
  

Amplitude damping of Laguerre-Gaussian 
modes 

Angela Dudley,
1,2

 Michael Nock,
2
 Thomas Konrad,

2
 Filippus S. Roux,

1
 and  

Andrew Forbes
1,2,*

 
1 CSIR National Laser Centre, PO Box 395, Pretoria 0001, South Africa 

2 School of Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa 
*aforbes1@csir.co.za 

Abstract: We present an amplitude damping channel for Laguerre-
Gaussian modes. Our channel is tested experimentally for a Laguerre-
Gaussian mode, having an azimuthal index l = 1, illustrating that it decays 
to a Gaussian mode in good agreement with the theoretical model for 
amplitude damping. Since we are able to characterize the action of such a 
channel on orbital angular momentum states, we propose using it to 
investigate the dynamics of entanglement. 
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1. Introduction 

Amplitude damping is a quantum operation which describes the energy dissipation from an 
excited system, such as an atom or a spin system, to an environment [1]. Under the action of 

an amplitude damping channel, the ground state, |0, is left invariant, but the excited state, |1, 
will either remain invariant or it will decay to the ground state, by losing a quantum of energy 
to the environment. The probability that the excited state remains unchanged or that it decays 
to the ground state is given by 1-p and p, respectively, illustrating that the amplitude of the 
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excited state has been „damped‟. This quantum operation is a fundamental tool in classifying 
the behaviour of many quantum systems that incur the loss of energy, from describing the 
evolution of an atom that spontaneously emits a photon to how the state of a photon evolves 
in an optical system due to scattering and attenuation. The amplitude damping channel is an 
elementary quantum operation which is used to model quantum noise in understanding the 
dynamics of open quantum systems [1]. 

For the case of a two-level system, the state change under the action of amplitude 
damping is defined by the following transformation 

 * *

0 0 1 1 ,M M M M        (1) 

where M0 and M1 are the Krauss operators defined as 

 0

1 0

0 1
M

p

 
    

 (2) 

and 

 1

1 0
,

0
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p

 
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 
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The initial state of the two-level system is written as 

 0 1 ,     (4) 

where |0 and |1 represent the ground state and excited state of the system, respectively and α 
and β denote complex amplitudes with |α|2 + |β|2 = 1. 

By making use of the Kraus operators, M0 and M1, and coupling the system appropriately 

to an environment with two orthogonal states |K = 0E and |K = 1E, the unitary time evolution 
operator, USE, of the system, S, and the environment, E, produces the following 
transformations 

 0 0 0 0 ,
SEU

S E S E
K K    (5) 

 1 0 0 1 1 1 0 ,
SEU

S E S E S E
K p K p K       (6) 

where K represents an environment observable, such as a path along which a photon 
propagates. 

Equation (5) illustrates that the ground state of the system remains invariant and an 
excitation of the system is not absorbed by the environment and consequently the 
environment too remains in the ground state. In the transformation given in Eq. (6), an 
excitation of the system transforms into an excitation shared in a superposition between the 
system and the environment. The excitation of the system either decays to the ground state or 
it remains as an excitation with probabilities p and 1-p, respectively, resulting in the 
environment either acquiring an excitation or remaining in the ground state with probabilities 
p and 1-p, respectively. 

Combining Eqs. (4), (5) and (6) and adapting them for the case of a two-level OAM 
system, the overall transformation for such a channel is described as 

  0 1 0 1 1 0 ,
A A A A B

l l l p l p l              (7) 

|l = 0 and |l = 1 are state vectors representing a single photon in the LG0 mode (ground state) 
and LG1 mode (excited state), respectively, and the upper indices A and B refer to the two 
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states of the environment, the ground and excited states, respectively. Later it will be 
illustrated that the two environments are represented as two optical paths. Discarding the 
environment leaves the system in a statistical mixture of being excited with probability p or 
de-excited with probability 1-p, which is the characteristic trait of amplitude damping. 

