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Abstract. We discuss a new theory of the universe in which the vacuum energy is
of classical origin and dominates the energy content of the universe. As usual, the
Einstein equations determine the metric of the universe. However, the scale factor is
controlled by total energy conservation in contrast to the practice in the Robertson-
Walker formulation. This theory naturally leads to an explanation for the Big Bang
and is not plagued by the horizon and cosmological constant problem. It naturally
accommodates the notion of dark energy and proposes a possible explanation for dark
matter. It leads to a dual description of the universe, which is reminiscent of the dual
theory proposed by Milne in 1937. On the one hand one can describe the universe
in terms of the original Einstein coordinates in which the universe is expanding, on
the other hand one can describe it in terms of co-moving coordinates which feature in
measurements. In the latter representation the universe looks stationary and the age
of the universe appears constant.

The paper describes the evolution of this universe. It starts out in a classical state
with perfect symmetry and zero entropy. Due to the vacuum metric the effective
energy density is infinite at the beginning, but diminishes rapidly. Once it reaches the
Planck energy density of elementary particles, the formation of particles can commence.
Because of the quantum nature of creation and annihilation processes spatial and
temporal inhomogeneities appear in the matter distributions, resulting in residual
proton (neutron) and electron densities. Hence, quantum uncertainty plays an essential
role in the creation of a diversified complex universe with increasing entropy. It thus
seems that quantum fluctuations play a role in cosmology similar to that of random
mutations in biology. Other analogies to biological principles, such as recapitulation,
are also discussed.
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1. Introduction

In standard quantum mechanics conservation of energy is related to the invariance of

the Lagrangian under space-time translations and is expressed as a divergence equation

for the energy-momentum tensor. In General Relativity (GR) this divergence equation

is replaced by a covariant equation and is equivalent to the Bianchi identities satisfied

by GR [1]. However, in an expanding universe, this symmetry is no longer equivalent

to energy conservation. For example, the popular de Sitter universe violates energy

conservation ([2], p.120).

In view of the importance of the principle of total energy conservation we propose to

impose this principle as a separate condition in GR. For a non-expanding universe this

condition reduces to the usual divergence equation. However, the general consensus is

that the universe is expanding, in which case this principle becomes a separate condition.

It can be imposed by demanding that the spatial integral over the energy component of

the energy-momentum tensor is constant over time. However, in the standard Robertson

Walker (RW) metric this procedure leads to a problem. Given an energy-momentum

tensor, the metric of the universe is fixed by the GR equations. In the usual RW metric,

the expansion is incorporated in the metric via the scale factor, so that the expansion is

fixed by the GR equations. Hence, there is no room for another condition for total energy

conservation as the whole dynamics is already fixed (apart from boundary conditions).

It is thus not surprising that the solution of the GR equations for a universe with a

constant cosmological constant violates energy conservation ([2], p.120). Our solution

to this conundrum is to remove the scale factor from the metric. This means that the

expansion now has to be derived in a different way, and this is done via a scale factor a(t)

fixed by energy conservation. If the universe does not expand, this scale factor reduces

to unity, and the extra condition merely represents a consistency condition for two

equivalent definitions of energy conservation. This formulation ensures that the scale

factor is a truly global function as it is fixed by the total energy, which is a property of

the whole universe. It also means that the metric tensor exclusively serves its natural

function of reflecting the (local) distribution of energy.

For a flat universe with constant vacuum energy density, this new formulation leads

to a linear expansion. This is clearly the simplest possible mode of expansion of the

universe and provides a natural representation of the observed Hubble expansion. It

should be noted that such a simple solution is impossible in the RW metric, as the

linear case represents a singular limit in that framework (only by setting the curvature

k = −1 can one find a linear solution, the so-called Milne universe [2]). The vacuum

energy, which dominates the energy content of the universe in our picture, is easily

identified with the so-called dark energy, both having a pressure-to-density ratio of -1.

Hence, this model automatically incorporates the present consensus that dark energy

dominates the energy content of the universe. In addition to explaining dark energy, the

constant vacuum energy density has many other important consequences and plays a

central role in the dynamics of the universe, as we will demonstrate amply in this paper.
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The original theoretical motivation for constructing a universe with a constant vacuum

energy is that our analyses in quantum field theory (QFT) (see Section 2) suggest that

the vacuum energy has no quantum contributions, in contrast to generally held beliefs.

It is then natural to identify dark energy with a classical vacuum energy, however this

forces a new approach to cosmology, as the conventional solution in this case - the de

Sitter universe - does not feature a big bang singularity.

Current theoretical scenarios often contain an inflationary period at t = 10−35 s.

In our theory an inflationary period is not mandatory, as the vacuum metric leads

to an infinite horizon, so that one of the main motivations for inflation falls away.

