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Abstract—This paper presents a monocular vision based tech-
nique for extracting orientation information from a human torso
for use in a robotic human-follower. Typical approaches to human
following use an estimate of only human position for navigation,
but we argue that a better navigation scheme should include
directional information. We propose that the pose of a walking
person’s upper body typically indicates their intended travelling
direction, and show that a simple planar fit to the back of
a human torso contains sufficient information for the purpose
of inferring orientation. We obtain this planar fit using only
2D image points. Results showing the efficacy of this approach
are presented, together with those of a simple human-following
controller incorporating the pose estimate.

I. INTRODUCTION

The ability of a mobile robot to track and follow a human
is required in a wide variety of applications, particularly in
service robotics. Human-following robots not only need to
detect, recognise and track their targets in real time but also
navigate towards them in an intelligent manner.

These robots are typically equipped with a diverse and
varying combination of sensors for locating and recognising
targets. Light detection and ranging (LiDAR) [1], for example,
provides accurate distance measurements but may lead to
potential ambiguity in target recognition. Electronic tethering
techniques that use radio frequency identification (RFID) [2]
are effective but require that the human followed wear a
tracking device and often need a secondary sensor for greater
measurement accuracy. As a result many systems employ
vision, selected for its ability to provide abundant informa-
tion about the robot’s environment, in a passive manner, at
relatively high speeds and low cost.

Early examples of vision based human-following robots
made use of simple template matching schemes [3] or colour
based blobs with contour models [4] for target detection and
recognition. The latter approach uses stereo-vision in order to
obtain an absolute scale representation of the human’s position.
In the single camera case, however, absolute scale is typically
not available and alternative distance measurements, such as
the size of detected blobs [5], are incorporated for navigation.
These approaches and other early ones suffer potential target
ambiguity in the presence of multiple persons or cluttered en-
vironments, mainly due to detection and recognition schemes
that are not particularly robust. More recently, feature based

approaches have been applied to the problem with impressive
results [6].

The above-mentioned approaches, and many others, nor-
mally use merely some form of position measurement for
navigation. More intelligent navigation schemes could be
implemented, however, if some knowledge of the intended mo-
tion of the human target was incorporated. In fact, results of a
preliminary study on the social acceptance of human-following
approaches [1] indicate that the following of direction is more
acceptable to people than point-to-point path following.

A human-following system that includes orientation infor-
mation requires that some measure of human body pose be
made. Unsurprisingly, human pose estimation is a popular
topic within the computer vision research community and
a large body of work on the subject is available. Common
approaches fit complex articulated body models to image
scenes [7]. While these and similar techniques are effective and
produce commendable results, our focus is on simplicity and
speed. Moreover, these techniques typically produce a large
amount of information (e.g. individual limb positioning) where
a single orientation angle would be sufficient for our purpose
of controlling a wheeled robot.

In this paper we present a means of extracting human
orientation for use in a human-following robot. A feature
based matching scheme is chosen to detect and recognise
the human target, in an effort to minimise the likelihood of
tracking ambiguity, and an approach to extracting human pose
information from a single image is explained. A measure of
certainty in the pose estimates is introduced and we present
results showing the efficacy of our approach. Results of
human-following using a simple controller that incorporates
our estimate are presented and discussed.

II. OUR METHOD

Our system operates under the assumption that the pose of
a walking person’s upper body typically indicates travelling
direction. Although humans are capable of walking in direc-
tions opposed to that indicated by their torsos, this is certainly
not the norm and, intuitively, the assumption seems valid. It
is justified further by the work of [8].

The authors of [8] attempted to simulate human walking on
level ground using a three-dimensional, neuromusculoskeletal



model of the body together with dynamic optimisation theory.
They compared their model with data captured from a variety
of sources in human walking trials. This data showed that the
deviation in back angle of a walking person typically remains
within 10◦. As we are interested only in the approximate
facing direction of the human, a complex model of body shape
and limb position is not required. A simple planar fit to the
back of the torso should contain sufficient information for us
to infer travelling direction.

The proposed method allows a planar fit to a torso to
be obtained from a single image obtained by a perspective
camera mounted on a robot. Note that the system requires
that relatively salient clothing be worn by the human because
the detection is feature based. Initially, matches relating the
robot’s current view of the human to some desired view are
obtained. Here the desired view would typically be a fronto-
parallel image of the back of the human’s torso. A planar
homography mapping the features in the current view to the
desired view is then estimated, from which pose measurements
are extracted.

Although features detected on the back of a human torso
are usually not strictly coplanar, a sufficiently robust method
of homography estimation is able to discard errors induced by
this assumption. In addition, a robust measure of homography
is also required to reduce errors caused by the deformable
nature of clothing, which may ripple and warp during motion.