It is now well known that the Laguerre-Gaussian (LGlp) laser modes carry OAM of lħ per 
photon [2,3]. Since the OAM is determined only by the azimuthal phase dependence, 
exp(ilφ), of these modes, we neglect the radial index p for the rest of the paper. The 
generation of LGl beams (a variety of which are depicted in Fig. 1(a) - 1(d)) has advanced 
from cylindrical lens mode converters [2] to spiral phase plates (SPP) [4] and the most 
frequently used „fork‟ holograms [5]. Recently these „fork‟ holograms have been realized 
with the use of spatial light modulators (SLM) [6]. Since the discovery of light beams 
carrying OAM many new research areas have emerged in the field of optical angular 
momentum, from transferring OAM to matter in optical tweezers [7] to investigating the 
conservation and entanglement of OAM in parametric down conversion [8]. In investigating 
the dynamics of entangled OAM states one requires components that manipulate and measure 
OAM states. The „fork‟ holograms that can be used to generate OAM in the various 
diffraction orders [5] were also used by Mair et al to sort and infer OAM states [8]. 

But how to implement amplitude damping for the OAM states of light? Recently it has 
been shown that LGl beams of odd and even orders of l could be sorted in a Mach-Zehnder 
interferometer incorporating Dove prisms in each arm [9]. In this paper we show that by 
adapting this device it may be used for a new application: an amplitude damping channel for 
the azimuthal modes of LGl beams. 

Due to the fact that photons with OAM represent multiple-level systems, storing and 
processing information in OAM states of photons promise high storage and parallel 
computation capacity per photon. However, many tasks in quantum information processing 
depend upon entanglement, resulting in the need to investigate the evolution of entanglement 
due to interactions with an environment [10]. For example, examining how the entanglement 
of OAM states decoheres through a turbulent medium has already been pursued [11], but 
there is value in outlining how to execute “text-book” quantum channels for the OAM states 
of light, in part due to the ability to analytically calculate the expected concurrence of the 
system after the channel. Recently a controlled-not gate [12] has been realized through the 
use of suitable optical elements, and here we show for the first time how an amplitude 
damping channel may be implement, using known optical systems. 

2. Concept of the channel 

The diagrammatic setup for the amplitude damping channel for LGl modes, which is depicted 
in Fig. 1(e), is based on a Mach-Zehnder interferometer with a Dove prism in each arm. Such 
an optical system has already been shown to be useful for the sorting of modes [9] as well as 
determining the intrinsic versus extrinsic nature of OAM in arbitrary beams [13]. Here we 
outline how this versatile device may also be used for a new application (amplitude damping) 
as yet unreported in the literature. For the benefit of the reader, we outline the principle of the 
device and highlight its use as an amplitude damping channel. 

#133212 - $15.00 USD Received 10 Aug 2010; revised 4 Oct 2010; accepted 5 Oct 2010; published 13 Oct 2010
(C) 2010 OSA 25 October 2010 / Vol. 18,  No. 22 / OPTICS EXPRESS  22791



  

 

Fig. 1. (a) – (d) Intensity profiles of various LGl modes for (a) l = 0, (b) l = 1, (c) l = 2, and (d) 
l = 3. (e) Schematic of the amplitude damping channel (BS: beam-splitter, M: mirror, DP: 
Dove prism, PM: phase mask). 

A Mach-Zehnder interferometer can be aligned appropriately so that constructive 
interference will occur in either output paths A or B, where A and B represent the two states of 
the environment, the ground and excited states, respectively. By placing a Dove prism, which 
flips the transverse cross section of a transmitted beam [14], in each arm of the 
interferometer, a relative phase shift between the two arms is introduced. More specifically, 

this relative phase shift, Δ, is proportional to both the helicity, l, of the incoming LGl beam 

and the relative angle, θ, between the two Dove prisms: Δ = 2lθ. In varying the relative 
angle, θ, between the two Dove prisms, the LGl beam will either exit solely in path A or path 
B or in a weighted superposition of both paths A and B. One is able to control how much of 
the initial LGl mode will exit into the two environments, A (the ground state of the 
environment) and B (the excited state of the environment). A phase mask, which decreases 
the azimuthal mode index by 1, is placed in path B resulting in the „excited‟ LGl mode 
decaying to an „unexcited‟ LGl-1 mode, thus performing the action of amplitude damping. 

