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ABSTRACT

An automated land cover change detection method is pro-
posed that uses coarse resolution hyper-temporal satellite time
series data. The study compared two different unsupervised
clustering approaches that operate on the short term Fourier
transform coefficients of subsequences of 8-day composite
MODerate-resolution Imaging Spectroradiometer (MODIS)
surface reflectance data that were extracted with a temporal
sliding window. The method uses a feature extraction process
that creates meaningful sequential time series that can be an-
alyzed and processed for change detection. The method was
evaluated on real and simulated land cover change examples
and obtained a change detection accuracy higher than 76% on
real land cover conversion and more than 70% on simulated
land cover conversion.

Index Terms— Change detection, clustering, satellite,
time series.

1. INTRODUCTION

The transformation of natural vegetation by practices such
as deforestation, agricultural expansion and urbanization, has
significant impacts on hydrology, ecosystems and climate [1].
Coarse resolution satellite data provide the only regional, spa-
tial, long-term and high temporal measurements for monitor-
ing the earth’s surface. Automated land cover change detec-
tion at regional or global scales, using hyper-temporal, coarse
resolution satellite data has been a highly desired but elusive
goal of environmental remote sensing [2, 3].

A time series is a sequence of data points measured at suc-
cessive time intervals. Time series analysis comprises meth-
ods that attempt to understand the underlying force structur-
ing the data, identifying patterns, detecting changes and clus-
tering. Subsequence clustering is performed on streaming
time series that are extracted with a sliding window from an
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individual time series [4]. A subsequencexp(t) for a given
time seriesx(t) of lengthN , is given as

xp(t) =
[

x(tp) x(tp+1) . . . x(tp+Q)
]

, (1)

for 1 ≤ p ≤ N -Q+1, whereQ is the length of the subse-
quence. The sequential extraction of subsequences in (1) is
achieved by using a temporal sliding window that has a length
of Q and positionp that is incremented with a natural number
N to extract sequential subsequencesxp(t) from x(t). The
signal processing and data mining communities have made
wide use of the clustering of subsequence time series,xp(t),
that were extracted using a temporal sliding window. How-
ever, it has found very limited application on satellite time
series data.

Recently the data mining community’s attention was
brought to a fundamental limitation of clustering subse-
quences of a time series that were extracted with a sliding
window [4]. The sliding window causes clustering algorithms
to form sine wave cluster centers regardless of the data set,
and clearly makes it impossible to distinguish one dataset’s
clusters from another. This is due to the fact that each data
point within the sliding window contributes to the overall
shape of the cluster center as the window moves through
the time series [4]. This limitation was illustrated by using
data sets from various fields, i.e. stockmarket and a random
walk data sets. Keogh and Lin [4] demonstrated a tentative
solution that would not suffer from the afore-mentioned lim-
itation when the procedure was applied to a periodic data
set and the sliding window positionp was incremented by
the exact length of the periodic cycle. Since remote sensing
time series data has a very strong periodic component due to
seasonal vegetation dynamics, the extracted sequential time
series could potentially be processed to yield usable features.
These features could enable effective subsequence clustering
and potentially be used for change detection.

Land cover change in context is defined here as the as-
signment of subsequences that are extracted from a time se-
ries that transition from one cluster to a different clusterand



Fig. 1. SPOT2 image of 2 May 2000 of natural vegetation area in the Limpopo province (left) and a SPOT5 image of 10 May
2006 of new human settlement of same geographical area (right).

remains there for the rest of the time series.
The objective of this paper is to introduce the concept

of unsupervised land cover change detection algorithm that
operates on a temporal sliding window of MODIS time series
data that uses a feature extraction method that does not suffer
from the limitation shown by Keogh and Lin [4]. Two well-
known unsupervised clustering techniques were used within
a land cover change detection algorithm and were evalu-
ated specifically on new settlement development, both real
and simulated land cover change, using the 8-day composite
MODIS land surface reflectance data product.

The paper is organized as follows. Section 2 presents the
methodology used, while section 2.4 discusses the approach
to compensating for the impairment presented with extracting
subsequences from a sliding window [4]. Section 2.5 gives
a brief overview of the clustering algorithm used for the un-
supervised change detection and section 3 presents the results
for the automated change detection on real and simulated land
cover change. Section 4 presents the conclusions.