A. Detection

Point correspondences between the current and desired
frame are obtained from the speeded-up robust features
(SURF) of Bay et al. [9]. The SURF descriptor performs
similarly to the widely used scale invariant feature transform
(SIFT) [10], but uses first-order Haar wavelet responses instead
of gradients. SURF also makes use of integral images for filter
convolutions, thereby greatly improving processing speed. We
selected this approach because of its high speed as well as the
good detector repeatability over varying blur, scale and view-
point angle. It is possible to further reduce the computation
time by limiting the scale range over which interest points are
detected.

Matching features between the current frame and desired
view is accomplished by conducting a nearest neighbour
search on the SURF descriptors calculated at the interest
points. With this method we obtain good matching results for
a wide variety of torso motions, despite the fact that SURF
was not specifically designed for affine invariance.

B. Homography Estimation

Our goal is to find a means of fitting a plane through
keypoints detected on the back of a human’s torso. This is
a relatively simple task if the 3D locations of features on the
torso are known, but the only information available when a
single perspective camera is used is the projected 2D locations
of detected features on the image plane.

Suppose x1 and x2 represent the projections in two images
of some point on a plane, in homogeneous coordinates. These

projections can be related by means of a 3 × 3 homography
matrix H, as follows:

x1 = H x2. (1)

Note that this relationship assumes an ideal pinhole camera
model and therefore requires images to first be dewarped with
respect to lens distortion.

If we were to estimate the homography between two views
of a human torso, we would effectively be measuring the
rotation and translation between two planar approximations
of the torso.

The normalised direct linear transform (DLT) [11] can be
used to find the homography from at least four available point
correspondences because every correspondence provides two
equations and, since x1 and x2 are specified in homogeneous
coordinates, H is specifiable up to scale.

The problem is likely to be over-specified as typically more
than four correspondences are found by the SURF matching
scheme. Many correct matches would be useful in solving for
the homography in a least-squares sense but, unfortunately,
incorrect matches (outliers) can have a drastic negative effect
on such a solution. We therefore opt for an iterative RANSAC
based approach [12], in an effort to find a homography that
minimises a re-projection error.

In our context RANSAC, short for random sample consen-
sus, operates as follows. From the set of all available point
correspondences a random subset of four is drawn and a model
homography is determined using DLT. This homography is
used with a re-projection error to determine which of the
remaining points agree with the model, thereby forming a
consensus set. In our case the re-projection error measures the
error between the original coordinates of matched points and
those projected in both directions under the model homogra-
phy. If the consensus set is large enough the final homography
is calculated from it as a least-squares solution. If not, a new
subset is chosen and the process is repeated until a large
enough consensus set is obtained or a specified number of
iterations is reached, in which case the final homography is
calculated from the largest consensus set found.

This robust RANSAC based homography estimation is ex-
tremely effective at obtaining homographies in the presence of
a large number of outliers. This property is especially desirable
as many outliers could be present in our system due to the
deformable nature of clothing, the occasional mismatched
feature and the slight curvature (or deviation from planarity)
of a human torso.

Also, and importantly, the use of RANSAC based homog-
raphy estimation allows for a measure of certainty to be
obtained. We define this certainty measure as the ratio of
inliers used for homography estimation to the total number of
detectable features on a target (the number of features marked
by the SURF algorithm on the template image). This ratio
implies that as the size of the consensus set increases so does
the trust in the estimated homography.



(a) reference template (b) approx. 30◦ yaw (c) rippled shirt (d) approx. −45◦ yaw

(e) yaw and roll (f) forward tilt (g) backward tilt (h) roll, partial occlusion

(i) near, partial occlusion (j) distant, blurred (k) outdoors (near) (l) outdoors (far)

Fig. 1: Results of the single-view homography based pose measurement system on a range of test cases. The template image is
shown in (a). The superimposed green quadrilaterals in (b)–(l) show the estimated planar approximations from which position
and orientation, relative to the template, are extracted.

C. Homography Decomposition

Once the homography has been determined the various pose
parameters, mapping the current camera coordinate system
to the desired (template) camera coordinate system, can be
retrieved from the decomposition

H = K
(
R + t nT

)
K−1 (2)

[13], where K is the intrinsic camera calibration matrix, R
a rotation matrix, t the translation of the camera and n a
vector normal to the target surface. There are eight degrees of
freedom: three in the rotation and five in the surface normal
and camera translation (which is extractable up to scale).