This also obviates the need for unknown forces to explain the inflationary epoch, in

particular those forces which derive from QFT vacuum energy and which would be

excluded by our QFT findings. Most scenarios agree that this early period is followed

by a period of linear expansion, moderated by a slight deceleration initially and a slight

acceleration in the current epoch. Hence,the dominant form of the expansion (linear)

is already accounted for in our approach. Phases of deceleration and acceleration can

occur in our model because of known quantum field theoretic processes, such as the

creation and annihilation of particles. The presence of matter and radiation does not

change the essential linear evolution of the universe in our description, in contrast to

universes described by Friedmann-Robertson-Walker(FRW) models, which are vastly

different in radiation - and matter - dominated situations. Hence, the simple vacuum

metric still dominates the universe in the presence of matter and radiation. Another

important difference with the Friedmann models is that in the solution of the Einstein

equations, the localized nature of matter distributions is taken into account. Since our

scale factor is controlled by energy conservation rather than by the Einstein equations,

such a refinement of the cosmological treatment is now feasible. This leads to a unified

treatment of cosmological and local astronomical phenomena. Another consequence of

this improvement is the emergence of a new tentative explanation of dark matter, which

does not require any exotic new particle assumptions.

The evolution of the universe in this theory has rather definite characteristics, with

some of the details still to be developed. Contrary to most popular scenarios, the

universe starts out as a classical system, with an effective energy density proportional

to t−3. The universe with positive and negative time are exact replicas of each other,

answering the question what happens ”prior” to time zero. The cosmological principle

(i.e. the homogeneity and isotropy of the density) is satisfied exactly in this initial

classical period, so that the entropy is zero. After about 5 × 10−24 seconds quantum

field theory becomes effective and the first physical (rather than virtual) particles are

created. The particle physics scale 5 × 10−24 naturally emerges from our formulation

and is expressed in terms of the fundamental cosmological constants. This epoch is

characterized by deflation, as the universe has to contract to supply the energy for

the production of matter. The emergence of physical particles in this epoch also

allows the expression of the subsequent evolution in thermodynamic language. The

particle-creation epoch is characterized by the Planck energy and by a corresponding
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temperature of 1032 0K. In the subsequent epoch particles and anti-particles annihilate,

leaving a residue of protons, neutrons and electrons. This period is accompanied by an

inflationary expansion to counter the loss of energy in the annihilation phase due to the

changing metric. After these processes, the normal Big Bang dynamics sets in which is

again characterized by a linear scale factor.

The uncertain outcome of quantum events plays an essential role in the creative

epoch. Firstly, it is responsible for breaking the symmetry of the matter distribution,

leading to sufficient inhomogeneities for localized matter concentrations to form. In

later epochs this asymmetry will initiate the creation of massive astronomical objects.

In a classical universe this spatial symmetry would be maintained and no concentrations

of matter could possibly emerge. Secondly, we expect the quantum fluctuations to be

responsible for the imbalance between the different particle and anti-particle populations

after the annihilation epoch. Hence, the current universe is a consequence of the physical

laws and historical accidents, caused by the outcome of quantum processes in our world.

Thus, randomness is as much a factor in the evolution of the universe as it is in biological

(mutation) processes. To some extent the principle of the survival of the fittest is carried

in quantum physics by the probability functions. Objects or configurations that form in

the early universe, but then decay and vanish from the universe, appear to play a role

similar to that of unsuccessful species in biology.

2. A universe with constant vacuum energy density

We will assume that the vacuum energy density ε is constant and is a basic property

of Nature. This assumption is equivalent to the presence of a non-zero cosmological

constant and leads to the usual de Sitter solution for the common Robertson-Walker

(RW) metric. The assumption that the vacuum energy density is constant and small

appears in conflict with standard QFT estimates, which quote vacuum energy densities

of between 40 and 120 orders of magnitudes larger than the ”observed” value. This

problem of standard QFT is known as the cosmological constant problem ([3], [4], [5]).

Our hypothesis therefore implies that the vacuum energy does not derive from such

QFT processes. To put it more bluntly: it suggests that the usual QFT derivations

of vacuum processes contain serious flaws. Although this may be a natural conclusion

to draw because of the phenomenal discrepancy between the standard QFT result and

experiment, various practices with vacuum expectation values (vev’s) in QFT have

been so ingrained that the acceptance of this conclusion will require much debate. It

therefore appears opportune to present some consequences of this hypothesis (such as

in cosmology), before engaging in a full debate on its theoretical motivation. Our

hypothesis is based on a study of the role of creation and annihilation operators of

particles and anti-particles in QFT. We found that many vacuum phenomena, such

as the definition of the propagator as a time ordered product, survive under our

reformulated operator algebra. Also, the Casimir effect [6], which is often seen as a

consequence of QFT vacuum energy, can be derived without invoking any vacuum energy
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[7]. We contend that other phenomena, such as the vacuum condensates in QFT [8] have

been misinterpreted, and can possibly be reformulated with an equivalent quantitative

formulation without resorting to the QFT interpretations of the vacuum used presently.

Hence, the purpose of the present study is to derive a realistic cosmological theory

for a constant (classical) vacuum energy density. The fact that the hypothesis avoids

the cosmological constant problem and leads to a very elegant theory which explains

many cosmological phenomena in a simple way, is then seen as a strong endorsement

of the correctness of this hypothesis. We decided to test this hypothesis first in the

cosmological context

Accepting this hypothesis we are now confronted with the standard de Sitter

solution of the GR equations for a non-zero cosmological constant. This solution has

no singular beginning. It also leads to a violation of total energy conservation, as the

expanding vacuum universe will increase its energy content with time [2]. The solution

to this problem is to employ a metric distinct from the usual Robertson-Walker metric.

