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Abstract 

Eutrophication and cyanobacterial algal blooms present an increasing threat to the health of freshwater ecosystems and to humans 

who use these resources for drinking and recreation. Remote sensing is being used increasingly as a tool for monitoring these 

phenomena in inland and near-coastal waters. This study uses the Medium Resolution Imaging Spectrometer (MERIS) to view 

Zeekoevlei, a small hypertrophic freshwater lake situated on the Cape Flats in Cape Town, South Africa, dominated by 

Microcystis cyanobacteria. The lake’s small size, highly turbid water, and covariant water constituents present a challenging case 

for both algorithm development and atmospheric correction. The objectives of the study are to assess the optical properties of the 

lake, to evaluate various atmospheric correction procedures, and to compare the performance of empirical and semi-analytical 

algorithms in hypertrophic water. In situ water quality parameter and radiometric measurements were made simultaneous to 

MERIS overpasses. Upwelling radiance measurements at depth 0.66m were corrected for instrument self-shading and processed 

to the water-leaving reflectance using downwelling irradiance measurements and estimates of the vertical attenuation coefficient 

for upward radiance, Ku, generated from a simple bio-optical model estimating the total absorption, a(λ), and backscattering 

coefficients, bb(λ). The normalized water-leaving reflectance was used for assessing the accuracy of image-based Dark Object 

Subtraction and 6S Radiative Transfer Code atmospheric correction procedures applied to MERIS. Empirical algorithms for 

estimating chorophyll a (Chl a), Total Suspended Solids (TSS), Secchi Disk depth (SD) and absorption by CDOM (aCDOM) were 

derived from simultaneously collected in situ and MERIS measurements. The empirical algorithms gave high correlation 

coefficient values, although have a limited ability to separate between signals from covariant water constituents. The MERIS 

Neural Network algorithms utilized in the standard Level 2 Case 2 waters product and Eutrophic Lakes processor were also used 

to derive water constituent concentrations. However, these failed to produce reasonable comparisons with in situ measurements 

owing to the failure of atmospheric correction and divergence between the optical properties and ranges used to train the 

algorithms and those of Zeekoevlei. Maps produced using the empirical algorithms effectively show the spatial and temporal 

variability of the water quality parameters during April 2008. On the basis of the results it is argued that MERIS is the current 

optimal sensor for frequent change detection applications in inland waters. This study also demonstrates the considerable 

potential value for simple TOA algorithms for hypertrophic systems. It is recommended that regional algorithm development be 

prioritized in southern Africa and that remote sensing be integrated into future operational water quality monitoring systems. 
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1. Introduction 

Anthropogenic modification has severely deteriorated 

the quality of the world’s limited freshwater resources 

and the impact from eutrophication is likely to become 

even more severe in developing countries in this century 

(Brönmark & Hansson, 2002). There is evidence to 

suggest that eutrophic conditions lead to increasing 

dominance of cyanobacterial species of algae which 

may pose a serious threat to lake ecosystems, and even 

animals and humans, through the production of 

potentially lethal cyanotoxins (Downing et al., 2001, 

Falconer, 2001). Recent findings show that global 

climate change and higher temperatures are expected to 

worsen the shift to turbid-water, cyanobacteria-

dominated conditions in lakes (Mooij et al., 2007, see 

Johnk et al., 2008). In South Africa eutrophic conditions 

already exist in approximately one in every five major 

impoundments and in 18 out of 25 major river 

catchments (DWAF, 2003, de Villiers & Thiart, 2007). 

The cyanophyta Microcysitis aeruginosa which 

produces microcystin toxin is widespread in southern 

Africa and has been found responsible for numerous 

animal deaths (Scott, 1991, Oberholster et al., 2005). In 

order to increase knowledge of water quality, and the 

occurrence and extent of eutrophication and 

cyanobacterial blooms, satellite remote sensing is being 

used increasingly as a tool for monitoring these 

phenomena in inland and near-coastal waters. 

Commonly detected parameters include the 

concentrations of phytoplankton pigments chlorophyll a 

(Chl a) and phycocyanin (the accessory pigment present 

in cyanobacteria) (Simis et al., 2005, Kutser et al., 2006, 

Moses et al., 2009b); the concentrations of Total 

Suspended Solids (TSS) and Inorganic Suspended 

Solids (ISS) (Onderka & Pekarova, 2008); indicators of 

water clarity such as turbidity and Secchi disk depth 

(SD) (Giardino et al., 2001, Chen et al., 2007); and 

absorption by Coloured Dissolved Organic Matter 

(CDOM)(Kutser et al., 2005). The Medium Resolution 

Imaging Spectrometer (MERIS) onboard ESA’s Envisat 

is particularly well suited to these applications 

(Giardino et al., 2005, Odermatt et al., 2008, Moses et 

al., 2009a). In Full Resolution mode MERIS acquires 

images with a pixel width of approximately 260 by 300 

m every two to three days in 15 spectral bands ideally 

positioned for water, land and atmospheric correction 

applications. While MERIS is poorly suited to viewing 

lakes smaller than about 1 km
2
 which make up the great 

majority of the world’s 304 million estimated lakes, its 

resolution is probably sufficient to view the remaining 

estimated 57% of the total surface area of the world’s 

lakes (Downing et al., 2006). The high signal-to-noise 

ratio is designed for viewing water targets that have a 

very small signal relative to land. Furthermore, the free 

availability of MERIS data from ESA via CD and DVD 

format make it a viable option for use in the developing 

world where data cost and availability, and slow and 

intermittent internet connectivity, can be a considerable 

hindrance to remote sensing applications. This paper 

presents preliminary findings from MERIS for 

Zeekoevlei lake which is situated on the Cape Flats, 

Cape Town, South Africa. Zeekoevlei is an archetype of 

a severely degraded hypertrophic shallow turbid lake 

with near-permanent algal blooms dominated by 

cyanobacteria and is therefore well-suited for assessing 

remote sensing in these conditions (Harding, 1992). 

 

The empirical approach of remote sensing uses 

experimental data sets and statistical regression 

techniques to generate empirical algorithms relating the 

water-leaving reflectances or radiances at the sensor in 

specific spectral bands or band ratios/combinations to in 

situ water quality parameter measurements (e.g. Moses 

et al., 2009a). The simplicity of the empirical approach 

means that it is easy to implement (especially in 

instances where in situ data is regularly collected) and 

that the algorithms are generally robust. However, as 

with most algorithms they are limited to the constraints 

of the data set from which they are derived (and are thus 

not usually applicable across seasons or areas), and may 

be unable to separate non-unique signals in instances 

where water constituents are covariant. More complex 

semi-analytical approaches use a variety of inversion 

techniques, either as in-water or coupled water-

atmosphere algorithms (e.g. Odermatt et al., 2008). 

Semi-analytical algorithms typically retrieve IOPs such 

as the absorption coefficients of Coloured Dissolved 

Organic Matter (CDOM), detritus and phytoplankton, 

and the total and particulate backscattering coefficients 

(Lee et al., 2002). This approach maximises the 

information that can be gained from the remote sensing 

signal, allowing geophysical parameters, such as Chl a 

concentration, to be derived using known regional IOP 

parameterisations (e.g. Ciotti & Bricaud, 2006). There 

are also some examples of direct retrieval of Chl a and 

TSS using inversion procedures (e.g. Brando & Dekker, 

2003, Kutser, 2004). Semi-analytical algorithms are 

well suited to operational water quality monitoring 

systems because they are able to operate independently 

of concurrent in situ measurements. They are also 

potentially more powerful in their ability to separate the 

signal of different in-water constituents by solving for 

several parameters simultaneously. However their use 

of many, if not all of the spectral bands available, makes 

them very sensitive to errors in the atmospheric 

correction and some algorithms require arduous training 

or re-parameterisation using regional IOP 

measurements. In this paper, MERIS scenes and in situ 

hyperspectral radiometric reflectance with concurrent in 

situ measurements are used to derive and assess a 

variety of empirical and semi-analytical algorithms for 
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estimating parameters including Chl a, TSS, absorption 

by CDOM (aCDOM) and SD. The MERIS Inverse 

Radiative Transfer Model Neural Network (IRTM-NN) 

semi-analytical algorithm from the standard Level 2 

Product and Eutrophic Lakes processor (V. 1.0.2) in 

VISAT BEAM (V. 4.2) is tested and also used to 

estimate atmospheric properties. The advantages and 

constraints of using empirical versus semi-analytical 

algorithms in hypertrophic systems are considered using 

a comparison between algorithm estimates and in situ 

measurements.  

 

Atmospheric correction forms a vital component of any 

remote sensing study as the great majority of the signal 

detected at the sensor over water is from the 

atmosphere. Over turbid waters scattering from 

suspended matter in the near infrared bands mean than 

typical corrections based on black pixel assumptions fail 

(Vidot & Santer, 2005) and alternative atmospheric 

correction schemes using Radiative transfer models or 

other approaches are needed (e.g. Guanter et al., 2009, 

Shi & Wang, 2009). In this paper, the performance of 

image-based and Radiative Transfer Code (6S) 

corrections are evaluated using in situ reflectance and 

Aerosol Optical Thickness (AOT) measurements. The 

Improve Contrast between Ocean and Land processor 

(ICOL) processor (Santer & Zagolski, 2008)  for 

MERIS may be used to correct water pixels for the 

adjacency effect, which is known to be a significant 

source of error in the near-infrared bands of water 

adjacent to or near land (Giardino et al., 2007). 

However, the use of ICOL over small turbid lakes, such 

as Zeekoevlei, is problematic due to the inability of 

Version 1 of the processor to discriminate between land 

and water pixels, as described in this paper.. The aim of 

the paper is to provide an initial application and 

evaluation of procedures of water remote sensing in 

hypertrophic lake water. Within this aim there are three 

main objectives, namely to assess the lakes optical 

properties, to evaluate various atmospheric correction 

procedures over a very turbid water target, and to 

compare the performance of a variety of empirical and 

semi-analytical algorithms for estimating geophysical 

parameters. The study also contributes towards 

increasing understanding of the temporal and spatial 

dynamics of cyanobacteria-dominant blooms in 

Zeekoevlei with the aim of improving monitoring 

capabilities in hypertrophic waters. The findings of the 

study will be useful to future operational eutrophication 

and water quality monitoring systems based on remote 

sensing in southern Africa. 

2. Site Description 

Zeekoevlei, literally translated from Afrikaans meaning 

‘Hippo Lake’, is a small freshwater lake situated on the 

Cape Flats, Cape Town, South Africa (Fig. 1). 

Zeekoevlei is the largest of a system of coastal lakes and 

lies adjacent to the Cape Flats Sewage Works to the 

south. The lake is roughly divided into three basins: the 

northern basin, near the inlets from the Great and Little 

Lotus Rivers; Home Bay, a sheltered corner in the 

north-east; and the southern basin, also known as Storm 

Bay (Fig. 1).  