We use the algorithm of Faugeras and Lustman [13] to
calculate the pose parameters in (2) from a given homography.
Camera effects are removed from H and the singular value
decomposition (SVD) of the result is obtained, as

Ĥ = K−1 H K = U Σ VT . (3)

Here K indicates the camera calibration matrix, obtainable in
an offline calibration procedure.

The diagonal matrix Σ, containing singular values of Ĥ, can
be decomposed into the various pose parameters with relative
ease, such that

Σ = R̃ + t̃ ñT . (4)

This decomposition is rather lengthy, however, and the reader
is referred to [13] for details. The algorithm can provide
up to eight different solutions but, fortunately, not all are
physically possible. The solution set is immediately reduced to
four by including the constraint that both image frames must
be located on the same side of the target object or, in other
words, that the object viewed cannot be transparent. A second
constraint, enforcing that visible points must be in front of
both cameras, reduces the set to two solutions. Finally a single
solution is obtained by incorporating assumed knowledge of
the surface normal in the desired view.

The final decomposition elements of H are then calculated
according to

R = U R̃ VT , t = U t̃ , n = V ñ. (5)

The translation vector is returned up to scale, because a single
camera is used. However, for the purposes of control, this
ambiguity is not a problem as long as the translation compo-
nents remain monotonic. The controller will minimise error in
translation by generating proportional motion commands so,
in a sense, the unknown scale is incorporated in the controller
gains.

Only three parameters in R, t and n are of particular interest
for wheeled platform control: the target yaw and the 2D trans-
lation to target. The ability to extract the three parameters of
interest independently of the unnecessary degrees of freedom



is important though, because it implies that a certain amount
of invariance to uneven terrain is present.

Target yaw or orientation is extracted from the rotation ma-
trix and represents a rotation about a vertical axis in the camera
coordinate frame. The translations of interest are the shift of
the horizontal camera frame axis, tx and the optical axis shift,
tz . Note that these parameters are measured relative to some
template image or reference frame. For our applications we
assume that the reference frame is an approximately fronto-
parallel image of the target human’s back.

III. RESULTS

This section aims to show that the homography based pose
estimate provides translations and a measure of orientation
that is useful for the purposes of wheeled robot control.
While it is difficult to provide insight into the accuracy of
the measurement, as no ground truth is available, we aim to
show that the homography based plane fit provides a believable
estimate of a human torso’s facing direction.

A. Pose Estimation

Fig. 1 confirms that the pose estimate is conceptually
correct, through examples of planes fit through a human
torso using the homography pose estimate. These examples
show that a plane fit to the torso appears to capture the
facing direction. The reference image of the shirt worn during
experiments is shown in Fig. 1(a). All pose estimates obtained
are measured relative to this view and the goal of a human-
following task would be to generate platform control signals
that recreate this view. The superimposed green quadrilateral
in (b)–(l) shows the estimated planar approximation to the
back of the torso.

As the figure shows, the system is robust when subjected
to some extreme human motions and deforming clothing.
Valid pose measurements are also obtained when the torso
undergoes partial occlusions and over large scale changes. The
images obtained outdoors are of poor quality and affected by
glare, but illustrate that the system still functions effectively
in challenging environmental conditions.

These images show that the pose estimate contains infor-
mation regarding a person’s position and orientation, but do
not provide any information as to the accuracy of an estimate.
As discussed earlier, only three pose parameters are of interest
for the motion control of a wheeled platform: target yaw, the
shift of the horizontal camera frame axis, tx and the optical
axis shift, tz . Results of experiments conducted to test the
reliability of these measurements are now presented.

Fig. 2 shows the relationship between actual variations of
horizontal target motions and those obtained by the homog-
raphy based pose estimate. Image sequences of a stationary
human target in a fronto-parallel configuration were captured
at three positions approximately 2 m from a camera. Note
that the homography based pose estimate does not continually
provide the same estimate when viewing a target in a static
scene, as noise in images causes changes in the features
used for pose estimation. This variation in measurement is
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Fig. 2: Mean (dots) and standard deviation (bars) of the mea-
sured horizontal translations by our homography based pose
estimation, plotted against ground truth. Average certainty
measures are also shown (the annotations above the error bars).
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Fig. 3: Mean and standard deviation, and average certainties,
of measured optical axis translations against ground truth.

quantified by the standard deviation error bars displayed in
the figure, with a line fit through the mean of estimates. The
average certainty measures for each position are also noted in
the figure.

Fig. 3 shows the relationship between actual variations
of target motions along the camera optical axis and those
obtained by the homography based pose estimate. As before,
image sequences of a stationary human target in a fronto-
parallel configuration were captured at incrementing 0.5 m
intervals. The variation in measurement, quantified by the
standard deviation error bars displayed in the figure, shows
that the estimate becomes less reliable as the target moves
away from the camera. It also confirms the usefulness of our
certainty measure for each position.