The proposed solution is a good candidate for the description of the actual universe, as

it features the expected singularity at time t = 0. In addition energy conservation and

the expansion of the universe will be compatible rather than in conflict with each other.

Let us briefly discuss this solution. The vacuum energy is represented by the

following energy-momentum tensor:

Tµν = −εgµν , (1)

where we use the metric - popular in cosmology - with g00 negative, so that ε is positive

for positive vacuum energy. The Einstein equations then read:

Rµν − 1

2
Rgµν = −8πGεgµν . (2)

In view of the observed (approximate) spatial flatness of the universe [9] we try to solve

this equation (2) with a metric tensor that is conformally flat:

gµν = −g(x)ηµν , (3)

where ηµν is the Minkowski metric. In contrast to the Robertson-Walker (RW) metric,

we do not introduce a scale factor in the metric. This raises the question how to account

for the expansion of the universe in the current parametrization. As we will see shortly,

we will account for the expansion without abandoning the Minkowski metric ηµν . Since

the vacuum is expected to be spatially homogeneous, we restrict the dependence of

g(x) to the time coordinate t. We then obtain the following solution of the Einstein

equations:

g(t) =
3

8πGεt2
=

t2s
t2

, (4)

where ts is a characteristic time, which will play an important role in the following.

Hence, the conformally flat metric of this vacuum universe now reads explicitly as

follows:

ds2 =
t2s
t2

(
−dt2 + dx2 + dy2 + dz2

)
. (5)
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This can be contrasted with the usual Robertson-Walker metric where:

ds2 = −dτ 2 + aRW (τ)2(dx2 + dy2 + dz2), (6)

The two representations are mathematically related by the following transformations:

τ = ±ts ln(t/ts) −→ aRW (τ) = exp(∓τ/ts), (7)

where the latter can be recognized as the de Sitter solution. However, the different

choices of the physical variables lead to very different universes. For example, an

expanding de Sitter universe (aRW (τ) = exp(τ/ts) with τ positive and increasing

towards the future) corresponds to a decreasing t in our formulation, and therefore

to a contracting universe. Our definition of the scale factor will accordingly follow a

very different route from that in the RW formulation. It will not be based on the metric

(which is left in its Minkowski form) and rather being based on the demand of energy

conservation. The 1/ε dependence of g(t) emphasizes the non-perturbative nature of

this vacuum solution, typical of complex systems. Hence, in a cosmological context it

is incorrect to neglect the small vacuum energy ε, or treat it perturbatively. The 1/t2

singularity of the metric at t = 0 makes this vacuum solution a good candidate for the

description of the Big Bang.

An important property of this vacuum solution is that the geodesics represent

either stationary points or test particles that move with the speed of light. Instead, in

an ordinary flat universe (without vacuum energy) any (constant) speeds not exceeding

the velocity of light are allowed [10]. It could thus be argued that the presence of

the (classical) vacuum energy is responsible for both the origin of the velocity of light

and for the apparent stationary nature of astronomical objects in the cosmos. Other

interesting perspectives on the significance of ε, or equivalently (if G is constant) the

cosmological constant Λ, are reviewed by Padmanabhan [11]. We quote: ”the innocuous

looking addition of a constant to the matter Lagrangian (which does not does not affect

the dynamics of matter) leads to one of the most fundamental and fascinating problems

of theoretical physics”. What the present author finds particularly interesting is the

suggestion [11] to consider the cosmological constant as a Lagrange multiplier, ensuring

the constancy of the 4-volume of the universe when the metric is varied. Since we will see

that the constancy of the (invariant) volume in the current approach is closely related

to energy conservation, we suspect that there are deeper connections to be resolved.

It is interesting to note that Einstein originally introduced the cosmological constant

to ensure the stationary nature of the universe, while we use it to generate an expanding

universe. However, our analysis will show that from the perspective of a co-moving

observer the universe does look stationary. This result also suggests possible links

between our description and Hoyle’s steady state universe, as the latter also makes

use of a constant cosmological constant (see a paper by McCrea [12]).

In the next section we will demonstrate the origin of the linear expansion of the

universe and the prescription for determining the scale factor.
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3. Energy Conservation in General Relativity

The energy-momentum conservation condition from ordinary quantum mechanics is

generalized in GR by replacing the derivative of the energy-momentum tensor by its

covariant counterpart:

∇µT
µν = 0. (8)

This condition is automatically satisfied for a metric satisfying the Einstein equations,

and can be shown to follow from the Bianchi identities [1]. Equation (8) is trivially

satisfied by the vacuum energy density (Eq. (1)). However, in an expanding universe

condition Eq. (8) is not sufficient to guarantee energy conservation. The total energy

content of the vacuum universe is obtained by integrating −T 0
0 = ε over the invariant

volume:

E =
∫

V

d3x
√

3g ε =
∫

V

d3x
t3s
t3

ε. (9)

Here 3g is the induced spatial metric, i.e. it is the spatial component of the determinant

of the metric tensor (Ref. [2], p.120), which in our diagonal case equals 3g = g11g22g33.

