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Knowledge of the behavior of stochastic optical fields can aid the understanding of the scintillation of light
propagating through a turbulent medium. For this purpose, we perform a numerical investigation of the evo-
lution of the scintillation index and the optical vortex density in a speckle field after removing its continuous
phase. We find that both the scintillation index and the vortex density initially drop and then increase again to
reach an equilibrium level. It is also found that the initial rate of decrease in both cases is 1 order of magnitude
faster than the eventual rate of increase. Their detail shapes are however different. Therefore different em-
pirical functions are used to fit the shapes of these curves. © 2010 Optical Society of America
OCIS codes: 030.6140, 350.5500, 350.5030, 260.6042, 030.6600.
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. INTRODUCTION
lthough optical vortices [1] have found various applica-

ions, including optical measurement [2–4], trapping and
anipulation of particles [5,6], free-space optical commu-
ication [7–9], quantum entanglement [10,11], and opti-
al vortex coronagraph [12], their presence in an optical
eam is not always desirable. Optical vortices appear
pontaneously when coherent light is distorted severely
nough by a random medium, such as a turbulent atmo-
phere, through which it propagates. Such vortices are lo-
ated at the dark regions where the intensity vanishes
nd the phase is singular. Optical vortices can have either
ositive or negative topological charge, depending on the
andedness of the phase increment around the vortex
ore. A pair of positive and negative vortices can be anni-
ilated or created during free-space propagation.
To address the challenge of removing these optical vor-

ices [13] it is necessary to understand the collective be-
avior of optical vortices in strongly scintillated beams, as
ell as in other optical vortex fields. As a starting point
ne can consider optical speckle fields, which are better
nderstood.
Obtained by scattering coherent light through a highly

istorted medium or by reflecting coherent light from a
urface with its roughness on the scale of a wavelength, a
peckle field contains a random distribution of optical vor-
ices. The optical vortex density, which is defined as the
otal number of vortices per unit area and given by half
he inverse of the coherence area of the speckle beam [14],
s statistically stable along the propagation direction. The
et topological charge in any finite area tends to be much
maller than the total number of vortices in that area, es-
ecially for larger areas. The topological charges of neigh-
oring optical vortices are anti-correlated [15]. In spite of
1084-7529/10/102138-6/$15.00 © 2
heir point-like appearances, optical vortices have an in-
uence over the whole wave field and therefore affect the
lobal phase structure. Considering the speckle in a
hree-dimensional volume, one finds that the point-like
ortices become lines [16–19] that can be curved, knotted,
nd looped, giving rise to the motion, creation, and anni-
ilation of vortices in a two-dimensional plane perpen-
icular to the propagation direction. However, the rate of
ortex dipole annihilation is statistically equal to the rate
f vortex dipole creation so that the average vortex den-
ity remains constant during propagation. In this sense, a
tatic speckle field represents a state of equilibrium dur-
ng its free-space propagation.

It is easier to use numerical methods to study optical
ortices in speckle fields [19,20] than to use experimental
echniques. Far-field Gaussian speckle fields can be gen-
rated as the Fourier transform of a set of point sources
aving random phases [14]. Examples of different ways to
imulate the illuminated sources include uniformly illu-
inated square envelopes, uniformly illuminated circular

nvelopes, and symmetric Gaussian envelopes [21,22]. Al-
hough the properties of static speckle fields have been
idely investigated [14,22–29], studies of the properties

f speckle fields after their equilibrium states have been
estroyed are rare.
Our approach to address the challenge of removing op-

ical vortices is to first understand the underlying dynam-
cs of optical vortices that is inherent to stochastic optical
elds. Hence, in this paper, we extend our previous work
30] on optical vortices in strongly scintillated beams by
onsidering the evolution of a speckle field after destroy-
ng its equilibrium state through the removal of the con-
inuous part of its phase function. Although a speckle
eld differs from a scintillated optical field, an under-
010 Optical Society of America
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tanding of the dynamics of vortices in phase corrected
peckle fields will enhance our understanding of similar
ynamics that exist in scintillated beams. We propagate
he phase corrected speckle field step by step in free-
pace, in a way similar to the numerical method used by
artin and Flatté in their study of laser beams propagat-

ng in random media [31,32]. Both the scintillation index
nd the vortex density are used in our study of the evolu-
ion of phase corrected speckle fields.