Fig. 1. Map showing Zeekoevlei on the Cape Flats with surrounding lakes and adjacent Cape Flats Sewage Works 

to the south (right). A grid shows the size of MERIS pixels and the four sample points are labelled ZEV 1 to ZEV 4 

(left). 
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Zeekoevlei was proclaimed a local nature reserve in 

2000 and is an important component of the City of Cape 

Town’s Biodiversity Network and the False Bay 

Ecology Park. The lake is shallow with a mean depth of 

only 1.9m attributed to the large deposits of organically 

rich sediment (Harding, 1992). Water flowing into 

Zeekoevlei via the Lotus Rivers is very polluted and 

high in nutrient concentrations as a result of large areas 

of informal settlements and horticultural agriculture in 

the catchment (Grobicki et al., 2001). The primary 

source of nutrients, however, is from underground 

seepage from the Cape Flats Sewage Works (Southern 

Waters Ecological Research and Consulting, 2000). The 

mean concentrations of dissolved nutrients phosphorus 

(P) and nitrogen (N) measured by the City’s Scientific 

Services from 1981 to 2008 is 0.819 and 3.37 g.m
-3

, 

respectively, with a mean Chl a concentration of 235.1 

mg.m
-3

 and dry weight suspended solids concentration 

of 84.1 g.m
-3 

(Matthews, 2009). Very high primary 

production levels are sustained by strong prevailing 

winds which cause continual mixing of the surface 

layer, such that the lake is ‘hypermictic’ and analogous 

to a continuous fermentor for phytoplankton growth 

(Harding, 1997). The phytoplankton assemblage has 

low species diversity and displays equilibrium between 

cyanophyte and chlorophyte species in terms of 

biomass; however in terms of cell counts the 

cyanobacterium Microcystis aeruginosa is by far the 

most dominant species, with cell counts from 4 000 to  

7 000 000 cells.mℓ
-3

 (Harding, 1992). In fact, 

Zeekoevlei has no fewer than five cyanobacterial 

species capable of producing toxins (ibid.), and in 1995 

a dog was killed by nodularin poisoning (Harding et al., 

1995). It is reasonable to assume 

that Zeekoevlei continues to remain 

a health hazard to animals and 

recreational users as water quality 

conditions do not appear to have 

improved over the last decade 

(Haskins, 2006). Zeekoevlei is a 

good site for testing and developing 

techniques for remote sensing in 

small, highly turbid, hypertrophic 

cyanobacteria-dominated freshwater 

lakes. The lake’s small size, highly 

turbid water, and covariant water 

constituents present a challenging 

case for remote sensing both in 

terms of algorithm development and 

atmospheric correction. 

3. Methods 

3.1 In situ measurements and 

bio-optical model 

In situ sampling of limnological and atmospheric 

properties and measurements of Inherent and Apparent 

Optical Properties (AOPs) were carried our 

simultaneous to MERIS overpasses during April 2008. 

A total of 31 water samples were collected from four 

sample points around the lake (see Fig. 1) between 9 

and 12 am local time usually within an hour of MERIS 

overpasses on clear or partially cloudy days (not all 

sample points were always sampled). Samples were 

kept cool during transportation to the laboratory and 

analysed within three to four hours after collection. All 

analyses were carried out in triplicate using the mean as 

the final value. Phytoplankton pigments (Chl a) were 

initially extracted by filtering 20 ml of sample through 

Whatmann GF/F filters and grinding the filter paper 

submerged in 9 ml of 90% acetone with a glass rod for 

one minute. After extraction for 24 hours in a freezer, 

the test tubes were centrifuged at 2500rpm for 5 

minutes, transferred to glass tubes, and read in a Turner 

Designs 10-AU Fluorometer (Holm-Hansen et al., 

1965). The samples were corrected for absorption by 

pheophytin pigments. However the Chl a values were 

anomalously low compared to historical measurements 

most probably due to the poor extraction efficiency of 

acetone with phytoplankton assemblages dominated by 

cyanobacteria, as noted by other authors (Robarts & 

Zohary, 1984, see Pápista et al., 2002). 

Spectrophotometric analysis of nine samples in 95% 

ethanol using a Shimadzu UV-2501 spectrophotometer 

(Sartory & Grobbelaar, 1984) gave Chl a values 64% 

higher than those concurrently measured in acetone. The 

filter papers were ground with a glass rod for 1 minute 

and the supernatant heated in an oven set to 80° C for 5 

Table 1 

Input data used in bio-optical simulations. Cross-sections for detritus and minerals 

are in units μm2 and wavelength is in nm. 

Component Details Reference 

wa  From Pope and Fry (1997) [400 to 715 nm] 

and Kou et al. (1993) [720 to 750 nm] 

(Pegau et al., 2003) 

*a  
Synechocystis (generic marine cyanophyte) 

Dunaliella Bioculata (marine chlorophyte) 

(Ahn et al., 1992) 

CDOMa  In situ measurements fitted to equation (2)  This study 

*
da  σa,det = 8.791×10-4 ×exp(-0.00847λ) (Stramski et al., 2001) 

*
ma  

σa,min = 1.013×10-3×exp(-0.00846λ) (Stramski et al., 2001) 

wb , bwb   From Buiteveld et al. (1994) (bbw = ½ bw) (Pegau et al., 2003) 

*b ,

*
bb   

Synechocystis (generic marine cyanophyte) 

Dunaliella Bioculata (marine chlorophyte) 

(Ahn et al., 1992) 

*
db  σb,det = 0.1425λ-0.9445 (Stramski et al., 2001) 

*
mb

 
σb,min = 0.7712λ-0.9764 (Stramski et al., 2001) 

*
bdb  

σbb,det = 5.881×10-4λ-0.8997 (Stramski et al., 2001) 

*
bmb  

σbb,min = 1.790×10-2λ-0.9140 (Stramski et al., 2001) 
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minutes before extraction in a freezer for 24 hours. The 

path length of the quartz cuvettes was 1cm and the 

samples ware acidified to correct for absorption by 

pheophytin pigments. The previously measured 

fluorometric Chl a readings were corrected by 

multiplying by the average correction factor for the test 

(= 1.64) assuming the phytoplankton assemblage was 

constant over the sampling period, which is reasonable 

given the spectrally invariant shapes of the water 

leaving radiance (see Fig. 3). The corrected Chl a values 

were then used in the remainder of the study. The 

concentration of Total Suspended Solids (TSS) was 

determined using the gravimetric method for non-

filterable residue by filtering 100 ml of sample through 

Whatmann GF/F filters which were dried at 105° C in 

an oven for at least 2 hours (EPA, 1983). The inorganic 

component, Inorganic Suspended Solids (ISS), was 

determined by burning off the organic component in a 

muffle furnace at 260° C overnight, and re-weighing the 

burnt filter papers. The difference between TSS and ISS 

was taken to be the concentration of Organic Suspended 

Solids (OSS). Secchi Disk depth (SD), a proxy for water 

clarity, was estimated using a matt white disk of 

diameter 15cm using the mean of the depths at which 

the disk disappeared when lowered into the water and 

reappeared when brought to the surface, on the sunny 

side of the boat. Absorption by CDOM (aCDOM) between 

250nm and 750nm was measured on the GF/F filtrate 

using a Shimadzu UV-2501 spectrophotometer. The  

absorbance spectra were converted to absorption using 

the following equation, after subtracting the absorbance 

spectra of water (Milli-Q) (Green & Blough, 1994): 

 

12.303 ( )
( ) ( )

A
a m

I


 

                                    
(1) 

 

where a(λ) is the absorption coefficient, A(λ) is the 

absorbance, and I  is the pathlength (= 0.01 m). A null-

point correction was performed at 750 nm and the 

curves fitted to the following negative exponential 

function using least-squares case-wise nonlinear 

estimation (Bricaud et al., 1981): 

 
S( – o) 1

0( ) ( )e ( )y ya a m    
                         

(2) 

where ay(λ0) is the reference absorption at wavelength 

λ0, and S is the slope of the curve. 

 

Aerosol Optical Thickness (AOT) at five wavelengths 

in the visible and near-infrared spectrum (λ = 440, 500, 

675, 870, 900 nm) was measured using a handheld 

Microtops II Sun Photometer V 5.5 (Solarlight Co.). 

Measurements were made within 30 minutes of MERIS 

overpasses using the lowest value of four separate scans 

as the true value. Wind speed and wave height was also 

measured concurrent to water sample collection. The 

standard error of the mean of limnological and 

environmental parameters was determined according to: 

Table 2  

Independent variables used in empirical algorithms for estimating water quality parameters. Numbers are 

radiometric wavelengths in nanometres. Algorithms for MERIS used bands nearest to wavelengths given 

here. 

Chl a TSS, ISS, OSS SD aCDOM 

In
d

ep
en

d
en

t 
v

ar
ia

b
le

s 

560 560 560 412 

700 700 700 442 

Peak~700 Peak~700 Peak~700 (664/559)
 

(700/670) (700/670) (700/670) (677/480) 

RLH
1 

RLH RLH (559-619)/619
8
 

700/(560+670)
2
 700/(560+670) 700/(560+670) Gitelson

9 

(560-520)/(560+520)
3 

(560-520)/(560+520) (560-520)/(560+520) -
 

740((1/670)-(1/710))
4
 - (520/700)

6 
- 

FLH
5 

- (490/620)
7 

- 
1
 Reflectance Line Height: 700-670-((750-670)×(700-670)/(750-670)) (Schalles et al., 1998) 

2 
(Koponen et al., 2007) 

3 
(Gitelson et al., 1993) 

4
 (Zimba & Gitelson, 2006) 

5
 Fluorescence Line Height: 685-670-((730-670)×(685-670)/(730-670)) (Gower et al., 1999) 

6 
(Koponen et al., 2002) 

7
 (Härmä et al., 2001) 

8 
(Kallio et al., 2001) 

9 
(453-(700/670)-520)/(453+(700/670)+520) (Gitelson et al., 1993)
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2

1

1

( )

n

i

i
X

X X
s

SE
nn n




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


                    (3) 

where s is sample standard deviation, n is sample size, 

iX  is ith value of X  (the parameter) and X is the 

mean. The normality of the data distributions was tested 

using the Shapiro-Wilks test.  

 

Radiometric measurements were made simultaneous to 

water sample collection at sample points ZEV 2 and 

ZEV 3 using a Hyperspectral Tethered Surface 

Radiometer Buoy (HyperTSRB S/N 018 Satlantic Inc.). 