2. METHODOLOGY

2.1. Study Areas

The area of interest was the Limpopo province which is sit-
uated in the northern part of South Africa. The province is
still largely covered by natural vegetation used as grazingfor
cattle and wildlife. The development of settlements is one
of the most pervasive forms of land cover change in South
Africa. The area within the province was selected where set-
tlements and natural vegetation occur in close proximity to
ensure that the rainfall, soil type and local climate were sim-
ilar over both land cover types. The selected areas of interest
in the study area is composed of 433.75km2 of natural vege-

tation and 374.25km2 of human settlements.

2.2. MODIS time series data

The 500-meter MODIS MCD43A4 land surface reflectance
product was used as it provides nadir and bidirectional re-
flectance distribution function (BRDF) adjusted spectral
reflectance bands. This significantly reduces noise due to
anisotropic scattering effects of surfaces under different il-
lumination and observation conditions [5]. For each pixel
a time series was extracted for only the first two spectral
bands from the 8-day composite MODIS MCD43A4 data
set (tile H20V11) (year 2000–2008) as it was shown to have
considerable class separation when the features are analyzed
[6].

2.3. Data sets: Validation, Simulated and Real land cover
change

The unsupervised clustering methods’ generalization accu-
racy was assessed on a validation set. This validation set
is composed of time series that were extracted from the
MCD43A4 product. The time series were selected using
visual interpretation of SPOT2 images in the year 2000 and
SPOT5 images in the year 2006 to map areas of change and
no change in land cover type during the study period. The
total number of time series (pixels) available for each class is
given in Table 1.

Information on known land cover change is generally very
limited [7], thus the land cover change was also simulated.
Land cover change was simulated by concatenating a set of
time series from the natural vegetation class to another setof
time series from the settlement class and vice versa. As a
control, testing sets containing no land cover change were



Table 1. Number of pixels per land cover type.
Study Area Time Series Simulated Change

Data Set Time Series
Vegetation 1235 500
Settlement 997 500

also created by concatenating the same land cover type time
series to each other. Hence there were two testing data subsets
based on concatenating time series of different combination
of time series:

• subset 1: spliced two different land cover classes with
each other;

• subset 2: spliced two of the same land cover class with
each other.

These two subsets were used to produce a matching matrix
to test if the unsupervised methods can detect change reliably
in an automated fashion on subset 1, while not falsely detect-
ing change for subset 2. The number of simulated land cover
change time series available for the analysis process is also
given in Table 1.

2.4. Feature extraction - Subsequence Time Series

In this section a method is shown that will create usable fea-
tures from time seriesxp(t) extracted from MODIS data. The
fixed acquisition rate [8] of the MODIS product and the sea-
sonality of the vegetation in the study area makes for an an-
nual periodic signalx(t) that has a phase offset that is corre-
lated with rainfall seasonality and vegetation phenology.The
Fast Fourier Transform (FFT) ofxp(t) was computed, which
decomposes the time sequence’s values into components of
different frequencies with phase offsets. Because the time
seriesxp(t) is annually periodic, this would translate into
frequency components in the frequency spectrum that have
fixed positions. This can be viewed as a fixed location for
each of the features for the clustering algorithm in the fea-
ture space regardless of the sliding window position in time,
which overcomes the main disadvantage to a sliding window
[4]. Because of the seasonal attribute typically associated
with MODIS time series and the slow temporal variation rel-
ative to the acquisition interval, the first few FFT components
dominate the frequency spectrum.

Keogh and Lin [4] suggested that the sliding window po-
sition p should be shifted by a complete periodic cycle [4],
but by computing the magnitude of all the FFT components
removes the phase offset, which makes it possible to compen-
sate for both the restrictive positionp of the sliding window
and the rainfall seasonality. The featuresXp(f) for the clus-
tering method were extracted from the sliding windowxp(t)
by the methodology discussed above as

Xp(f) = | F(xp(t) ) |, (2)

whereF(·) is the FFT function. The mean and annual FFT
components from (2) were considered as it was shown in [6]
that considerable class separation can be achieved from these
components.