. MATHEMATICAL BACKGROUND
speckle is obtained from a coherent superposition of

ultiple plane waves with a random angular spectrum,
estricted to a region around the origin of the spatial fre-
uency domain. The size of this region is inversely propor-
ional to the coherence area of the speckle beam. A
peckle field ��x� can therefore be written as

��x� =� �
−�

�

��a�exp�− i2�a · x�d2a, �1�

here x is the two-dimensional position vector on a plane
erpendicular to the direction of propagation (the propa-
ation axis is assumed to be the z-axis), a is the two-
imensional spatial frequency vector, and ��a� represents
he random angular spectrum for the speckle beam.

In this paper a Gaussian spectral envelope is used to
estrict the angular spectrum to the area around the ori-
in, as given by

��a� = �̃�a�exp�− �a�2

W2 � , �2�

here �̃�a� is a normally distributed complex-valued ran-
om function and W is a scale for the radius of the angu-
ar spectrum. The spatial coherence length Lc, which is
efined here as the square root of the spatial coherence
rea, is inversely proportional to W.
One can express the speckle beam in terms of ampli-

ude and phase. The phase can be separated into a con-
inuous phase and a sum of phase singularities (optical
ortices). The complex-valued speckle field is therefore ex-
ressed as

��x� = ���x��exp�i�c�x� + i�
n

�n��x − xn�	 , �3�

here �c�x� is the continuous phase, ��x−xn� represents
phase singularity located at xn, and �n represents the

opological charge (	1) of the phase singularity.
Here we investigate the behavior of a speckle beam af-

er the continuous part of the phase has been removed.
he separation between the continuous and singular
arts of the phase is not unique. One way to do the sepa-
ation is to compute the least-squares phase, which gives
n optimal estimate of the continuous part of the total
hase. We illustrate the process in Fig. 1. The amplitude
or the square root of the intensity) of a typical speckle
eld is shown in Fig. 1(a), and Fig. 1(b) presents the total
hase of the speckle field ��x�. The least-squares phase

�x�, which is shown in Fig. 1(c), can be computed from
LS
he Fourier transform of the Laplacian of ��x�. From the
ourier theorem we know that

F
�T
2��x�� = − �a�2F
��x��. �4�

ince the phase singularities do not survive the trans-
erse Laplacian operation �T

2 [33,34], one can recover the
ontinuous part as the least-squares phase,

�LS�x� = − F−1�F
�T
2��x��

�a�2 
 . �5�

or the discrete case, as used in numerical simulations,
his becomes

�LS�x� = − F−1� F

T
2��x��

2�2 − cos�2��x� − cos�2��y��
 , �6�

here 
T
2 represents the discrete version of the transverse

aplacian and �x ��y� is the sample spacing in the Fourier
omain along x �y�.
The least-squares phase �LS�x� is removed by multiply-

ng the speckle beam with the complex conjugate of the
east-squares phase. As a result the speckle field now only
ontains the singular part of the phase, shown in Fig.
(d), which only consists of phase singularities. The re-
ulting so-called phase corrected speckle field is then al-
owed to propagate through free-space, as explained in
he next section. Note that the amplitude [Fig. 1(a)] is not
irectly affected by this least-squares phase removal pro-
ess.

The variation in the intensity of an optical field can be
uantified by the scintillation index, which is defined as
he variance in the intensity divided by the square of the
verage intensity. In terms of the moments it is given by

�I =
�I2�

�I�2 − 1. �7�

he scintillation index of a speckle field is approximately
qual to 1. We will use the scintillation index, together
ith the vortex density, to study the evolution of the op-

(a) (b)

(c) (d)

ig. 1. Anatomy of a speckle field: (a) amplitude of the speckle
eld (square root of the intensity), (b) total phase of the speckle
eld, (c) least-squares continuous phase, and (d) the singular
art of the phase of a speckle field.
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ical field after the least-squares phase has been removed.
One can argue that the evolution of the vortex density

r the scintillation index should become conformal in the
araxial limit, because in this limit one can formulate the
ropagation of light completely independent of any scale
arameters. This is indeed what is observed: plotting the
cintillation index or the normalized vortex density as a
unction of the (dimensionless) normalized propagation
istance t=z
 /Lc

2, where Lc is the coherence length, one
nds that the curves always have the same shape, regard-

ess of the values of Lc or 
. Hence, in the paraxial limit
he evolution of the vortex density and the scintillation
ndex are unique and scale invariant. In this paper, we
nly consider the paraxial limit.