The TSRB measures upwelling radiance at depth 0.66 

m, Lu(0.66), and downwelling irradiance just above the 

surface, Ed(0+), in the range 400 to 800 nm at a 3.3 nm 

resolution with a spectral accuracy of 0.3 nm. The 

spectra were recorded on a laptop computer using 

SatView V.2.8 (Satlantic Inc.). The median value for the 

sampling period (about 3 minutes) was used to obtain a 

single spectrum for Lu(0.66) and Ed(0+), which was then 

re-sampled to a 1nm spectral resolution. The in-water 

radiance/irradiance reflectance at 0.66 m, which has no 

value for remote sensing although it is useful for 

analysing the bio-optical variability, was calculated as:  

 

(0.66)
(0.66)

(0 )

u

d

L
R

E



                                                (4) 

 

The normalised water-leaving surface reflectance, ρw, 

was calculated using the upward vertical attenuation 

coefficient for upward radiance, Ku, according to:  

 
2( )

(0 )

uK z
u

w
d

L z e

E


 




  


                                    

(5) 

 

where z is depth in meters and 
2


 (=

0.98

1.33
) is the 

constant for the air-water interface correction according 

to Snell’s law.  

 

As the value for Ku was not measured it had to be 

estimated using the following formulation for optically 

deep, case 2 water (Albert & Mobley, 2003): 

 
3.5421

1( ) 0.2786
( ) ( ( ) ( )) 1 1 ( )

( ) ( ) cos

b
u b

b s

b
K a b m

a b


  

  


      

                    

                                                                             

(6) 

 

where a(λ) is the total absorption coefficient, bb(λ) is the 

total backscattering coefficient, and θs is the subsurface 

solar zenith angle.  

 

Although there are problems with using this 

approximation in turbid waters such as Zeekoevlei, it is 

likely to be suitable as a first order estimate. The values 

for a(λ) and bb(λ) which were used in (6) where 

estimated from bio-optical simulations based on a 

model similar to that used in Stramski et al. (2001) with 

the following equations: 

 
* * * 1( ) ( ) ( ) ( ) ( ) ( ) ( )w CDOM d ma a Ca a Na Na m          

 
                                                                           (7.1) 

 
* * * 1( ) ( ) ( ) ( ) ( ) ( )b bw b bd bmb b Cb Nb Nb m        

 
                                                                           (7.2) 

 

where a* and b* are the specific 

absorption/backscattering coefficients respectively, 

subscripts w,  , CDOM, d and m stand for water, 

phytoplankton, CDOM, detritus and minerals, C is 

concentration and N is the number of particles.  

 

The input data used in 

Equations 7.1 and 7.2 

are shown in Table 1. 

Importantly the 

simulations are first 

order approximations 

used for deriving ρw 

in the absence of Ku 

measurements. In 

order to simulate the 

co-dominance of 

cyanophyta and 

chlorophyta in 

Zeekoevlei, two 

marine phytoplankton 

were weighted 

equally in their 

Table 3  

Pearson linear correlation coefficients, r, for limnological and environmental parameters. 

All correlations were significant at p<0.05. Italics indicate parameters which failed the 

Shapiro-Wilk test for normality. 

 Chl a TSS ISS OSS SD aCDOM 
Wave 

height 

Wind 

speed 

Chl a 1.00        

TSS 0.76 1.00       

ISS 0.59 0.91 1.00      

OSS 0.79 0.93 0.68 1.00     

SD -0.79 -0.76 -0.69 -0.70 1.00    

aCDOM 0.59 0.61 0.50 0.61 -0.60 1.00   

Wave height 0.52 0.78 0.77 0.68 -0.57 0.61 1.00  

Wind speed 0.47 0.72 0.72 0.61 -0.51 0.71 0.75 1.00 
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biomass contribution, as given by Chl a. The number of 

particles for detritus and minerals was determined by 

their contribution to absorption by particulate matter at 

440 nm, ap(440), as in Stramski et al. (2001). The 

contribution of detritus was about 17%, and that of 

minerals about 7%, when using the average in situ 

measurements of Chl a (=153.3 mg.m
-3

) and aCDOM at 

440nm (=2.78 m
-1

) in the model. This gave N = 

6.25×10
16

 for detritus and N = 2.16×10
16

 for minerals. It 

was decided to keep the number of particles constant for 

all simulations to avoid additional sources of error. This 

is likely to be acceptable as a first-order approximation. 

 

The two main sources of error to ρw calculated using (5) 

are from instrument self-shading and Ku estimates 

calculated using (6). A simple test was used to evaluate 

the error introduced to ρw from estimating Ku: the value 

of Ku was varied in percentage over the spectrum while 

observing the change to ρw. A 10% change in the value 

of Ku gave an average change to ρw of 25% in the 

positive direction, and 20% in the negative direction, in 

the range 400 to 700 nm. Thus, in this simulation, a 

change in Ku leads to a change in ρw usually at least 

twice as large as that to Ku. For the sake of simplicity, 

Ku estimations were assumed to be within 10% of their 

actual value, which meant an average error of 25% in 

the positive direction, and 20% in the negative direction. 

The instrument self-shading error causes Lu(0.66) to be 

underestimated; and may result in less accurate 

algorithm performance as the error is wavelength 

dependent. The total error from self-shading, ( )  , was 

calculated according to (Leathers et al., 2001): 

 

( )
1

fsun sky

f

 
 





 (8) 

 

where sun  is the error from direct sunlight, 
sky
 is the 

error from diffuse skylight and f is the ratio of skylight 

to direct sunlight.   

 

The values for the errors from direct and diffuse light 

were calculated using Table 1 in Leathers et al. (2001) 

using appropriate values for a(λ), the solar zenith angle, 

and the ratio of a(λ) to b(λ), which was estimated using 

the bio-optical model (described above). Values of f  

were from clear sky summer conditions for the Cape 

west coast of South Africa (Walters et al., 1985). 

Lu(0.66) acquired during clear sky conditions were 

corrected according to (Leathers et al., 2001): 

 

2 1 1( )
( ) ( )

1 ( )

measured
true u
u

L
L Wm sr nm




 

  


 (9) 

 

where ( )true
uL  is the true (corrected) radiance spectrum, 

and ( )measured
uL  is the measured radiance spectrum. 

 

The total error associated with ρw was then calculated 

using the root mean square of the errors from estimating 

Ku and instrument self-shading. 

3.2 Atmospheric correction algorithms 

MERIS FR geo-located and calibrated Top-of-

Atmosphere (TOA) Radiance (Level 1P) and FR 

geophysical ocean, land and atmosphere product (Level 

2P) was pre-ordered from ESA for April 2008 using the 

Earthnet OnLine Interactive (Eoli-sa) client V. 6.0.1. 

The data were processed in the VISAT BEAM (Version 

4.2) software toolbox (Brockmann Consult). The Smile 

Correction Processor (V.1.1.2) plug-in was used to 

correct for the ‘smile effect’ and the Radiance-To-

Reflectance Processor (V1.3.100) converted the L 1 

data to normalised TOA apparent reflectance, ρTOA, 

according to the following equation: 

 

0

( )
( )

( )cos

TOA
TOA

s

L

E

 
 

 
                                        (10) 

 

where LTOA is the TOA radiance, E0 is solar spectral 

irradiance, that includes earth-sun distance correction, 

and θs is the solar zenith angle.  

 
Water pixels were identified by low reflectance values 

in the near-infrared bands and extracted from a 

rectangular area drawn around the lake. The ICOL 

processor plugin for BEAM may be used to correct L 1 

water pixels for the adjacency effect (Santer & 

Zagolski, 2008). However, the unusually high radiances 

from Zeekoevlei’s turbid water meant that the land 

mask was overlaid in the L 1 product. This meant that 

despite efforts, the ICOL processor was not able to be 

implemented. Thus there is an unaccounted for 

adjacency effect in the results, although its impact may 

be less significant because of the relatively large signal 

from the very turbid water. Atmospheric correction to 

obtain the water-leaving reflectance from pixels 

corresponding to the sample points in Fig. 1 was carried 

out using both image-based techniques, and the 6S 

Radiative Transfer Code (RTC) (Vermote et al., 1997). 

The image-based Dark Object Subtraction (DOS) 

technique eliminates the need for in situ measurements 

of atmospheric properties by using the darkest pixel in 

the scene as an estimate of the atmospheric path 

radiance, Lλpath, in all bands, assuming that the 

atmosphere is homogenous across the entire scene 

(Chavez, 1996). The dark pixels were taken from 

shadows in the mountainous region north-east of Cape 

Town approximately 100 km away from the study site. 
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At-satellite TOA radiances were corrected to surface 

reflectances, ρ(λ), according to (Moran et al., 1992): 

 

 path

0  

( )  ( )
( )   

( ( ) cos )

TOA

s down

L L

T kE T E 

  
 

 




    
    (11) 

 

where Tλ↓ and Tλ↑ are the downward and upward 

atmospheric transmittances, respectively, k is the sun-

earth distance coefficient that is dependent on the day of 

the year, and Edown is the downwelling spectral 

irradiance.  

 

The DOS model assumes Tλ↓ and Tλ↑ = 1 and ignores 

the effects of downwelling spectral irradiance (Edown = 

0). The value for Lλpath is extracted from the darkest 

object in the scene. For comparison the improved cosine 

or ‘COST’ method was also used, which estimates Tλ↓ 

by the cosine of the solar zenith angle, cosθs, and Tλ↑ by 

the cosine of the viewing zenith angle, cosθv. The values 

for E0(λ), θs, and θv taken from the MERIS product. The 

6S RTC Version 1.1 (available at http://modis-

sr.ltdri.org/6S_code/index.html) was run using a mid-

latitude summer atmospheric model and an urban 

aerosol model. The target was defined as lake water 

assuming there were no directional effects and a 

Lambertian surface. The AOT at 550 nm used for the 

code was estimated by interpolating sun photometer 

measurements at 500 and 675 nm. Geometrical 

conditions including month, day, solar zenith and 

azimuthal angles, and viewing zenith and azimuthal 

angles, were taken from the MERIS product.  

3.3 Water quality parameter algorithms 

3.3.1 MERIS NN algorithms 

The two MERIS IRTM-NN algorithms were tested for 

estimating atmospheric properties and water constituent 

concentrations for Zeekoevlei. The standard Level 2 

Case 2 water algorithm uses the atmospherically 

corrected normalised surface reflectance in 8 bands and 

the solar zenith, viewing zenith and azimuth difference 

angles as input to give the concentration of 

phytoplankton pigments (Chl a) in the range 0.003 to 50 

mg.m
-3

, the concentration of TSS in the range 0.03 to 50 

g.m
-3

, and the absorption by gelbstoff (CDOM) at 440 

nm in the range 0.002 to 2 m
-1

. The procedure uses a 

feed forward error-backpropagation multiple nonlinear 

regression neural network technique which is 

parameterised using water leaving radiance reflectances 

generated by Monte Carlo radiative transfer simulations 

using data collected in North European, Mediterranean 

and North Atlantic coastal waters (Schiller & Doerffer, 

1999, Schiller & Doerffer, 2005). Atmospheric 

correction is carried out using a coupled hydrological-

atmospheric model specifically designed for ‘bright-

pixel’ case 2 waters (Moore et al., 1999). There are 

several studies which show that the standard product 

gives good results in European lakes and coastal case 2 

waters (Cipollini et al., 2001, Schiller & Doerffer, 2005, 

Reinart & Kutser, 2006). However, the algorithm is 

unlikely to perform well in Zeekoevlei’s extremely 

turbid hypertrophic water due to the narrow training 

range and the suite of IOPs used in the in-water 

simulations which may differ from those in Zeekoevlei. 