In following the LGl mode through arms A1 and A2 of the interferometer to output path A, 
the additional phase picked up by the beam from each of the components is given by 

 
1 1

1 1 2

2

2 2
2A A

BS M DP

BS

l t d
 

   
 

       (8) 

and 

 
2 2

2 2

1

2 2
,A A

M BS

BS

t d
 

  
 

      (9) 

respectively. d1 and d2 are the path lengths of the two arms, A1 and A2, respectively and t is 
the optical path length of the beam-splitter. The phase difference in output path A is 
consequently given by 

 2 ,A l    (10) 

since the interferometer is constructed such that the path lengths of the two arms are equal. 
Similarly, it can be shown that the phase difference in output path B is 

 2 ,B l      (11) 
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where the additional phase shift of π is due to the reflection in the first beam-splitter. The 
amplitude of the field for a LGl mode emerging after the second beam-splitter in path A and 
path B is described as 

  ( 2 )0

0 cos
2

A i l l il il ilU
U e e U e e l         (12) 

and 

  ( 2 )0

0 sin ,
2

B i l l il il ilU
U e e U e e i l         (13) 

respectively. U denotes the amplitude of the field and the negative sign in Eq. (13) for the 
field emerging in path B from arm A2 is due to an additional phase shift of π, evident in Eq. 
(11). 

In the case of propagating a LG1 mode through the interferometer there is a non-vanishing 

relative phase difference (Δ = 2θ) between the two arms of the interferometer, leading to 
partially constructive and destructive interference of the LG1 mode in both paths A and B 

 1 cos 1 sin 1 ,
A A B

l l l       (14) 

As we are only interested in the intensity of the field, as this gives the probability of the 
single photon state, we have neglected the phase components and will do so for the rest of the 
paper. The intensity of the LG1 mode exiting in the two paths, A and B, is proportional to 
cos2θ and sin2θ, respectively and consequently the probabilities of the LG1 mode existing in 
the two paths follow the same trend. The incoming LG1 mode exits in a superposition of paths 
A and B with probabilities cos2θ and sin2θ, respectively and a phase mask, in path B, 
decreases the azimuthal mode index, l, by 1, converting the „exited‟ LG1 mode to an 
„unexcited‟ Gaussian mode 

 1 cos 1 sin 0 .
A A B

l l l       (15) 

When a LG0 mode enters the device there is no azimuthal phase dependence in such a 
mode, the field is unaffected by the Dove prisms and no phase difference occurs between the 
two arms; the result is that the Gaussian mode exits in path A. The transformation of the 
Gaussian mode through the interferometer is denoted as 

 0 0 .
A A

l l    (16) 

Combining Eqs. (15) and (16), the general equation for the amplitude damping of OAM, 

given in Eq. (7), is obtained, where 1 cosp   and sinp   

  0 1 0 cos 1 sin 0 .
A A A A B

l l l l l               (17) 

From the definition of amplitude damping which states that the ground state will remain 
invariant while the excited state decays to the ground state with a probability p, it is sufficient 
to experimentally investigate each case individually in order to verify the action of our 
amplitude damping channel. 