In order to ensure energy conservation, the spatial volume V in (9) must expand like t3:

V (t) =
t3

t3s
Vs. (10)

The proportionality constant Vs can be interpreted as the invariant volume since:
∫

V

d3x
√

3g = Vs, (11)

is constant. This invariant volume also equals the physical volume of the universe at the

characteristic time ts . This volume also features in the expression for the total energy:

εVs, which therefore is invariant, as it should be. The expansion of the volume of the

universe is best interpreted in terms of a scale factor that rescales distances, especially

since it remains finite if Vs is infinite. Hence, we write:

V (t) = a(t)3Vs, (12)

where the scale factor for the vacuum equals:

a(t) =
t

ts
. (13)

Even after the introduction of matter and radiation, V (t) will still display this cubic time

dependence. In addition, however, Vs will change every time a creation or annihilation

process takes place. Hence, in the real universe a(t) will also have to reflect these QFT

processes. We will come back to this aspect in Section 6.

We note finally that the linear scale factor in (13) is unique to our approach as is

normally forbidden in the RW metric [2]. The only other situation in which a linear scale

factor occurs is in the Milne universe [2]. However, as this universe has zero vacuum

energy and non-zero curvature, it is not related to our universe and is not an acceptable

model of the universe.
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4. The modified metric in the presence of matter

The vacuum universe can be described as an ideal fluid with a pressure-to-density

ratio of -1. This value is in excellent agreement with the Supernova Legacy Survey

(w = −1.023 ± 0.090(stat) ± 0.054(sys) [13] for the dark energy equation of state).

Hence, this strongly suggests that dark energy and vacuum energy are one and the same

thing. Since dark energy appears to dominate the energy content of the universe, by

implication vacuum energy dominates the global dynamics of the real universe. However,

as the presence of matter and radiation is a consequence of QFT processes and make

the universe interesting, our next task is to include these aspects as well. In view

of the dominance of the vacuum energy it seems reasonable to treat the matter and

radiation terms to first order, i.e. to linearize the Einstein field equations within the

non-perturbative vacuum background. This approach has additional advantages, as

it allows us to solve the Einstein equations exactly for the proposed representations

of matter and radiation, and allows us to sidestep certain problems arising from the

quantum nature of these terms.

The usual way to characterize the universe in the presence of matter and radiation

is as an ideal fluid. However, instead of the constant pressure and density appropriate

for a vacuum universe, one must now consider the pressure and density as being time

dependent [14]. In our opinion, even this generalization is not sufficient for the matter

in the universe: an important characteristic of matter is that it is localized, whereas

the perfect fluid description does not take into account any spatial dependence. This

localized nature of matter is true, irrespective of whether matter is in the form of

fermions, planets, stars or galaxies. Astronomical objects are separated by vast empty

areas and the matter distribution is thus far from being locally homogeneous. Neglect

of this spatial dependence of matter is unlikely to provide the correct solution of the

differential Einstein equations, where the spatial derivatives are expected to play a

prominent role. Hence, we propose a matter density representation which emphasizes

this local inhomogeneity:

Tmatter
µν (x) = −ρmatter(x)ĝ00δµ0δν0, (14)

where the matter density is represented by

ρmatter(t, ~x) =
∑

i

Mi√
3ĝ(t, ~x)

δ(3)(~x− ~xi). (15)

A similar form for a source term expressed in terms of delta functions accompanied by

a suitable function of the metric, was already suggested by Weinberg ([14], (5.2.13)).

The appearance of the metric in the energy expression is not unexpected: the covariant

condition, Eq.(8), clearly shows that a consistent definition of the energy-momentum

tensor requires a particular dependence on the metric. In fact, the form (14) satisfies the

covariant energy conservation condition (8) to the required order. We also introduced

the new metric ĝµν which accounts for the presence of matter. Since we treat the

corrections to the vacuum metric to first order, we can approximate the exact metric
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in Eqs.(14 ) and (15) in most analyses by the vacuum metric gµν . If we integrate this

density (i.e. −T 0
0 ) over the whole universe we get the sum of all masses, as desired.

In order to calculate the first order effect of the matter term on the metric we write

the metric tensor as follows:

ĝµν(t, ~x) = g(t)
{
ηµν + hmatter

µν (x)
}

, (16)

where g(t) is given by (4). The inverse metric to first order then equals:

ĝµν(t, ~x) = g(t)−1
{
ηµν − ηµαhmatter

αβ (x)ηβν
}

. (17)

The linearized Einstein field equation reads:

− ηλλ∂λ∂λhνµ + ηλλ∂λ∂νhµλ + ηλλ∂λ∂µhλν − ηλλ∂ν∂µ hλλ

+
2

t

(
∂νhµ0 + ∂µh0ν − ∂0hνµ + ηνµηλλ∂λhλ0 − 1

2
ηνµη

λλ∂0hλλ

)
+

6

t2
h00ηνµ

= 16πG
(
Tmatter

µν − 1

2
gµνT

matter
)

= 16πGgρmatter
(
δµ0δ0ν +

1

2
ηµν

)
, (18)

where some vacuum terms cancelled out. The solution can be expressed in terms of a

single function h(x):

hmatter
µν (x) = δµνh(x), (19)

with:

h(x) = 2Gg
∫

V̂

d3x′
ρmatter(t, ~x′)
|~x− ~x′| = 2G

t

ts

∑

i

Mi
1

|~x− ~xi| . (20)

Here the original volume V is replaced by the volume V̂ , associated with the new state

vector of the universe. This new volume (and hence the corresponding scale factor)

is determined by the demand of global energy conservation, and is not fixed by the

Einstein equations (see Section 6).