Fig. 2. Scatterplots showing the best-fit regression lines and correlation coefficients between selected parameters. N 

= 31 for all plots. 

http://modis-sr.ltdri.org/6S_code/index.html
http://modis-sr.ltdri.org/6S_code/index.html
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The Eutrophic Lakes Processor, designed specifically 

for eutrophic lakes, is likely to produce improved results 

for Zeekoevlei. The algorithm computes total particulate 

scattering and absorption by Chl a and gelbstoff at 443 

nm, as well as Chl a and TSS concentrations, the 

attenuation coefficient for downwelling irradiance at 

wavelength with maximum transparency (Kdmin), and the 

optical depth from which 90% of the reflected light 

comes (z90), from the water-leaving reflectance in 8 

bands. The water-leaving reflectances from MERIS are 

produced by an atmospheric correction which uses a 

forward radiative transfer model which incorporates the 

bio-optical model (Doerffer & Schiller, 2008a). 

Therefore, the atmospheric correction is not 

independent of the water constituent retrieval model. 

The algorithm is trained using more than 60 000 spectra 

obtained from bio-optical simulations with the 

Hydrolight Radiative Transfer Code based on data 

collected from Finnish and Spanish eutrophic lakes, to 

derive Chl a concentrations in the range 0 to 120 mg.m-

3, TSS in the range 0.42 to 50.9 g.m -3 and absorption by 

gelbstoff at 440 nm in the range 0.1 to 3 m-1 (Doerffer & 

Schiller, 2008b). The concentrations ranges and IOPs 

used in these simulations are likely to be more suited to 

the hypertrophic water in Zeekoevlei.  

3.3.2 Empirical algorithms 

Empirical algorithms for estimating water quality 

parameters were formulated using linear and non-linear 

regression analysis. Algorithms were derived for the 

radiance/irradiance reflectance at 0.66 m, R(0.66), and 

for MERIS TOA radiances and reflectances and 

Bottom-Of-Atmosphere (BOA) atmospherically  

corrected water-leaving reflectances. Certain empirical 

algorithms may be suitable for estimating parameters 

such as Chl a from the TOA MERIS signal, hence the 

use of TOA data and the comparison with algorithms 

using BOA data types (e.g. Giardino et al., 2005). The 

single band, band ratio, and band arithmetic variables in 

Table 2 were 

utilised as 

independent 

variables in the 

regressions, while 

the water quality 

parameters were 

utilised as the 

dependent 

variables. The 

algorithms in Table 

2 were selected 

on the basis of an 

investigation of 

recent studies 

using empirical 

procedures in 

inland waters.Pearson Product moment linear regression 

analysis was formulated according to the model: 

 

                            
y a bx                                   (12) 

 

where y is the dependent water quality parameter, x is 

the independent variable (from Table 2) and a and b are 

regression coefficients.  

 

Case-wise non-linear least squares regression was 

applied according to the model: 

 

                        
by ax                                       (13) 

 

The r
2
 coefficient of determination gives an indication 

of the significance of the correlation at the 95% 

confidence interval (p-value of significance = 0.05). The 

normality of the data distributions was tested using the 

Shapiro-Wilk test. The water quality parameters were 

also log transformed in regressions using the 

radiometric data, as it is reasonable to assume a non-

linear relationship between reflectance and some of the 

parameters. The F-value, the ratio of explained to 

unexplained variance, was used to further establish the 

significance of the correlation at the 95% confidence 

level. A large F-value indicates that the independent 

variable, x, may be used to reliably estimate the 

parameter, y. F-values were calculated according to: 

 

1 1

2 2
2

ˆ

2 1

ˆ ˆ( ) ( )

N N

i i i i
y i i

e

Y Y Y Y
s

F
k N ks

 

 

 
 

 
               (14) 

 

where N  is the number of observations, Ŷ  is the 

predicted value of the water quality parameter, Y  is the 

mean of observed water quality parameter, Y  is the 

Fig. 3. Sixteen simultaneously collected spectra of upwelling radiance at 0.66 m (left) and 

downwelling irradiance just above the surface (right) collected from the four sample points 

between April 1
st
 and 24

th
 2008. The absorption bands of phytoplankton pigments phycocyanin 

and Chl a are shown.  
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observed value the water quality parameter and k  is the 

number of predictors.  

 

 The standard error of the residuals, also called the Root 

of the Mean Square of the Error (RMSE), gave an 

estimate of the error associated with the estimations 

according to: 

2

1

ˆ( )

( )
1

N

i i

i
e

Y Y

s RMSE
N k






 


                                (15) 

 

Maps were made for each water quality parameter using 

the best performing empirical algorithms for MERIS. 

The maps were plotted as pseudo-colour checkerboard 

plots where each cell in the plot represents a single 

MERIS pixel and a colour bar indicates the unique 

value of each pixel. Statistics calculated for the maps 

included the number of pixels, the area, and the mean, 

median, minimum and maximum, standard deviation, 

standard error of the mean and the observed error of the 

parameters. The standard error of the mean for remotely 

sensed estimates was calculated using the formula 

below: 

 

2

ˆ

2

1

( )1

( )

k
e NY

i

i

X X
SE s

n
X X




 


                                (16) 

 

where es  is the standard error of residuals (equation 

15), n  is number of observations, kX  is the mean value 

of the independent variable x  for all estimations, X  is 

the mean of independent variable x  for observed 

values, and iX  is the observed value of independent 

variable x .  

 

The observed error, the difference between the remotely 

sensed and in situ means, gives the improved accuracy 

to the mean spatial estimate delivered by using MERIS 

(Kallio et al., 2003):  

 

insitu remotelysensedE X X                                     (17) 

 

where insituX is the mean of in situ and remotelysensedX  

the mean of remotely sensed parameter estimates. 

4. Results 

4.1 Limnological conditions 

The mean Chl a concentration during the sampling 

period was 148.6 ± 8.1 mg.m
-3

 (N = 31) with a 

maximum of 247.4 mg.m
-3

 and a minimum of 61.0 

mg.m
-3

. The water colour was bright green with 

occasional surface accumulations of buoyant 

cyanobacteria on calm days, especially near the shore. 

The mean TSS concentration was 49.1 ± 2.0 g.m
-3 

and 

the mean organic component was 76.9% (N = 31). The 

total contribution of phytoplankton to OSS was 

estimated to be between 28 and 35% using a simple 

conversion factor of 1 mg.m
-3 

Chl a ≈ 0.07 - 0.09 g.m
-3

 

dry weight derived from similar eutrophic lakes in the 

Netherlands (Dekker, 1993). The remainder of the 

organic matter probably originates from detrital material 

mixed into the water column from the organically rich 

sediment accumulations on the lake floor (Harding, 

1992). Thus, the contribution of phytoplankton, detritus 

and minerals to TSS was about 25%, 52% and 23% 

respectively. Water transparency was very low with a 

mean SD depth of only 27.9 ± 0.8 cm. This meant that 

the water was optically deep and that bottom effects 

could be ignored. Absorption by CDOM at 440 nm had 

a mean value of 2.69 ± 0.08 m
-1

,
 
while the value of S in 

equation (2) varied between 0.0169 and 0.0212 with a 

mean of 0.0188 ± 0.0002 (N = 31), which is typical of 

other inland waters (Kirk, 1994). A significant degree of 

covariance was observed between Chl a, TSS and OSS 

(Table 3, Fig. 2). As expected, SD depth is significantly 

inversely correlated with Chl a, suspended solids and 

aCDOM, as these all decrease water clarity. The weak 

positive correlation between aCDOM and Chl a, TSS and 

Fig. 4. Components of the total absorption, a(λ), (left) and total backscattering, bb(λ), (centre) coefficients used to 

calculate Ku (right). The values used in the above simulation are as follows: Chl a  = 153.3 mg.m
-3

; aCDOM(440 nm) = 

2.78 m
-1

; detritus N = 6.25×10
16

; minerals N = 2.16×10
16

. 
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OSS may be from the generation of humic matter by 

decomposing plant matter in hypertrophic conditions, as 

suggested by Kirk (1994). Wave height and wind speed 

are significantly correlated with suspended solids, 

especially the inorganic component (although these are 

non-normally distributed), indicating that bottom 

sediments are mixed into the surface layers by wind and 

waves, as described in Harding (1997). 

 

The variability in water conditions across the lake is 

apparent from comparisons of the mean measurements 

made at the sample points. The southern basin had 

higher average Chl a concentrations (ZEV3 = 160.5 

mg.m
-3

, N = 10) compared to Home Bay (= 134.0 mg.m
-

3
, N = 6) and the northern basin (= 134.0 mg.m

-3
, N = 

10). The explanation for this increased production may 

be the underground seepage of nutrients from the 

adjacent sewage works, which is the lake’s major source 

of nutrients (Southern Waters Ecological Research and 

Consulting, 2000). The northern basin has the highest 

mean wave heights (= 6.5 cm, N = 10) and TSS 

concentrations (= 50.6 g.ℓ
-1

, N = 10) with the highest 

mean inorganic content. This is most likely a result of 

mixing of bottom sediment into the water column by the 

predominant southerly wind. In contrast, the more 

sheltered Home Bay had the lowest mean wave heights 

(= 1.8 cm, N = 6) and TSS concentrations (= 45.8 g.ℓ
-1

, 

N = 6). The calmer conditions in Home Bay promote 

surface accumulations 

of buoyant 

cyanobacteria which 

results in an increase in 

mean organic matter 

contribution (= 78.1%, 

N = 6) and a decrease 

in mean SD depths 

(water clarity) (= 26.7 

cm, N = 6). The greater 

mixing in the northern 

basin prevents 

cyanobacteria 

collecting at the surface 

and results in lower 

contributions of 

organic matter to TSS (= 73.4%, N = 10) and increased 

SD depths (= 28.8 cm, N = 10). Therefore, it appears 

that wind and wave action, and the input of nutrients 

from the sewage works, are the main drivers of spatial 

variability in Zeekoevlei, although the differences 

between the sample points is relatively small. 

