expectedto
be shift invariant.

Another observation that explains the shape of the decay
curve is the fact that the same decay curve is seen in the reverse
propagation direction, when the beam is numerically propa-
gated backward. This symmetric behavior should manifest as
a mirror symmetry of the diffusion equation alongz. When
z → −z, which implies thatD → −D, the same differential
equation should be recovered. The expression in Eq. (6) does
not have such a symmetry. However, if the diffusion constant
κ is replaced by an anti-symmetric function ofz, the equation
will have the required mirror symmetry.

One can modify the diffusion equation in Eq. (6) to incor-
porate the explicit dependence on the propagation distance. For
this purpose we assume that the diffusion coefficientκ is a func-
tion of the propagation distance. The simplest function that is
in agreement with the simulation results, isκ(z) = (z − z0)κ0,
wherez0 denotes the location of the DOE andκ0 is a dimen-
sionless constant.

If we redefine thez-axis so that the DOE is located atz = 0,
the modified diffusion equation is given by,

∂zD(x, y, z) − κ0z∇2D(x, y, z) = 0, (8)

and its solutions are of the form,

D(x, z) = exp
(

−
κ0

2
|a|2z2

)

cos(a · x), (9)

which is in agreement with the numerical results shown in
Fig. 2.

By varying the wavelength, initial vortex density and spatial
frequency of the topological charge density in our numerical
simulations, we could verify that the dependence of the param-
eters as presented in Eq. (9) is correct. We could also determine
how the constantκ0 depends on these parameter. We thus ob-
tained the empirical expressionκ0 = ζλ2/d2, whereζ is a con-
stant of order 1,λ is the wavelength andd is the average separa-
tion distance between vortices in the initial vortex distribution.
The value ofζ that was obtained from the numerical data of 350
simulations, using a Monte-Carlo approach, is,ζ = 0.32±0.09,
which is consistent with a value of 1/π.

5. Summary and conclusions

A diffusion equation is proposed that describes the evolution
of stochastic optical fields with one-dimensional non-uniform
topological charge densities during free-space propagation. The
diffusion term contains a diffusion coefficient that depends on
the propagation distance. Numerical simulations are performed
to investigate the shape of the decay curves. It was found that
the diffusion parameter is proportional to the propagation dis-
tance. This is consistent with the symmetry requirements of
the equation. When the beam profile is produced with direct
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phase modulation, the random motions of the vortices are not
governed by a normal random walk process. Instead the size
of random motions seems to depend on the distance from the
plane where the direct phase modulation is introduced.
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