The only difference between (20) and the standard result in a flat background metric

is the factor t/ts. This factor counters the expansion of the universe and ensures that

astronomical objects are in stable orbits despite the expansion of the universe. If we

replace the coordinates ~x by co-moving coordinates ~̃x, we get the standard result [14]:

h(x) = 2G
∑

i

Mi
1∣∣∣~̃x− ~̃xi

∣∣∣
, (21)

where:

~̃x =
ts
t
~x. (22)

Hence, two related representations are possible of the space-time characteristics

of the universe. The first one is the co-moving representation, which is closest to

our observations, as we cannot directly observe the scale factor t/ts, whereas our

astronomical observations are in agreement with (21). However, we have to use the

original variables and the explicit form (20) in the Einstein equations, since ~x and not
~̃x is the independent variable in those equations. A similar duality occurs with respect
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to the time coordinate and the fourmomentum of particles, as we will discuss in more

detail in Section 9.

Finally, we note that the sum (20) would be infinite for an infinite universe. The

problem is that we have used an instantaneous solution. By imposing causality we can

limit the contributions to

|~x− ~xi | < ct , (23)

when applying (20). In terms of co-moving coordinates condition (23) implies:
∣∣∣~̃x− ~̃xi

∣∣∣ < cts . (24)

The average correction to the flat metric is then:

< h(x) >=
3

2

ρm

ε
=

3

2

∑
i

Mi

εV̂s

, (25)

where ρm is the average matter density in the universe. For the definition of the adjusted

invariant volume V̂s we refer to Section 6.

5. The modified metric in the presence of radiation

As we only consider hµν to first order, we can solve the equations of general relativity

separately for the matter and electro-magnetic contributions in the vacuum background.

The radiation density can be written in the perfect fluid form, as the QFT expression

for the energy density is not localized (photons are represented by plane waves). Taking

account of the metric factors so that the resulting expression satisfies the covariance

condition (8), we arrive at:

T rad
µν (x) =

1

g

∑
j

p(j)

V̂




1 0 0 0

0 1
3

0 0

0 0 1
3

0

0 0 0 1
3




= g




ρrad 0 0 0

0 prad 0 0

0 0 prad 0

0 0 0 prad




. (26)

In (26) we included all the photons in the universe at time t. Both p(j) and V̂ have an

effective time dependence owing to the expansion of the universe: p(j) is complementary

to the spatial Einstein coordinate and thus decreases like 1/t (see Section 9), whereas

V̂ increases like t3 (see Section 6). Hence, although the explicit time dependence of

T rad
µν (x) is like t2, its effective time dependence after accounting for the expansion of the

universe is like t−2. Similarly, ρrad and prad have the explicit time dependence t4, but

after the expansion of the universe is taken into account, its effective time dependence

is constant. In analogy to the co-moving coordinates ~̃x introduced in the matter case

(see (22)), we can introduce momenta as observed by a co-moving observer:

~̃p =
t

ts
~p. (27)

This behaviour will be further discussed in Section 9, in which we discuss the two dual

representations in detail. If we integrate ρrad (or −T 0,rad
0 ) over all of space, we get the
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sum over all momenta p(j) at time t, multiplied by t/ts; i.e the sum over all co-moving

momenta. As we will see in Section 6 this implies that the radiative contribution to

the total energy is constant over time, unless creation or annihilation events change the

number and/or nature of the participating photons. Hence, this situation is similar to

the matter case where the energy integral is also constant, as long as the state vector

remains the same.

We can obtain hrad
µν by solving the first order equation (18) with the electro-magnetic

source term. We find:

hrad
µν (x) = −8πGt2T rad

µν (x) . (28)

Because of the effective t−2 time dependence of T rad
µν (x), hrad

µν (x) behaves effectively like

a constant. Naturally, when solving for hrad
µν (x) in the Einstein equations, we must

use the explicit t4 dependence of this function. In other words, the decrease of the

radiation density with time caused by the expansion of the universe is countered by the

t4 dependence, arising from the background vacuum metric. The combination of these

two factors is the cause of the constancy of the effective contribution to the total energy.

The effective constancy of the radiation and matter terms also ensures the continued

basic linear expansion of the universe in the presence of matter and radiation, as we

will demonstrate in Section 6. It should be noted that hrad
µν has a sign opposite to

that of the matter contribution, because of the minus sign in (28). Thus radiation has

a gravitational effect opposite to that of matter. Because light cannot solidify into a

massive astronomical body these effects are hard to measure, but this opposite sign of

the radiation contribution has a distinct effect on the average metric in the universe.

Just as in the case of matter we can evaluate the average value of hµν in the radiative

case. We find:

< hrad
00 (x) > = −3ρrad/ε . (29)

The two results, Eq.(25) and Eq.(29), have nearly the same form and can be used to

assess the flatness of the universe. As noted above, matter and radiation have opposite

effects on the metric.