4.2 Apparent optical properties and bio-optical 

model 

4.2.1. Lu(0.66) and Ed(0+) 

Fig. 3 shows 16 concurrent upwelling radiance, 

Lu(0.66), and downwelling irradiance, Ed(0+), spectra 

obtained during April 2008. The Lu(0.66) spectra show 

two distinct peaks at about 560 and 710 nm as a result 

of the processes of scattering and absorption from the 

optically active components. The unusually flat signal 

from 400 to 470 nm appears to be caused by strong 

absorption from high concentrations of detritus and 

mineral particles (tripton) which make up about 75% of 

TSS. Tripton, which absorbs most strongly in the blue 

(Babin & Stramski, 2002), has been found to be the 

main absorbing component in other similar eutrophic 

lakes (Simis et al., 2005). High concentrations of Chl a 

(430 nm) and CDOM also contribute to the high 

absorption in the blue. The absorption maximums of 

phytoplankton pigments Chl a (~680 nm) and 

Fig. 5. The total self shading error, ε, and the ratio of skylight to direct sunlight, f, (left) 

and a corresponding measured (dotted line) and corrected (solid line) Lu(0.66) spectrum 

(right) from sample point 1 measured on the 23
rd

 April 2008. 

 

Fig. 6. Spectral Ku plots (left) used to calculate the normalised water leaving reflectance, ρw, (centre) for spectra 

collected from the four sample points between April 1
st
 and 24

th
 2008. The reflectance at 0.66 m, R(0.66) is also 

shown(right) . 
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phycocyanin (~620 nm) are 

characteristic of the 

cyanobacteria-dominated 

phytoplankton assemblage (e.g. 

Schalles et al., 1998, Simis et 

al., 2007). The upwelling 

radiance is relatively spectrally 

invariant suggesting that the 

IOPs were mostly constant, at 

least in constituent-relative 

composition, during the 

sampling period. The Ed(0+) 

spectra display the 

characteristic absorption bands 

of ozone, oxygen and water 

vapour, and differ in magnitude 

as a result of variable sky 

conditions and differing times 

of measurement (between 9 and 

12 am). 

 

4.2.2. Calculation of ( )  , Ku 

and ρw 

The bio-optical model (section 

3.1.2) gave absorption values 

comparable to the upper range 

of those measured in similar 

eutrophic waters (~4 m
-1

 at 665 

nm) (Fig 4.) (Dall'Olmo & 

Gitelson, 2005, Simis et al., 

2005). However, in the blue 

(<500 nm) the a(λ) values 

appear very large, probably a 

result of the inability of the 

model to account for the offset 

to absorption by scattering from 

suspended matter. The large 

a(λ) in the blue produced erratic 

values when calculating 

( )true
uL  and ρw using ( )   

and Ku. Therefore the 

values for ( )  and Ku at 

wavelengths less than 500 

nm were held constant at 

their value at 500 nm (Fig. 

5, Fig. 6). While the values 

for ( )   and Ku are 

somewhat synthetic, they 

are likely to be acceptable 

since Lu(0.66) in this region 

is very close to zero. Fig. 5 

shows a Lu(0.66) spectra 

Fig. 7. MERIS TOA smile corrected radiance (left) and TOA reflectance (right) for 

nine pixels acquired on the 1
st
, 7

th
, 20

th
 and 23

rd
 April, corresponding to 

simultaneously acquired in situ measurements. The oxygen absorption band at 761 

nm has been excluded.  

 

Fig. 8. Comparison between image-based Dark Object Subtraction (DOS) and 

Cosine (COST) (left hand column), and 6S (right hand column) atmospheric 

corrections. Corresponding radiometric spectra measured in situ (TSRB) 

(corrected for self-shading) give an idea of algorithm performance. The error bars 

show systematic error from MERIS (5%) and that from estimating Ku. The 

number above the graphs indicates the sample point followed by the day and 

month, for example, 30704 is sample point 3 on the 7
th

 of April 2008. 
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measured in clear sky conditions at sample point 1 on 

April 23
rd

 2008 corrected for self-shading. As expected, 

the corrected spectrum shows increased magnitude 

relative to the uncorrected one. Table 1 in Leathers et al. 

(2001) had to be extrapolated to obtain the self-shading 

error, which was lessened by diffuse scattering since 

b(λ) >> a(λ). The mean self-shading error over the 

wavelengths 500 to 750 nm was approximately 36%. 

The calculated ρw spectra are comparable in shape and 

magnitude to those measured in other similar eutrophic 

waters (Fig. 6) (Dekker, 1993, see Schalles et al., 1998, 

Simis et al., 2007). The R(0.66) spectra calculated using 

equation (9) also have very similar spectral shapes. The 

differing magnitudes of the spectra indicate variable 

backscattering from changes in the concentrations of 

suspended particulates whose optical properties appear 

to be relatively spectrally invariant. 

4.3 Atmospheric correction algorithms 

14 MERIS scenes were acquired over Zeekoevlei during 

April 2008. Four of these were cloud free and had 

corresponding in situ measurements. These match-up 

data were used for evaluating atmospheric corrections 

and for deriving and testing water quality parameter 

algorithms (section 4.4). Fig. 7 shows the TOA smile 

corrected radiance and reflectance spectra for nine 

pixels corresponding to simultaneously acquired in situ 

measurements in Zeekoevlei. The spectral shapes are 

similar to those measured radiometrically with 

distinctive peaks visible in the 559 and 708 nm bands, 

and the characteristic absorption maxima of 

phytoplankton pigments Chl a (664 and 680 nm) and 

phycocyanin (620 nm). The large signal in the blue 

(<500 nm) is the result of atmospheric scattering 

(Gordon, 1978). Four of these pixels which had 

corresponding in situ radiometric water-leaving 

reflectance measurements have been atmospherically 

corrected and are presented in Fig. 8. Overall, the 

agreement between the atmospheric corrections and the 

in situ measurements is likely to be acceptable for a first 

order application in complex waters. However, the 

image based DOS and COST corrections (left hand 

column in Fig. 8) have some negative values in the 412 

and 442 nm bands signifying an overestimation of the 

atmospheric path radiance by the dark object in these 

bands. The reflectance in the infrared (>700 nm) is also 

overestimated which is most likely a caused by 

adjacency effects (Santer & Schmechtig, 2000). 

Between the two techniques the simpler DOS model 

appears to give better agreement with in situ 

measurements. The image-based corrections also appear 

to introduce a spectral bias in some of the bands which 

will cause algorithms to operate less accurately. 

Therefore, image-based procedures are used 

infrequently in water remote sensing because of these 

inconsistencies and are suboptimal with regard to 

automated processing. The 6S RTC corrections (right 

hand column Fig. 8) appear to introduce less spectral 

bias. However, the model as applied here also seems to 

under-correct in the near-infrared and blue regions of 

the spectrum, again which is most likely the result of the 

adjacency effect (especially visible in the bands near 

900 nm). Fig. 9 shows the AOT measurements acquired 

within less than 10 minutes of the MERIS overpass on 

the four days. The figure provides some information on 

the variability of atmospheric conditions occurring 

between these days and reveals that atmospheric 

conditions vary within a range of optical thickness of 

about 1.4 at 500 nm. The slope of the AOT (the 

Angstrom coefficient, α) is greatest for April 1
st
 but 

does not vary greatly on the other days. Therefore, as 

the atmospheric variability is quite small, it is 

reasonable to assume that the atmosphere is not a great 

source of error in the derivation of empirical algorithms 

from MERIS (section 4.4.3). 

4.4 Water quality parameter algorithms 

4.4.1 MERIS NN algorithms 

 

 

Fig. 9.  Aerosol optical thickness measured near 

simultaneous to the acquisition of MERIS on four days 

in April 2008.  
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Pixels for Zeekoevlei from the MERIS Level 2 product 

were invariably flagged as ‘invalid turbid case 2 

sediment-dominated water’. Flags were also raised for 

water constituent retrieval and occasionally for aerosol 

retrieval. This means that the values derived by the 

standard Level 2 product are suspect, as confirmed by 

Fig. 10 which shows the spectra for the nine pixels. The 

standard product correctly identifies Zeekoevlei’s water 

type but the negative reflectance values in the blue 

indicate that the atmospheric correction failed. The most 

plausible explanation for the failure is a breakdown of 

the assumption of negligible water-leaving radiance in 

the near infra-red, as a result of the very high sediment 

concentrations in Zeekoevlei, and possibly the sediment 

type (Aiken & Moore, 2000). The chance that the 

failure was caused by the presence of anomalous 

atmospheric conditions seems highly unlikely since 

AOT measurements made in situ where within normal 

ranges (see Table 4, Fig. 9). Corresponding spectra from 

the Eutrophic Lakes processor, shown on the right hand 

side in Fig. 10, had no negative values although the 

spectral shapes are somewhat uncharacteristic, 

especially at 619 nm where the values are inflected, and 

at 509 nm and other bands in the blue, where the values 

are enlarged relative to in situ measurements (see Fig. 

6). Not surprisingly, 

there are large 

discrepancies between 

water constituent 

concentrations and 

atmospheric properties 

estimated by the NN 

algorithms and those 

measured in situ (Table 

4). Chl a and TSS 

concentrations are 

severely 

underestimated by the 

standard L 2 product, 

aCDOM is overestimated, 

albeit only slightly, and 

AOT at 443 nm has negative values. The Eutrophic 

Lakes processor gives improved Chl a and TSS 

estimates, especially for April 1
st
, however the 

remainder of the estimates were once again well below 

observed values. The AOT values at 550 nm are 

comparable to in situ measurements at 500 nm 

suggesting that the errors in water constituent retrieval 

may be due to differences in the concentration ranges 

and IOPs used to train the bio-optical model, rather than 

due to failures in atmospheric correction. This 

explanation is also evidenced by the uncharacteristic 

spectral shapes observed in Fig. 10. Discrepancies 

between the IOPs used in the bio-optical model and 

those of Zeekoevlei also cause errors in the atmospheric 

correction, as the atmospheric correction is based on the 

same training data set used to derive the IOPs (Doerffer 

& Schiller, 2008a). The large errors in estimation 

observed in Table 4 emphasize the regional specific 

nature of the default NN algorithms and the need to re-

parameterise them with local IOP measurements. 

 

4.4.2. Empirical algorithms for R(0.66) 

The correlation between radiance/irradiance reflectance, 

Table 4 

Comparison between in situ measurements and results from the MERIS C2R and Eutrophic Lakes NN algorithms.  

 In Situ Level 2 Eutrophic Lakes Processor 

Samp

le No. 