. NUMERICAL SIMULATION
he propagation of the speckle beam after the removal of

ts least-squares phase was simulated with a numerical
mplementation of scalar diffraction theory, based on Fou-
ier optics [35,36]. The input speckle fields are sampled
omplex-valued functions, consisting of 512�512 samples
hat represent the speckle beam in a plane perpendicular
o the propagation direction. The speckle fields are pro-
uced by numerical implementations of Eqs. (1) and (2),
here the starting point is a randomly generated two-
imensional array of normally distributed complex values
o produce �̃�a�. The Fourier transform of the resulting
ngular spectrum ��a� then gives a speckle field with pe-
iodic boundary conditions. In other words, the opposite
dges of the speckle field match each other continuously
o that the field could be used to tile the infinite two-
imensional plane to produce a continuous function. As a
esult the speckle field does not expand during propaga-
ion. This is necessary to avoid edge effects and aliasing.
are is taken to ensure that the periodic boundary condi-

ions are also maintained during the least-squares phase
emoval process and the entire propagation process.

The numerical procedure propagates the initial phase
orrected speckle field through free-space over progres-
ively larger distances. The propagation distance is in-
reased in logarithmically increasing steps. The reason
or the logarithmic dependence follows from the shapes of
he resulting vortex density and the scintillation index
urves. Due to a large difference in the initial rate at
hich these quantities decrease compared the subsequent

ate at which they increase again, it is better to simulate
he process at logarithmically increasing propagation dis-
ances. (The very slow rate of increase after the dip pre-
iously caused the authors to have the incorrect impres-
ion that the dip represented an equilibrium vortex
ensity [30].) For each step the scintillation index is com-
uted and the total number of vortices that are located in-
ide the 512�512 sample window is determined as a
unction of the logarithmic propagation distance. The
imulation was repeated several times for different initial
peckle fields, having different coherence areas. We kept
he wavelength the same (equal to one sample spacing)
or all the simulations. The coherence length, which is al-
ays computed from the final vortex density V� according

o Lc= �2V��−1/2, was always chosen to be large enough to
nsure that all the simulations obey the paraxial approxi-
ation.
. NUMERICAL RESULTS
he normalized optical vortex density for a phase cor-
ected speckle field is shown in Fig. 2 as a function of lin-
ar normalized propagation distance [Fig. 2(a)], as well as
ogarithmic normalized propagation distance [Fig. 2(b)].
he latter makes it easier to see the final equilibrium op-

ical vortex density. The normalized propagation distance
s defined as t=z
 /Lc

2. The optical vortex density curves
ave been normalized before the averages and standard
eviations were computed. The curve shown in Fig. 2 rep-
esents a case where Lc=19.7
, which is well within the
araxial limit. It reveals several interesting features of
he process. After the least-squares phase has been re-
oved, the vortex density drops drastically as a function

f the propagation distance. The vortex density then
eaches a minimum value of about 70% of the initial vor-
ex density. The vortex density then starts to rise again,
ut at a rate that is 1 order of magnitude slower than the
ate at which it dropped. Finally it reaches an equilib-
ium value of about 88% of the initial vortex density. Per-
aps the most striking feature of this curve is the large
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ig. 2. Normalized optical vortex density for a phase corrected
peckle field, shown as a function of (a) linear normalized propa-
ation distance, as well as (b) logarithmic normalized propaga-
ion distance. The diamonds represent numerical data, averaged
ver more than a hundred different simulations. The error bars
epresent standard deviations. A solid curve is fitted through
hese data points as discussed in the text.
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ifference in scale between the propagation distances re-
uired to go from the initial density to the dip and from
he dip to the final equilibrium value.