3. Experimental methodology and results 

A HeNe laser (λ = 632.8 nm) was directed onto a phase-only SLM (HoloEye PLUTO VIS 
SLM with 1920 × 1080 pixels of pitch 8 μm and calibrated for a 2π phase shift at λ = 632.8 
nm). The mode of the field was prepared before it entered the channel by programming an 
appropriate phase pattern. The two exiting paths of the interferometer were monitored for 
various angles, θ, between the two Dove prisms using a CCD camera (Spiricon LW130). 
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To confirm the correct operation of the interferometer, we first repeated the sorting 
experiment of Ref [9]. When the relative angle between the Dove prisms was set to θ = π/2, 
the interferometer sorted the incoming field into even LGl modes (path A) and odd LGl modes 
(path B). We can confirm this result for incoming LGl modes having indices l = 0 to 4, as 
shown in Fig. 2(a). In the special case that l = 0 (Gaussian mode) the interferometer only 
produces an output in path A (Fig. 2(b)). This experiment is instructive when considering the 
errors in the system due to imperfect alignment and environmental fluctuations. The variance 
in the data set of Fig. 2(b) for path A (where we should expect 100% transmission) and for 
path B (where we should expect no transmission) is given as 0.88 ± 0.06 and 0.15 ± 0.08, 
respectively. In performing the measurements depicted in Fig. 3, for each occurrence for 
which the Dove prism was rotated, constructive and destructive interference was first 
achieved in paths A and B, respectively, for the case of an incoming Gaussian beam. This 
ensured that the interferometer was correctly aligned before the LG1 mode entered the 
channel. 

 

Fig. 2. (a) The interferometer „sorting‟ various LGl modes. The even LGl modes (l = 0, 2 and 
4) exit in path A and the odd LGl modes exit in path B as expected [9]. (b) Plot of the power of 
the beam in path A (light blue points) and path B (light green points) for various values of θ. 
The dark blue line (dark green line) is the mean of all the measured powers in path A (path B). 

To test the amplitude damping channel concept, the incoming mode was set to LG1 and 
the angle between the two Dove prisms varied from 0° through to 360°. The results are shown 
graphically in Fig. 3. In Fig. 3(a) it is evident that when the relative angle between the two 
Dove prisms is an even multiple of 90°, maximum transmission of the LG1 mode occurs, 
which is in agreement with the „LGl sorting‟ nature of this device. At an angle of an even 
multiple of 90°, the reverse occurs in path B (shown in Fig. 3(b)), where minimum 
transmission of the LG1 mode occurs. When the relative angle between the two Dove prisms 
is an odd multiple of 90°, minimum transmission of the LG1 mode occurs in path A and 
maximum transmission in path B. For angles varying between 0° and 90° (and multiples of 
these angles) the LG1 mode exits in both paths A and B. As the angle increases from 0° to 90° 
the transmission of the LG1 mode in path A decreases, but consequently increases in path B. 
In our theoretical model, the probability that the LG1 mode exits in paths A and B is given by 
cos2θ and sin2θ, respectively (depicted in Eq. (17)) and it is evident from Figs. 3(a) and 3(b) 
that our measured data are in very good agreement with the predicted model. The errors given 

#133212 - $15.00 USD Received 10 Aug 2010; revised 4 Oct 2010; accepted 5 Oct 2010; published 13 Oct 2010
(C) 2010 OSA 25 October 2010 / Vol. 18,  No. 22 / OPTICS EXPRESS  22794



  

in the measurements in Fig. 3 are the standard deviations of the measurements in Fig. 2(b), 
for paths A (0.06) and B (0.08). 

 

Fig. 3. Plot of the power of the beam in path A ((a); orange points) and path B ((b); grey points) 
for various values of θ. The measured results follow the theoretical curves: PA~cos2θ, ((a); red 
curve) and PB~sin2θ ((b), black curve). 

4. Conclusion 

We have outlined how the concept of “amplitude damping” in quantum systems may be 
implemented for the OAM states of light using a standard optical system comprising an 
interferometer with Dove prisms in both arms, and have verified this experimentally using the 
LG0 and LG1 laser modes. We have shown excellent agreement between theory and 
experiment, and believe this is the first time such a concept has been outlined in the literature. 
With this idea, one is able to mimic the well known quantum operation where an excitation 
(or in this case OAM) is lost to the environment, a key testing bed for the interaction of 
entangled states with an environment. The advantage of this particular concept – amplitude 
damping – is that the entanglement decay can be predicted analytically, while the concurrence 
of the entanglement may easily be measured both before and after the channel with standard 
state tomography techniques, thus allowing for a quantitative comparison of theory and 
experiment in the decoherence of entanglement due to interactions with a noisy environment. 
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