Chl a TSS aCDOM AOT 

440 

AOT 

500 

Chl a TSS aCDOM AOT 

443 

Chl a TSS aCDOM AOT 

550 

10104 69.2 30.0 2.27 0.251 0.210 7.9 8.2 3.24 -0.006 19.7 29.6 1.28 0.268 

20104 61.0 36.0 1.83 0.251 0.210 27.1 19.6 4.17 -0.006 20.9 40.8 1.16 0.243 

30104 71.3 26.3 2.16 0.251 0.210 7.9 8.2 3.34 -0.006 21.0 39.6 1.23 0.241 

40104 107.5 36.8 1.97 0.251 0.210 8.2 9.5 3.13 -0.006 19.2 21.7 1.20 0.265 

20704 119.5 41.8 2.17 0.104 0.102 9.5 3.8 4.04 -0.006 10.9 3.7 0.53 0.074 

30704 247.4 50.3 2.85 0.104 0.102 10.6 4.8 3.91 -0.006 20.2 18.5 1.04 0.213 

22004 171.5 60.7 3.07 0.13 0.125 10.6 4.8 3.91 -0.006 18.9 12.1 0.94 0.254 

32004 194.6 51.0 3.73 0.13 0.125 10.2 5.1 3.79 -0.006 20.6 29.7 1.51 0.250 

12304 122.6 37.3 2.78 0.081 0.073 7.9 7.6 3.24 -0.006 18.1 10.1 0.68 0.092 

Fig. 10. Normalised water-leaving reflectance spectra generated from the standard Level 

2 product (left) and Eutrophic Lakes processor (right) for nine pixels corresponding to in 

situ sample points.  

 



 

 15 

R(0.66), and the water quality parameters was tested at a 

1nm resolution in order to determine the optical 

influence of the constituents (Fig. 11). The correlations 

for Chl a, TSS, OSS, and ISS are in a negative direction 

since reflectance is inversely related to these 

constituents; and in a positive direction for SD as larger 

values indicate less turbid water. The very similar 

shapes of the correlation curves are most likely caused 

by the significant covariance between the parameters. 

The correlation with Chl a and suspended solids is quite 

significant across almost the entire spectrum, reaching  

the highest values (~0.8) at the reflectance peaks near 

540 and 710 nm. Significant correlations were also 

observed between Chl a and the magnitude and position 

of the reflectance peak near 700 nm normalised at 640 

nm, in agreement with findings in other eutrophic 

waters (Gitelson, 1992, Schalles et al., 1998). This 

reflectance peak is likely to be caused by the strong 

absorption of phytoplankton around 675 nm, strong and 

sharply increasing absorption by water in the near-

infrared, and strong backscattering from phytoplankton 

and suspended matter > 700 nm, causing a sharp 

reflectance peak (Gitelson, 1992, Yacobi et al., 1995). 

The ISS correlation 

curve reaches its 

highest value near 730 

nm most likely 

because inorganic 

minerals contribute 

strongly to scattering 

in the near-infrared, 

and water is the 

dominant and invariant 

cause of strong 

absorption. The 

correlation with aCDOM 

is not significant as the 

signal from CDOM is 

significant only in the 

blue region of the spectrum which was not plotted due 

to noise. Importantly, Fig. 11 shows that for Zeekoevlei, 

the reflectance peaks near 540 and 710 nm can best be 

used to estimate the concentrations of water 

constituents. From a causal perspective it appears that 

scattering from gross particulate load is the dominant 

IOP in these very turbid conditions, given the lack of 

absorption by water constituents at these wavelengths. 

Therefore it is not surprising that algorithms in Table 2 

incorporating bands near 710 and 550 nm give the best 

performance for Chl a and suspended solids estimations 

(Table 5). 

 

The Reflectance Line Height (RLH) algorithm gave a r
2
 

value of 0.856 for Chl a, which is consistent with those 

derived by Schalles et al. (1998) (=0.83) and Yacobi et 

al. (1995) (=0.98) in similar eutrophic waters. The 

algorithm based on the three band conceptual model 

proposed by Zimba and Gitelson (2006) for 

hypertrophic water performed less well (r
2 

= 0.657), 

although the performance could perhaps be improved by 

tuning the model (Dall'Olmo & Gitelson, 2005). The  

Table 5 

Correlation coefficients (r2) for empirical algorithms using R(0.66). N = 16. Non-significant correlations are in italics. 

Algorithm Chl a LnChl a TSS LnTSS ISS LnISS OSS LnOSS SD LnSD 

RLH 0.771 0.856 0.709 0.763 0.470 0.640 0.774 0.809 0.669 0.661 

700 0.762 0.854 0.713 0.770 0.481 0.661 0.766 0.802 0.666 0.656 

Peak~700 0.729 0.833 0.751 0.802 0.525 0.676 0.782 0.816 0.672 0.659 

(700/670) 0.627 0.600 0.661 0.654 0.358 0.409 0.849 0.839 0.478 0.491 

(560-520)/(560+520) 0.516 0.566 0.874 0.870 0.620 0.650 0.897 0.895 0.566 0.566 

700/(560+670) 0.671 0.680 0.773 0.776 0.477 0.542 0.897 0.898 0.601 0.610 

560 0.737 0.852 0.713 0.780 0.505 0.715 0.733 0.775 0.681 0.666 

FLH 0.667 0.767 - - - - - - - - 

740((1/670)-(1/710)) 0.657 0.578 - - - - - - - - 

(520/700) - - - - - - - - 0.684 0.679 

(490/620) - - - - - - - - 0.531 0.500 

Fig. 11. The correlation between R(0.66) and the water quality parameters. 

 



 

 16 

700/670 band ratio algorithm did not perform better 

than the single band algorithms in this instance. The 

reflectance difference ratio algorithm 560-520/560+520 

for TSS gave an r
2 

= 0.874, higher than that derived by 

Gitelson et al. (1993) (r
2 

= 0.86) in European inland 

waters. The difference ratio algorithm also gave the 

strong correlations for OSS and ISS (r
2 

= 0.897 and 

0.620, respectively). The 700/560+670 band ratio 

algorithm gave equally strong results for OSS (r
2 
=  

0.897). The best performance for SD was given by the 

band ratio algorithm 520/700 (r
2 
= 0.684).  

 

The outcome that different empirical algorithms appear 

to perform equally well for a number of parameters is 

the result of the highly covariant data set and the 

existence of non-unique signals from 

parameters such as phytoplankton and 

TSS. Therefore the empirical  

algorithms cannot be expected to give 

similar results in other studies where 

the statistical properties of the data set 

are substantially different from those 

used here. Importantly, the high level of 

covariance means that the empirical 

algorithms are limited in their ability to 

account for – and separate – signals 

from the different water constituents, 

and therefore show changes in gross 

particulate matter, rather than from 

individual independent parameters. 

Importantly, the empirical algorithms 

cannot be expected to achieve the same 

performance when being used in 

conditions dissimilar to those of 

Zeekoevlei. 

4.4.3 Empirical algorithms for MERIS 

Table 6 shows the results of the 

regression analysis using the algorithms 

in Table 2 using MERIS match-ups. 

The five MERIS data types used in the 

regressions were TOA smile corrected 

radiance (LTOA), TOA reflectance 

(RTOA), DOS (ρwDOS) and COST (ρwCOST) 

corrected normalised water-leaving 

reflectances, and 6S corrected 

normalised water-leaving reflectance 

(ρw6S).  

The algorithm performance, indicated 

by the correlation coefficient, is 

strongly affected by the data type. In 

general, single band algorithms perform 

better with atmospherically corrected 

data while band ratio algorithms work 

better with TOA data. This is because 

ratio algorithms normalise the 

atmospheric effects so long as the bands are near to each 

other spectrally (e.g. 709/664). It is also evident that the 

image-based atmospheric corrections, which estimate 

the path radiance by a dark object, cause erratic 

algorithm performance due to the introduction of 

spectral bias. In contrast, ρw6S is associated with robust 

algorithm performance emphasising the desirability of a 

physically sound radiative transfer correction over 

simpler image-based techniques. It is also clear from 

Table 6 that most of the algorithms appear to perform 

equally well for most of the parameters. This is the 

result of the strong covariance between many of the 

parameters in the small data set (N=9). 

 

Table 6 

r
2
 correlation coefficients of empirical algorithms. Non-significant 

correlations (p<0.05) are in italics. N = 9. 

Algorithms Data type 

 LTOA RTOA ρwDOS ρwCOST ρw6S 

Chl a 

(708/664) 0.925 0.925 0.093 0.093 0.784 

RLH 0.910 0.887 0.918 0.812 0.865 

708 0.252 0.252 0.702 0.626 0.800 

753((1/664)-(1/708)) 0.808 0.782 0.712 0.712 0.772 

TSS 

(708/664) 0.691 0.691 0.013 0.013 0.634 

RLH 0.542 0.501 0.718 0.712 0.741 

708 0.091 0.091 0.655 0.625 0.810 

708/(559+664) 0.763 0.760 0.753 0.753 0.792 

ISS 

(559-509)/(559+509) 0.437 0.437 0.044 0.044 0.114 

708/(559+664) 0.378 0.372 0.433 0.433 0.483 

708 0.014 0.014 0.283 0.274 0.455 

OSS 

(708/664) 0.763 0.763 0.012 0.012 0.566 

RLH 0.666 0.626 0.745 0.724 0.647 

708 0.147 0.147 0.678 0.641 0.697 

708/(559+664) 0.721 0.725 0.638 0.638 0.639 

SD 

(708/664) 0.801 0.801 0.025 0.025 0.685 

RLH 0.624 0.600 0.805 0.822 0.756 

708 0.056 0.056 0.690 0.693 0.697 

(509/708) 0.687 0.687 0.052 0.052 0.556 

aCDOM 

Gitelson* 0.398 0.751 0.144 0.134 0.630 

412 0.610 0.610 0.466 0.442 0.249 

442 0.618 0.618 0.140 0.129 0.289 

(559-619)/619 0.372 0.372 0.033 0.033 0.204 

*(442 - (708/664) - 509)/(442 + (708/664) + 509) 
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In terms of algorithm performance, the 708/664 band 

ratio algorithm using TOA data gave the highest 

correlation for Chl a. Using nonlinear estimation 

(Equation 15) with the same data type, the correlation 

coefficient was improved to 0.965 (Table 7). The strong 

non-linear relationship between Chl a and the 708/664 

band ratio observed here is well-documented in other 

eutrophic waters (Gitelson et al., 1993, Jiao et al., 2006, 

Menken et al., 2006). The 708/664 algorithm also 

performed very well for estimating the significantly 

covariant parameters TSS, OSS and SD. Other 

algorithms which gave good results for Chl a are Zimba 

and Gitelson’s (2006) hypertrophic waters algorithm 

and the RLH algorithm. These algorithms are more 

robust than the 708/664 algorithm as they are relatively 

unaffected the data type. The 708 band algorithms give 

substantially better correlations with Chl a after 

atmospheric 

correction, as 

well as for all 

the other 

parameters. 