6. Energy Balance and the Expansion of the Universe

After the introduction of matter and radiation the total energy of the universe is given

by:

E =
∫

V̂

d3x
√

3ĝ(t, ~x) ε +
∫

V̂

d3x
√

3ĝ(t, ~x) ρmatter(x) +
∫

V̂

d3x
√

3ĝ(t, ~x) ρrad. (30)

Expanding (30) to first order in hµν , we have:

E = εVs = ε
t3s
t3

V̂ (t) + ε
t3s
t3

3

2

∫

V̂

d3x

{
h(x) +

1

3

∑

i

hrad
ii

}
+

∑

i

Mi +
t

ts

∑

i

p(i)

= ε
t3s
t3

V̂ (t) + ε
t3s
t3

3

2

∫

V̂

d3x h(x) +
∑

i

Mi +
t

ts

∑

i

p(i)(1− 3

2
) . (31)
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We now extend (10) to the volume in the presence of radiation and matter:

V̂ (t) =
t3

t3s
V̂s , (32)

i.e. we assume that the introduction of matter and radiation only requires a change of

the original invariant volume Vs into V̂s . Using (32) and (27) we can then show that

all terms in (31) are constant for a given state vector, so that Ansatz (32) is consistent.

Therefore, the volume V̂s is indeed invariant under the basic linear expansion of the

universe, although it adjusts itself whenever the state vector of the universe changes

if particles are created or destroyed. Using the definition (32) and expression (25) for

< h >, we get:

E = εVs =
(
ε + ρm + ρrad +

9

4
ρm − 3

2
ρrad

)
V̂s . (33)

The last two terms originate from the modifications to the metric after the introduction

of matter and radiation. Conveniently, they have the same form as the original matter

and radiation terms, with only the coefficients being different. If, as is usually assumed,

the matter term dominates over the radiation term, then the new invariant volume V̂s

is smaller than the original invariant volume Vs.

We can now generalize the scale factor in the presence of matter and radiation:

a(t) =
t

ts

(
V̂ s

Vs

)1/3

=

(
V̂ (t)

Vs

)1/3

. (34)

Hence, a change in V̂s also implies a change in the scale factor. So, in addition to

the linear time dependence, there is a further implicit time dependence, which depends

on the evolving state vector of the universe. Whenever a QFT transition takes place,

and the state vector is changed, the volume V̂s is also adjusted, and, consequently, the

scale factor. Together this leads to an effective time dependence of the scale factor.

Thus, the creation and/or decay of matter and the creation or absorbtion of radiation

in the universe has rather specific consequences for the acceleration or contraction of

the universe over and above the linear expansion. Since the volume V̂s is determined

by the energy equation (33), the scale factor is no longer determined by the Einstein

equations as in the FRW case, but rather by total energy conservation. This is an

important difference, which allows us to consider local gravitational effects and effects

of the global expansion together, as the scale factor no longer appears in the metric.

The scale factor is now also a truly cosmological property, as it is the same everywhere

in the universe, being defined in terms of integrals over the whole universe. It may be

hard to accept how a transition at a distinct location can influence the scale factor in

our neighbourhood, especially for an infinite universe. However, if we replace individual

transitions by rates and assume that the universe looks the same everywhere on a large

scale (the cosmological principle), then we can view our visible universe as a finite

representation of the whole universe. The additional time dependence
(
V̂s/Vs

)1/3
then

becomes continuous and represents the acceleration or deceleration of the universe as

a deviation from the basic linear expansion of the universe. Obviously, this continuous
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time dependence does not feature explicitly in the Einstein equations, although the

solution of these equations at a particular time must use the state vector pertaining to

that particular moment.

One could call (33) the co-moving form of the energy balance equation. If we go

back to the original volume using (32), we obtain:

E = εVs =

(
t3s
t3

ε +
t3s
t3

ρm +
t3s
t3

ρrad +
9

4

t3s
t3

ρm − 3

2

t3s
t3

ρrad

)
V̂ (t) . (35)

This form clearly illustrates the high densities in the initial universe and the decreasing

densities with time. It is these time-dependent densities which have to be considered in

descriptions of the evolution of the universe and of the hot Big Bang, because they have

to be compared to QFT processes that do not depend on the expansion of the universe

and therefore play different roles in different epochs.

One question is now whether we can determine the contributions of the matter and

radiation components to the energy balance (33). As stated previously, the unperturbed

vacuum energy (i.e. the first term in (33)) has the same density to pressure ratio

(w = −1, [13]) as dark energy, suggesting that this dark energy can be identified with

the unperturbed vacuum energy. Since the ratio w will change if ĝµν differs considerably

from the vacuum metric gµν , the dominance of dark energy and the observed flatness

of the universe suggest that the average matter and radiation densities ρmatter and ρrad

are small compared to the vacuum energy density ε. The current estimates of the

matter content of the universe (about 24% including dark matter, [15]) rely heavily

on the energy balance as formulated in the RW framework ([4], [1]). Hence, these

estimates should be re-examined in the context of the current framework and might

actually be much less certain than usually is assumed. Furthermore, the usual estimate

of the radiation content is based on the decrease of this density owing to the expansion

of the universe and the red shift, and does not take account of the metric factor t4,

which completely compensates for this decrease, leading to a constant ρrad. Hence, the

contribution of radiation to the total energy could well be comparable to the matter

density, rather than merely having the tiny value of 5 × 10−5 quoted in the literature

[16]. It should also be noted that the observed decrease of photon momenta with

time, popularly called the red-shift effect, has a rather different interpretation in our

formulation, as we will see in Section 8. We attribute this to the dual nature of the

vacuum universe and to our role as a co-moving observer therein. So one can expect

that this ”red-shift” effect is compensated for in energy expressions and that it will not

lead to a reduction in the contribution of radiation with the passing of time.