Practical experimentation shows that the certainty measure
rarely exceeds 0.6, with a measure greater than 0.1 cor-
responding to a reliable parameter estimate. Note that the
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Fig. 4: Mean and standard deviation, and average certainties,
of measured target yaw against ground truth.

estimated translations are not actually equivalent to the actual
translations used for test purposes, but are linearly related by
means of a scale and shift. This is unimportant for the purposes
of controlling a platform using these parameters, where bias
in controller set-point is added to account for any shift and,
as mentioned before, scales are incorporated into controller
gains. In fact, suitable platform control can be obtained as
long as the estimate is monotonic. This is clearly the case for
the given translations, indicating that the estimates can be used
for the purposes of control.

Fig. 4 shows the relationship between actual variations
of target yaw and those obtained by the homography based
pose estimate. These estimates were obtained by performing
pose estimation on image sequences of a human target with
varied orientation. Orientation was controlled by marking 20◦

intervals directly in front of a camera, and capturing image
sequences of a human target facing in each these directions.
The variation in measurement, quantified by the standard
deviation error bars displayed in the figure, shows that the
estimate becomes less reliable as the target rotates away from
the camera. At ±60◦, near the measured limits of the feature
based recognition, the estimate becomes untrustworthy. Again,
the average certainty measures confirm this.

Once more, it is important to note that while the yaw
estimates are not exactly that of the input system, this is
unimportant for the purposes of control. As long as the
measurements are monotonic, a suitable controller will still
result in corrective motions that cause the magnitude of target
yaw to decrease. This results in target pose estimates that are
more trustworthy, as indicated by the certainty measures in
Fig. 4, which in turn allows for more accurate orientation
control.

Figs. 5 and 6 show the variation in target yaw, given pure
translations. Ideally, the estimate should be independent, but in
practice this is not achieved. Fortunately, this variation is not
significant and does not affect the estimate’s use in a control
system. Recall that the use of this estimate of human pose
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Fig. 5: Effect of actual horizontal target translations on target
yaw estimates. Average certainty measures are also shown.
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Fig. 6: Effect of actual optical axis target translations on target
yaw estimates.

is still based on the assumption that a human’s upper body
represents a good measure of their travelling direction. The
work of [8] reiterates this, with the finding that a human torso
deviates within approximately 10◦ during a walking task. This
finding implies that the non-ideal variation of target orientation
given translations typically falls within the estimate noise floor,
and is thus not overly significant.

B. Human Following

We now show that the pose information extracted is of use,
by briefly presenting results of a simple controller used for
human-following. The controller implemented aims to min-
imise errors in the relative target orientation and translations
to the reference frame. This controller behaviour essentially
results in platform motion commands that attempt to move the
camera in such a way as to recreate the reference or template
image view, against which all measurements are made.

The results presented here were captured using the odometry
measurements of a Pioneer P3-AT test platform. Although
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Fig. 8: Path of a robot following a human. As no ground truth
for human motion is available, an attempt is made to obtain
this using the odometry of a robot driven along the same path
prior to the human-following task.

odometry is subject to drift, it is still reasonably accurate over
short distances and provides a good idea of the platform’s
motion.

Fig. 7 shows the controller behaviour when responding to
an offset straight line, with differing orientation to that of the
platform. It shows that the controller causes the platform to
move in such a way as to always be behind the human target,
allowing for improved human-following trajectories.

Fig. 8 shows results of a human-following task incorporat-
ing the orientation and translation estimates presented here.
The results show that the information extracted through the
homography based pose estimate is indeed useful, as the robot
is able to track and follow a human target using a controller
incorporating this information.

IV. CONCLUSIONS

We have presented an approach to robotic human-following
that makes use of feature matching for detecting and recog-
nising a human target from a single-camera view, and then
extracts pose information. Our approach approximated a planar

fit to the target using a robust measure of a homography
mapping between 2D image coordinates. The results of this
technique were presented and shown to incorporate sufficient
information for the purposes of platform motion control.
Moreover, our approach allowed for a certainty measure to be
defined for an estimated pose which may be extremely useful
in a control situation.

A simple controller that illustrates the benefit of a human
pose measurement that includes basic orientation informa-
tion was implemented to confirm the validity of the esti-
mate. Though this controller may not be optimal for human-
following, it showed that the information extracted through the
homography based pose measurement was useful, and could
be applied to a more complete human-following system.

Future work may involve the design of navigation schemes
that optimally follow a human target, given the constraints
of the feature based pose estimate, and the incorporation of
additional target recognition strategies for added redundancy.
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