The most 

robust 

predictor of 

TSS is the 

708/(560+66

4) algorithm, 

although the 

highest 

correlation 

was produced by the single band 708 algorithm. The 

highest correlations for ISS were achieved before 

atmospheric correction with the (559-509)/(559+509) 

difference ratio algorithm, and after atmospheric 

correction with the 708/(560+664) algorithm. Algorithm 

performance for OSS is very similar to that for Chl a, as 

phytoplankton make up on average about 32% of OSS. 

All algorithms gave high  

correlations for SD, expectedly so as the Secchi disk 

depth is a good proxy for gross particulate load. Besides 

for ISS, aCDOM was the most difficult to predict of the 

parameters. Gitelson’s band ratio algorithm which 

accounts for the effects of pigment absorption by 

including the 708/664 ratio, gave good performance 

from TOA and BOA data types. The lack of causal 

explanation for the correlations with the 412 and 442 

Table 7 

Empirical algorithms derived from TOA MERIS reflectance (RTOA) used for creating maps. 

Empirical Algorithms r
2 

t P F RMSE N 

Chl a = 5.931 (708/664) 5.934  
0.964 - 0.0000 563.3 9.8% 9 

TSS = –84.428 + 218.329 (708/(559+664))
 

0.760 4.7 0.0022 22.2 14.1% 9 

OSS = –37.411 + 41.934 (708/664)
 

0.763 4.7 0.0021 22.5 10.9% 9 

SD = 79.469 – 30.596 (708/664)
 

0.801 -5.3 0.0011 28.2 8.0% 9 

aCDOM  = – 25.137 – 31.806 (Gitelson*)
 

0.751 -4.6 0.0025 21.1 13% 9 

ISS = 30.600 – 479.079 (559-509)/(559+509) 0.437 -2.3 0.0524 5.4 56.9% 9 

*(442 - (708/664) - 509)/(442 + (708/664) + 509) 

Fig. 12. Observed versus predicted water quality parameters derived from MERI TOA reflectance (RTOA) with 

empirical algorithms. 
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single TOA bands has already been noted above. 

Overall, for algorithms using TOA reflectance more 

than 75% of the variation of the parameters (besides 

ISS) could be explained with a RMSE of less  

than 15% (Table 7, Fig. 12). The t-statistics and F-

values show that the variance is well explained and that 

the band ratios/combinations can reliably be used to 

predict the parameters. The considerable degree of 

covariance between the parameters means that the 

algorithms effectively show changes in gross particulate 

loading rather than in individual parameters. The 

relative stability of the atmospheric conditions between 

MERIS scenes, shown in Fig. 9, means that the 

atmosphere is not a significant source of error in the 

derivation of the algorithms, especially since the 

algorithms employ band ratios. Importantly, the 

algorithms are only valid for the in-water and 

atmospheric conditions from which they are derived. 

4.5 Maps 

Fig. 13 shows maps of Chl a created from four cloud-

free MERIS scenes using the empirical algorithm in 

Table 7. The surface area of the maps range between 

110 and 150 ha at the 260×290 m MERIS pixel 

resolution, which is well below the 256 ha total surface 

area of the lake. As far as possible the pixels used in 

mapping are from the central ‘core’ area of the lake, 

reducing the chance of including erroneous ‘land’ 

pixels. The maps differ in size and shape because the 

number of pixels varied between 15 and 20, and some 

duplicated pixels were removed. The longitudes and 

latitudes on the maps were 

taken directly from the level 

1 MERIS scene and not 

further geo-corrected. The 

environmental conditions 

measured in situ 

corresponding to the maps 

are shown in Table 8. These 

are used to explain the 

spatial variability of the 

parameters visible on the 

maps. Fig. 13 shows 

appreciable variation in the 

magnitude and the spatial 

distribution of Chl a in 

Zeekoevlei on the four days. 

The southern basin appears 

to have higher sustained Chl 

a concentrations than the 

northern basin which, as 

previously explained, is 

most likely caused its 

proximity to the WWTW 

which is the largest source 

of nutrients to the lake. The 

prevailing wind and wave conditions seem to be 

correlated to the Chl a variability, especially in the 

northern basin. The very calm conditions experienced 

on the morning of April 1
st
 coincided with markedly 

lower Chl a concentrations than on the other days 

(maximum of 87.2 mg.m
-3

); while on April 20
th

 the high 

concentrations observed in the northern basin coincided 

with a strong southerly breeze. These observations 

suggest that mixing by wind and wave action has a 

significant effect on the phytoplankton (or suspended 

solids) density at the surface. In a shallow lake such as 

Zeekoevlei, mixing drives primary production through 

offsetting the effects of light limitation and algal self-

shading. Harding (1997) found that for Zeekoevlei, 

wind speeds greater than or equal to 2 - 3 m.s
-1

 are 

sufficient for mixing the upper 0.5 m of the water 

column, and speeds of greater than approximately 6 m.s
-

1
 are sufficient for mixing to the mean depth of the lake 

(1.9 m), provided a fetch of between 750 and 1000 m.  

Therefore we can assume that on the 20
th

 of April the 

lake was mixed to the mean depth at least in some 

regions. On this day, mixing of negatively-buoyant 

chlorophyta from the subsurface water layers and 

sediments from the lake floor led to the observation of 

higher apparent Chl a concentrations at the surface 

(especially in the northern basin). It is also plausible that 

phytoplankton from the more productive southern basin  

may have been transported to the northern basin by the 

strong southerly wind. According to Scott et al. (1969) 

buoyancy by cyanobacteria is offset in wind speeds 

exceeding approximately 3.7 m.s
-1

 (= 13.3 km.hr
-1

). 

Fig. 13. Checkerboard plots of Chl a derived from an empirical algorithm using 

MERIS TOA reflectance (RTOA) for four days in April 2008. Units are in mg.m
-3

. 

Note differences in colour bar scales. 
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This explains the absence of surface accumulations on 

windy days and their appearance in parts of the lake on 

April 1
st
 and 23

rd
. However, the appearance of 

cyanobacteria on the surface during calm conditions did 

not lead to higher Chl a concentrations. This may be 

caused by a reduction in the overall phytoplankton 

density at the surface due to the absence of mixing of 

non-byoyant phytoplankton from the subsurface layers, 

or as a result of high levels of sunlight which causes 

chlorophyll photo-oxidation (Nelson, 1993). Therefore, 

it appears that wind and waves are the dominant factor 

affecting the spatial variability and magnitudes of Chl a 

concentrations visible on the maps. Statistical analysis 

of the maps shows how remote sensing can lead to  

improved estimates of the mean spatial values of Chl a 

in Zeekoevlei. The standard error of the mean for in situ 

samples ranged from 7.8 to 50.8% (calculated using 

Equation 3). In contrast the standard error of the mean 

for remote sensing estimates (calculated using Equation 

16) was smaller, ranging from 2.3 to 6.9%. Thus the 

large uncertainties involved with estimating the mean 

concentration for the lake with only a few in situ 

measurements is decreased 

through using remote 

sensing. The observed error, 

the difference between mean 

remotely sensed and in situ 

measurements, is as large as 

-30%. Therefore, assuming 

that the true mean for 

Zeekoevlei is the remotely 

sensed estimate, estimates of 

the mean using in situ 

measurements alone in this 

example may be up to 30% 

in error, although this error 

is reduced by increasing the 

number of sample points.  

 

 

Fig. 14 shows maps for the 

remaining parameters from 

April 20
th

 created using the 

empirical algorithms in 

Table 7. Maps were not drawn for ISS because the 

correlation coefficient was not significant. The maps all 

display patterns very similar or identical to that of Fig. 

13. This is mainly due to the fact that the algorithms for 

Chl a, OSS, SD and aCDOM all make use of the 708/664 

band ratio and so vary in proportion with each other. As 

a consequence, the position and shading of pixels 

(concentrations distributions) are identical although they 

have different values. This is one potential drawback 

associated with empirical algorithms, and it illustrates 

the limited ability they have to separate signals from 

different parameters when there is a significant degree 

of covariance. The TSS map shows a somewhat 

different pattern, as the algorithm uses a slightly altered 

band ratio, but also clearly shows higher concentrations 

in the southern basin and lower concentrations in the 

northern basin near the mouths of the Lotus Rivers. The 

divergence, albeit small, between the TSS and Chl a 

maps may be explained by the inorganic contribution to 

TSS. The observation of higher TSS concentrations 

coincided  

Table 8 

Environmental variables measured in situ simultaneous to MERIS overpasses 

Date Points 

Sampled 

Sky conditions Wind speed & 

direction 

Wave 

height 

Water 

Temp. 

Water colour 

01/04 1 – 4 Clear. 0 m.s
-1 

- 0 cm 21.5° C Bright green with surface 

bloom. 

07/04 2 – 3 Partly cloudy. 1.9 m.s
-1

 S 3 cm 19.8° C Medium green. 

20/04 2 – 3 Clear. High cirrus. 5.3 m.s
-1

 SE 9 cm 18.6° C Dark green. 

23/04 Pier Clear. 1.4 m.s
-1

 SW 0 cm 20.1° C Bright green with surface 

bloom. 

Fig. 14. Checkerboard plots of TSS, OSS, SD and aCDOM for April 20th 2008 derived 

from MERIS TOA reflectance (RTOA) using empirical algorithms. 
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with windy conditions supporting the suggestion that 

wave action mixes negatively-buoyant phytoplankton 

and sediments composed mainly of organic detritus 

from the lake floor to the surface. The SD map (dark 

shading denotes greater water clarity) most visibly 

reveals the clearer water conditions in the northern 

basin. Further statistical analysis revealed that the 

observed error for the mean spatial estimate of TSS may 

be as large as 20% when using only one sample point. 

However, the observed errors were not as large for OSS, 

SD and aCDOM owing to the small range of values for 

these parameters.  