In the standard picture the initial universe experienced a radiation-dominated

phase, followed by the current matter-dominated phase. However, in our picture the

contribution of these phases to the energy balance are more or less constant over time,

owing to the influence of the background metric. Hence, both the dominance of radiation

over matter in the early stages, and the dominance of matter over radiation at the present

time must be re-examined in our approach.
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If these densities are indeed of comparable magnitude then many interesting

scenarios for the evolution of the universe become possible. For example, if:

< hrad
00 >= −3

2
< h > , (36)

or in terms of densities

ρrad =
3

4
ρm , (37)

then the average metric becomes proportional to the flat Minkowski metric, even in the

presence of large matter and radiation densities. Since < hrad
00 > increases and < h >

decreases in size, whenever matter is converted into radiation, condition (36) cannot be

satisfied at all times, unless the creation and annihilation processes are in equilibrium.

However, the universe may have been close to this point for most of its existence, in

which case (36) would explain why the universe appears so flat, despite containing a

considerable amount of matter. Clearly, further analyses are required to examine these

possibilities.

Using Eq.(24) it is also possible to calculate the approximate energy content of the

visible universe. We find

Evisible = ε× 4π

3
t3s =

1

2

(
3

8π

)1/2 1

ε1/2G3/2
≈ 5× 1079 GeV. (38)

where we used the value ε = 4.06 × 10−47 GeV4 derived in Section 9. Again, this

emphasizes the important role of the two fundamental dimensionfull constants of Nature,

ε and G. This result also allows one to make a rough estimate of the number of massive

particles in the visible universe: about 1079 protons and the same number of electrons.

Other independent estimates of this number will put further constraints on the value of

ε or ts.

7. A possible explanation for dark matter

An important cosmological problem is the nature of dark matter. It may be tempting

to consider the mixed vacuum-matter term in (31) as a dark matter term. Firstly, it is

closely related to the matter distribution and is localized near matter concentrations, on

account of the form of h(x). Secondly, its contribution to the total energy is much larger

than that of the original mass term, as is the case for dark matter by comparison with

ordinary matter. However, since the mixed term does not influence the metric in lowest

order (it being rather a consequence of the metric) it could only have gravitational effects

in higher order. Furthermore, the localization of the equivalent ”mass” it represents is

so weak that it cannot explain the distribution of dark matter near galaxies. Finally,

the enhancement factor 9/4 differs considerably from the usual ratio of dark matter to

ordinary baryonic matter (a factor of about 4.8, see [17]).

We will discuss another interesting possible explanation for dark matter. This

explanation is based on certain second-order effects, which are unique to our approach.

Since we have neglected second order effects up to now, this analysis is somewhat
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tenuous. However, it shows encouraging agreement with some observations. As we

see from Eq.(15), and the integral in Eq.(20), the gravitational potential is inversely

proportional to
√

3ĝ(t, ~x) owing to the form of the matter energy-momentum tensor. In

first order we replaced
√

3ĝ by
√

3g. However, in higher order we would need to consider

the corrected metric factor. For a black hole at the center of a galaxy this would

effectively mean that instead of experiencing the gravitational pull of the real mass M ,

one would experience the reduced effect of the apparent mass Mapp at a distance r:

Mapp(r) =
M

3∏
i=1
{1 + hmatter

ii (x)}1/2
=

M

(1 + 2GM/r)3/2
, r > RBH , (39)

where RBH is the radius of the black hole. At small distances Mapp could be much

smaller than M , whereas at large distances the black hole mass would have its normal

effect as the screening becomes negligible. Since this mass does not correspond to any

visible material, it could represent dark matter. Assuming this to be the case, we can

define the dark matter density by subtracting the observed mass near the black hole

from the effective mass distribution:

4π
∫ r

0
dr′ r′2 ρdm(r′) =

M

(1 + 2GM/r)3/2
−Mapp(RBH) . (40)

Differentiating with respect to r we obtain for small r and large 2GM/r:

ρdm(r) ∼ r−3/2 r > RBH . (41)

Possible support for this picture comes from analyses of dark matter ([18], [19]), which

also indicate a singular behavior of dark matter density in the center of galaxies. For

example, Krauss and Starkmann [18] find that the dark matter density near the centre

behaves like r−3/2, which is exactly in agreement with our explanation. In addition,

thermal models of galaxy densities [19] give a constant core density for normal matter,

so that our effective mass distribution cannot be interpreted as normal matter. At large

distances we obtain:

ρdm(r) ≈ 3

4π

GM2

r4
r À RBH , (42)

which gives the required localization near existing galaxies.

A possible objection to this explanation is that a current survey [16] only gives a

black hole contribution of 7× 10−5 to the energy content of the universe, although this

number may be surrounded by uncertainties similar to those around other estimates

in the RW framework. If this number is based on the apparent mass of black holes

as measured in the vicinity of these objects, then a huge screening effect is required

to explain the large dark matter component in terms of black holes. However, as (39)

allows such effects, the true mass of the black holes at the center of galaxies may well

be order of magnitudes greater than is currently assumed. This possibility may also

have an important influence on considerations of the evolution of the early universe,

as enormous black holes are usually considered fatal to the development of galaxies.