The numerical data obtained for the evolution of the
ortex density in the paraxial limit can be fitted by the
unction

V�z� = A0 + A1 exp�− K0z2 − k1z� − A2 exp�− k2z�, �8�

here z is the propagation distance, A0=0.5/Lc
2 (by defi-

ition), A1= �0.219±0.004� /Lc
2, A2= �0.146±0.004� /Lc

2,
0= �0.50±0.09�
2 /Lc

4, k1= �2.39±0.04�
 /Lc
2, and k2

�0.285±0.013�
 /Lc
2, with 
 being the wavelength and Lc

eing the coherence length, computed from the final equi-
ibrium vortex density of the phase corrected speckle
eld. The equilibrium value of the vortex density is rep-
esented by A0 and is by definition equal to 1/2Lc

2 [14].
he values of the optical vortex density, which are shown

n Fig. 2, are normalized with respect to the initial vortex
ensity, which is given by A0+A1−A2. Being densities, the
hree constants A0, A1, and A2 scale as 1/Lc

2. The way in
hich the remaining parameters depend on 
 and Lc fol-

ows from the scaling properties in the paraxial limit. As a
esult the position of the minimum vortex density also
cales according to the scaling properties in the paraxial
imit and is given by zm=1.1Lc

2 /
. We do not currently
ave a very compelling reason why the function for the
volution of the vortex density should have the form given
n Eq. (8), other than saying that one expects it to be com-
osed of exponential functions to represent the decay pro-
ess associated with the diffusion of vortices.

Figure 3 shows the evolution of the scintillation index
or the same phase corrected speckle field that is consid-
red in Fig. 2. Again curves are shown as a function of lin-
ar normalized propagation distance [Fig. 3(a)] and loga-
ithmic normalized propagation distance [Fig. 3(b)]. The
hape of the curves shows a behavior that resembles the
volution of the vortex density. After the least-squares
hase has been removed, the scintillation index also
rops, but it starts off more gradually than the vortex
ensity. The scintillation index then reaches a minimum
alue of about 0.7, which is 70% of the initial value, simi-
ar to what is observed for the vortex density. The mini-

um is also located at a propagation distance that is very
lose to the location of the minimum vortex density. The
ubsequent rise in the value of the scintillation index also
ccurs at a rate that is much slower than the rate at
hich it dropped. However, the final equilibrium value is
pproximately equal to 1, which is the same as that it
tarted with, meaning that the optical field has the ap-
earance of a speckle field again.
The numerical data for the evolution of the scintillation

ndex in the paraxial limit, which is shown in Fig. 3, can
e fitted by the function

��z� = B0 − B1 exp�− G ln� z

zd
�2	 , �9�

here B0=0.998±0.003, B1=0.310±0.003, G
0.549±0.006, and zd= �1.367±0.012�Lc

2 /
. The latter is
he location of the minimum scintillation index along the
ropagation direction. The only scale parameter zd de-
ends on 
 and L according to the scaling properties of
c
he propagation distance in the paraxial limit. The other
arameters B0, B1, and G are scale independent dimen-
ionless constants.

. DISCUSSION
here are obvious similarities between the curves for the
cintillation index (Fig. 3) and the vortex density (Fig. 2).
oth show an initial drop, reaching their minima of about
0% of the initial values at roughly the same propagation
istance, and then rising again at a much slower rate to-
ard their respective equilibrium values. However, the

esemblance ends here. A closer inspection of the curves
hows that they are qualitatively rather different. While
he vortex density starts with a fairly steep negative
lope, the scintillation index appears to have a zero initial
lope. Naturally the initial values of the two quantities
re different. The initial vortex density depends on the
peckle field before the phase removal, whereas the scin-
illation index is always close to 1. The equilibrium values
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ig. 3. Scintillation index for a phase corrected speckle field,
hown as a function of (a) linear normalized propagation dis-
ance, as well as (b) logarithmic normalized propagation dis-
ance. The diamonds represent numerical data, averaged over
ore than a hundred different simulations. The error bars rep-

esent standard deviations. A solid curve is fitted through these
ata points as discussed in the text.
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re also different. The scintillation index goes back to 1.
he vortex density, on the other hand, settles at a lower
alue than its initial value.