2.5. Unsupervised change detection

The clustering method was required to process subsequences
of time series data and detect land cover change as a func-
tion of time. Land cover change is declared when consecutive
subsequences that are extracted from one MODIS time series,
transitions from one cluster to another cluster and remainsin
the new assigned cluster for the rest of the time series. The
temporal sliding window was designed to operate on a sub-
sequence of the time series to extract information from two
spectral bands from the MODIS product. These features were
analyzed with two different clustering techniques: Ward and
K-means.

The Ward clustering algorithm was used as a agglomer-
ative hierarchical clustering method, that produces a nested
hierarchy of clusters of discrete objects according to some
kind of proximity matrix [9]. The Ward clustering method
was used because it provided the highest cophenetic correla-
tion coefficient when compared to minimum, maximum and
average link clustering [10]. TheK-means method creates an
unnested partitioning of the data points withK clusters.

3. EXPERIMENTAL RESULTS

3.1. Clustering accuracy - No change validation set

The clustering algorithms were tested on all theno change
time series in the validation set and, the experimental accura-
cies were reported in Table 2. Each entry in Table 2 gives the
average clustering accuracy calculated over 48 independent
experiments (standard deviation in parentheses) using cross
validation. TheK-means outperformed the Ward clustering
in overall clustering accuracy by 2.04% (Table 2). The more
significant result is the low standard deviation obtained from
theK-means algorithm.

Table 2. Classification accuracy of the validation set for the
clustering methods, with standard deviation in parenthesis.

Ward algorithm K-means
Vegetation 80.70% (14.29) 81.30% (3.65)
Settlement 77.47% (10.19) 81.17% (2.76)
Overall 79.20% 81.24%

3.2. Change detection - Simulated land cover change

In section 2.3 two testing data subsets were introduced which
produced four possible outcomes of the land cover change
detection analysis. Only thetrue positive and true negative
cases were reported, as the other two cases were simply the



Table 3. Matching matrix representing the land cover change
detection accuracy on the simulated data set.

Ward algorithm K-means
True positive 71.49% 70.52%
True negative 75.81% 75.20%

inverse. The outcome of the change detection simulations is
summarised in the matching matrix shown in Table 3. The
land cover change detection accuracy differs by less than 1%
between the two clustering algorithms (Table 3). TheK-
means was considered the better option, due to the lower stan-
dard deviation reported in the average clustering accuracyin
theno change time series (Table 2).

3.3. Change detection - Real land cover change

Figure 1 illustrates SPOT images of real land cover change
from natural vegetation (2 May 2000) to a new human settle-
ment (10 May 2006) in the Limpopo province. This shows a
new settlement had been established in the last six years. The
clustering algorithms were tested on all the known new settle-
ments developed on previously natural vegetated areas, which
amounted to 21 MODIS pixels in the Limpopo province (Ta-
ble 4). Even though the accuracy of 76.12% reported in Table
4 were exactly the same for all the unsupervised clustering
techniques, different areas were detected by different algo-
rithms.

4. CONCLUSIONS

In this paper, a method for unsupervised land cover change
detection incorporating a temporal sliding window, operat-
ing on MODIS time series data was demonstrated. The un-
supervised approaches reportedtrue positive measurements
of higher than 70.5% on all simulated land cover change us-
ing cross validation. The results for the detection of simu-
lated land cover change was compared to real mapped set-
tlement development and atrue positive accuracy of 76.12%
was achieved. The difference in change detection accuracy
between the real and simulated land cover change were still
acceptably close in these experiments, even though only a
limited number of real land conversion examples were avail-
able.

Since the MODIS time series has a very strong periodic
component due to seasonal vegetation growth, it provides the
remote sensing community with a special type of data which,
if processed correctly, is immune to the limitation pointedout
by Keogh and Lin [4]. This is mainly due to the extraction
process which produced a short-term FFT that fixed the fea-
tures’ positions, which allows the features to be analyzed and
permits the temporal sliding window to be moved at any time
increment. This should rekindle the remote sensing commu-
nity’s quest for automated change detection using time series

Table 4. Change detection accuracy on new settlement devel-
opment.

Ward algorithm K-means
76.12% 76.12%

as it allows them to use many different types of algorithms
and methodologies on sequential time series extracted from
satellite data.
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