5. Discussion 

5.1 Limnological conditions 

The limnological conditions during April 2009 were 

typical of those measured previously in Zeekoevlei 

(Harding, 1992). The mean concentrations of Chl a and 

TSS were very high (148.6 mg.m
-3

 and 49.1 g.m
-3

), and 

mean water clarity as measured by Secchi disk was very 

low (27.9 cm). Absorption by CDOM at 440nm (not 

previously published for Zeekoevlei) ranged between 

1.83 and 3.73 m
-1

 with a mean of 2.69 m
-1

, typical of 

other inland waters (N = 31) (e.g. Kirk, 1994). The 

value of the slope coefficient S ranged between 0.0169 

and 0.0212 with a mean of 0.0188 (N = 31). The 

majority of TSS was detritus (about 52%), with 

phytoplankton and minerals composing the remaining 

25% and 23%, respectively. There was significant 

covariance between all of the limnological parameters 

which had implications for algorithm development and 

performance. The maps produced from MERIS showed 

the temporal and spatial variability and range of the 

parameters in a synoptic manner unequalled by 

conventional monitoring techniques. This provides 

valuable information for management and enhanced 

understanding of the spatial and temporal dynamics of  

cyanobacteria-dominated algal blooms and water 

quality in Zeekoevlei. There was little overall spatial 

variability in the parameters, with only somewhat higher 

production in the southern basin and slightly clearer 

water in the northern basin near the inlets of the Great 

and Little Lotus Rivers. The variability in spatial 

patterns and concentrations observed between the four 

days was most likely caused by the wind and wave 

climate. Windy conditions were associated with higher 

Chl a and suspended solids concentrations resulting 

from transportation and vertical mixing of negatively-

buoyant phytoplankton and sediments dominated by 

organic detritus from the subsurface water layers and 

lake floor. Therefore, wind and waves appear to be the 

main driving mechanism behind water quality 

variability in Zeekoevlei, in agreement with the 

hypothesis that wind induced mixing has profound 

effects on the primary production in the lake, which has 

been shown to be limited by temperature and the 

attenuation of photosynthetically active irradiance 

(Harding, 1997). The presence of sustained increased 

production in the southern basin was attributed to 

underground nutrient seepage from the adjacent Waste 

Water Treatment Works. The standard error of mean 

parameter estimates was reduced through using MERIS.  

5.2 Apparent optical properties 

In situ measurements of upwelling radiance were 

strongly dominated by absorption from tripton 

composed of detritus and minerals, phytoplankton 

pigments and CDOM, and scattering from suspended 

inorganic matter. There was very little upwelling light 

in the blue (<500 nm), strong absorption minima at 

~620 and ~680 nm characteristic of phycocyanin and 

Chl a pigments, and strong reflectance peaks at ~560 

and ~710 nm. The shapes and magnitudes of the water-

leaving reflectance spectra were comparable to those 

measured in other hypertrophic/eutrophic waters with 

cyanobacteria-dominated phytoplankton assemblages 

(Dekker, 1993, Dall'Olmo & Gitelson, 2005, Simis et 

al., 2007). The sharp peak near 710 nm was 

significantly correlated with Chl a and suspended solids 

(Gitelson, 1992). It appears that scattering by gross 

particulate load is the dominant causal IOP in these very 

turbid waters. The relative invariance of the shapes of 

the spectra indicates that the IOPs were relatively 

constant for the duration of sampling. Assuming this is 

true, the differing magnitudes of the spectra are likely to 

be caused by variable concentrations of phytoplankton 

and TSS, which, as already discussed, is regulated by 

the physical wind environment.  

5.3 Atmospheric corrections 

Zeekoevlei’s turbid hypertrophic water and small size 

presented a challenging case for atmospheric correction. 

Nevertheless, there was excellent agreement between 

the spectral shape and magnitude of atmospherically 

corrected MERIS spectra and those measured in situ. 

This finding confirms that MERIS is useful for 

detecting accurate water-leaving spectra for 

eutrophication and cyanobacterial bloom applications in 

small, hypertrophic water bodies. The image-based 

corrections introduced a spectral bias and negative 

values in the blue which the 6S correction avoided. 

Therefore the physically robust 6S radiative transfer 

correction is preferable to the image based techniques 

used here, and could be included in automated 

processing procedures conditional upon the availability 

of AOT input data for the code. Such data could be 

provided through, for example, the Aerosol robotic 

remote aerosol properties retrieval Network 

(AERONET). More recently developed atmospheric 
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correction schemes such as the Self-Contained 

Atmospheric Parameters Estimation for MERIS data 

(SCAPE-M) which uses a MODTRAN radiative 

transfer code based LUT to derive atmospheric 

properties over land pixels which is then extrapolated 

over those of adjacent water (Guanter et al., 2009), and 

techniques employing bands in the short wave infra-red 

(Shi & Wang, 2009), were not considered  in this paper, 

but may provide significant improvements of 

atmospheric correction over turbid waters. The 

adjacency effect, which was not corrected for, was 

visible as enlarged reflectance values especially in the 

near-infrared bands. The effect does not seem to greatly 

reduce the strength of empirical algorithms because of 

the large signal from the turbid water. In future, 

alternative correction schemes such as those used in 

SCAPE-M or others (Brando & Dekker, 2003, Candiani 

et al., 2007), should be considered alongside the ICOL 

processor. 

5.4 MERIS NN and empirical algorithms 

The results of the MERIS L 2 and Eutrophic Lakes 

Processor NN algorithms demonstrate well the 

inadequacy of many current semi-analytical algorithms 

to cope with small hypertrophic turbid water bodies. 

The products produced poor comparisons with optical 

and geophysical in situ measurements, giving negative 

reflectances and reflectances with uncharacteristic 

shapes and magnitudes, and generally grossly 

underestimating Chl a, TSS and aCDOM. The reasons for 

the failure of the NN algorithm gives insight into the 

potential drawbacks associated with semi-analytical 

procedures in hypertrophic waters. Firstly, semi-

analytical type algorithms are highly dependent on the 

accurate retrieval of water-leaving reflectance by 

atmospheric correction and break down when it fails. As 

a consequence, so long as atmospheric correction over 

turbid water remains a challenging task, the usefulness 

of semi-analytical approaches may be limited in these 

environments. Since bio-optical models are based on 

simulations of the water-leaving reflectance, input of 

incorrect water-leaving reflectances from satellites will 

inevitably cause water constituent retrieval to fail, 

especially for optimisation solutions such as Neural 

Networks which iterate to minimise the difference 

between observed and predicted water-leaving 

reflectance spectra. Secondly, the non- applicability of 

many bio-optical models in terms of IOPs and 

concentration ranges to hypertrophic conditions limits 

the usefulness of semi-analytical procedures. This is 

especially true in instances where the atmospheric 

correction and bio-optical model are coupled, such as 

for the Eutrophic Lakes processor. Therefore, current 

semi-analytical algorithms require more accurate 

atmospheric correction procedures (see section 5.3 for 

suggestions) and correct parameterisation of bio-optical 

models to validate their use in turbid hypertrophic lakes. 

Unfortunately, re-parameterising the MERIS NN 

algorithms was outside of the scope of this study owing 

to the scarcity of inland IOP measurements in southern 

Africa. 

 

In general, the empirical algorithms derived from both 

in situ and MERIS radiances/reflectances were able to 

estimate the water quality parameters with a high degree 

of confidence. In particular, the 700, 700/670, 

700/(560+670), and RLH algorithms worked well in the 

hypertrophic turbid water owing to the high correlation 

of Ch a and TSS with the peaks near 700 and 560 nm. 

The highest correlation for estimating Chl a was 

achieved with a TOA 708/664 MERIS reflectance ratio 

algorithm which had a r
2
 value of 0.96 and a standard 

error of only 9.8% (N = 9). This finding again confirms 

the effectiveness of the 708/664 TOA reflectance ratio 

and the high potential that MERIS has for monitoring 

hypertrophic turbid waters (See also Giardino et al., 

2005, Gitelson et al., 2009, Moses et al., 2009b, Moses 

et al., 2009a). Thus it appears that atmospheric 

correction is not a prerequisite for Chl a estimation in 

hypertrophic lakes when using empirical type 

procedures and MERIS. The different algorithms were 

variably sensitive to atmospheric correction: in general 

single band algorithms improved after atmospheric 

correction, while algorithms such as RLH and 708/664 

were more robust with TOA data. In terms of algorithm 

performance a radiative transfer atmospheric correction 

was superior to the image based procedures. It is 

important to adequately consider the limitations of the 

empirical procedures used in this study. The empirical 

algorithms (from MERIS) were derived from a small 

data set (N = 9) displaying considerable covariance, 

which meant that many of the algorithms performed, or 

at least appeared to perform, equally well for a number 

of parameters (e.g. Chl a, TSS and SD). In reality 

however, the empirical algorithms are probably limited 

to detecting changes in gross particulate matter 

composed of material with non-unique signals rather 

than changes in the individual parameters per se. While 

the empirical algorithms are only applicable for use in 

this study, it is expected that using the same bands will 

give equally strong results in other similar turbid 

hypertrophic waters. 

 

A comparison between the semi-analytical and 

empirical algorithms shows that while the advantages of 

semi-analytical type algorithms favour their use in 

operational water quality monitoring systems, this study 

demonstrates the considerable potential value for simple 

TOA algorithms for hypertrophic systems. Whilst 

remotely-sensed analysis of water quality for sub-

hypertrophic inland waters still presents significant 
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challenges with regard to atmospheric and in-water 

algorithms, it thus appears the detection of hypertrophy 

across inland water bodies could be achieved using 

relatively simple TOA algorithms. In order to improve 

semi-analytical algorithm performance it is 

recommended that AERONET sites be established to 

improve knowledge of atmospheric variability and 

improve atmospheric corrections, and that IOP 

measurements specific to eutrophic/hypertrophic 

southern African inland waters be made. Regional 

algorithms (empirical and semi-analytical) enabling 

better estimates of water quality and rapid assessment of 

the status and trends of environmental threats such as 

eutrophication and HABs in inland waters would be of 

immense benefit for southern Africa.  

6. Conclusion: inland water quality monitoring 

with MERIS  

The results of the study indicate the feasibility of using 

MERIS (or future similar medium resolution sensors) 

for monitoring water quality in hypertrophic inland 

waters. The specifications of the MERIS sensor, its 

frequent data acquisition, 300 m pixel resolution, high 

signal-to-noise ratio, and number and position of 

spectral bands, make it suited to regular/real-time 

monitoring applications observing change occurring 

over short time scales. MERIS’s relatively coarse spatial 

resolution was found to be adequate to derive significant 

information even for small lakes such as Zeekoevlei. A 

comparison between correlation coefficients of 

algorithms using the hyperspectral radiance/irradiance 

reflectance, and those using MERIS wavebands, reveals 

that, in this study, there is only a slight advantage in 

using a hyperspectral resolution sensor over the 

multispectral MERIS channels. This is due to the 

position and number of MERIS bands, which allow the 

application of various empirical and semi-analytical 

algorithms. In conclusion, MERIS is suitable for 

monitoring water quality parameters and cyanobacteria-

dominated algal blooms in a small hypertrophic lake 

such as Zeekoevlei, despite the challenges related to its 

small size and turbid water conditions. The potential of 

MERIS for detecting specific cyanobacterial pigments 

such as phycocyanin should be investigated directly in 

future (e.g. Simis et al., 2005, Kutser et al., 2006). The 

findings present substantial opportunities for improving 

monitoring of other inland and coastal waters with 

similar water quality problems. It is recommended that 

remote sensing be integrated into inland water quality 

monitoring programs in southern Africa in order to 

better determine the regional status and trends of 

environmental threats from eutrophication and algal 

blooms. 
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