The phase of the speckle field is changed all of the sud-
en when its least-squares phase is removed, while the
mplitude (intensity) remains untouched. Because optical
ortices are connected with the global phase structure of
n optical field, the vortex density starts to change imme-
iately after the phase removal. However, the scintilla-
ion index will not change immediately after the phase re-
oval because it depends on the intensity. During

ubsequent propagation the phase changes due to the
east-squares phase removal become coupled with the am-
litude, which is reminiscent of an optical beam propagat-
ng in free-space after passing through a phase screen. As
result, there is always a lag in the behavior of the scin-

illation index with respect to the behavior vortex density
for example, zm is slightly smaller than zd).

The qualitative differences of these curves imply that
ifferent functions are required to fit them. While the vor-
ex density is fitted with a bi-exponential function, shown
n Eq. (8), the scintillation index is very well fitted by a
aussian as a function of the logarithmic propagation dis-

ance, shown in Eq. (9). This reveals deeper differences
etween the two curves. Firstly, the scintillation index re-
uires only one scale parameter, which is given here in
erms of the location of the dip, and which is proportional
o Lc

2 /
. The vortex density, on the other hand, requires at
east two different scale parameters. Both are propor-
ional to Lc

2 /
, but their proportionality constants differ
y a factor of almost 1 order of magnitude. This apparent
eparation in scales is a fascinating observation that mer-
ts further investigation. Secondly, the initial value and
lope of the scintillation index do not give information
bout the appearance and location of the dip. In contrast
ne can use the initial value and slope of the vortex den-
ity curve to solve for two of the free parameters required
o fit the curve.

The shape of the vortex density curve, shown in Fig. 2,
s somewhat surprising. One might have expected that
he restoration of the normal speckle behavior would fol-
ow a simple exponential decay process for the vortex den-
ity after the phase correction perturbed the equilibrium.
n such a case the process could be described by a first or-
er differential equation. Instead the process follows a
urve that cannot be produced by a single first order dif-
erential equation, because the slope of the function in
ig. 2 is not directly related to that function value. The
urve therefore requires a second order differential equa-
ion. The second order differential equation that gives Eq.
8) as a solution is given by

�2V�z�

�z2 + ���z� + k2�
�V�z�

�z
+ k2��z��V�z� − A0� = 0, �10�

here

��z� = 2K0z + k1 −
2K0

2K0z + k1 − k2
. �11�

he parameters A1 and A2 in Eq. (8) are determined by
nitial conditions. The rest of the parameters appear ex-
licitly in the differential equation.
The shape of the curve for the scintillation index is less
urprising, because one does expect the scintillation index
o return to 1, representing a speckle at the equilibrium
tate. One can compare the curve for the scintillation in-
ex that is shown in Fig. 3 with the well known behavior
f the scintillation index of an optical beam propagating
hrough a turbulent medium. It is known that under such
onditions the scintillation index reaches a maximum and
hen decreases to an equilibrium value of 1 [37]. The rate
t which the peak is reached is much faster than the rate
t which it then decreases until it reaches the equilibrium
alue. In that case the scales that govern these rates are
iven in terms of the scales provided by the properties of
he turbulent medium. It is therefore quite surprising
hat a similar difference in scales is observed in the
resent scenario where no turbulent medium is present.
An attempt to describe the evolution of the scintillation

ndex by a differential equation does not make sense, be-
ause one cannot solve all the free parameters required in
hat function from knowledge of the initial conditions. It
s amusing that the shape of the evolution of the scintil-
ation index is a mirror symmetric Gaussian function
round the minimum value when plotted as a function of
he logarithmic propagation distance.

. SUMMARY
he evolution of the scintillation index and the vortex
ensity is investigated after the least-squares phase was
emoved from an optical speckle field. The phase removal
rocess serves to destroy the equilibrium in the speckle
eld. The investigation reveals that the scintillation index
rops to a minimum and rises again to an equilibrium
alue of 1 as expected for a speckle field. The vortex den-
ity also initially drops to a lower value and then rises
gain to an equilibrium value that is lower than the ini-
ial value. In both cases the rate of increase is much
lower than the initial rate at which these quantities de-
reased. Different functions are used to fit these curves,
nd a second order differential equation is proposed for
he evolution of the vortex density.
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