This need no longer be the case owing to the screening effects suggested in the current
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framework. Clearly, non-perturbative calculations are required to test this dark matter

theory, as large second order corrections would in turn induce important third or even

high-order terms, which could either moderate or enhance the effect observed in second

order.

8. Description of red shift data and other observables

Let us now discuss a number of astronomical observables. Firstly we discuss the Hubble

constant. This quantity is defined as the relative increase of the scale factor with time

[14], which in our formulation reads:

H(t) =
ȧ(t)

a(t)
=

1

t
, (43)

where the last transition follows from Eq.(34) if we ignore the time dependence of V̂s. As

we will see in the following discussion, one actually measures the inverse of the Hubble

constant, because one detemriens the luminosity distance dL. As a co-moving observer

would measure the co-moving distance (ts/t)dL, the Hubble constant measured would

also be rescaled and would equal (t/ts)1/t = 1/ts. This leads to the pleasing result that

the measured Hubble constant is indeed constant, since ts is constant! So this to some

extent justifies the name Hubble constant. Since Eq.(43) shows that the inverse Hubble

constant represents the age of the universe, we find that for a co-moving observer the

age of the universe is constant and equals ts. Unfortunately, this also implies that the

Hubble constant does not provide us with the actual age of the universe in terms of GR

coordinates t = t0. The value t0 is of importance, since it tells us in which epoch we are

living, as it is expressed in the same representation as the elementary particle properties

(for example the particle physics scale tc derived in the Section 10). In Section 9 we

will discuss how one can get information about the value of t0. It should be noted that

the measurement of the Hubble constant gives information on the (constant) vacuum

energy density ε, because of the relationship between ε and ts.

The Hubble constant is determined from supernovae measurements. As shown

below the fit to the Cepheid data suggests a value of ts = 13.8×109 years, corresponding

to H0 = 71 km s−1 Mpc−1. Current best estimates by Freedman et al [20] provide the

value H0 = 72±8 km s−1 Mpc−1. The identity of H−1
0 and the age of the universe in our

theory is in good agreement with observations, as most analyses favour values which are

close together for these two quantities. Although decay processes contribute towards an

acceleration of the expansion, we do not expect such changes to upset this agreement.

In matter dominated FRW universes the age of the universe equals 2
3
H−1

0 , whereas in

radiation dominated FRW universes it equals 1
2
H−1

0 , both possibilities differing from

the accepted values of H0 and the age of the universe.

The increase in wavelength of photons originating from distant galaxies or

supernovae, as first observed by Hubble, is known as red shift. This name suggests

that the phenomenon is due to the Doppler effect of receding galaxies. However, as

is well-known [14], the correct explanation should be based on the framework of GR.
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Weinberg [14] gives the standard explanation in terms of the RW metric, leading to the

relationship:

z =
λobs − λ1

λ1

=
aRW (t0)

aRW (t1)
− 1, (44)

where the source is characterized by t1 and λ1, the observer being characterized by t0
and the observed wavelength λobs. Although we do not use the RW representation, we

still get the same final result. Our explanation is based on the dual representation of

space-time, with the observer measuring the wave length in terms of co-moving variables
~̃x and ~̃p.

Firstly, the atomic transition giving rise to the emission of the light is defined by

a characteristic wavelength λ or by a characteristic time interval ∆t, which remain

constant over time. The wave length measured by a co-moving observer at the source

is then:

λsource =
ts
t1

λ , (45)

or alternatively by a time interval ts
t1

∆t. Because of the invariance of the interval

ds = ts
t1

∆t, we will measure the same time interval ts
t1

∆t when the photon finally reaches

our equipment. Hence we will also observe the wave length:

λobserved =
ts
t1

λ , (46)

at our current location at time t0. However, if we measure the same transition at our

terrestrial location, we observe the wave length:

λterrestrial =
ts
t0

λ . (47)

Now, in the standard interpretation ([14], p. 417) the wavelength at the source, λ1, is

supposed to be equal to the wavelength currently measured in a terrestrial laboratory,

which we indicate by λterrestrial. So the unknown λ1 in Eq.(44) is replaced by λterrestrial.

Hence, what one really tests in the red shift analysis is an expression involving λterrestrial,

not the unmeasured λ1. Therefore, we introduce the terrestrial wave length directly into

our expression for z. We are then led to the relationship:

z =
λobserved − λterrestrial

λterrestrial

=
ts
t1

λ− ts
t0

λ
ts
t0

λ
=

t0
t1
− 1 =

a(t0)

a(t1)
− 1, (48)

in which the last identity is valid if we ignore the time dependence resulting from the

change in V̂s. As we see, the final relationship is identical to Eq. (44) derived in [14].

Hence, totally different philosophies can still lead to the same result and consequently

to the same agreement with experiment. The relationships Eq.(45) and Eq.(47), which

involve 1/t, seem to suggest that the wavelength decreases rather than increases with

time. However, this conclusion is wrong: because of the expansion of the universe all

lengths such as x and λ are increasing with time (although this increase is not explicit

in the GR equations), and the indicated time dependence in these equations merely

compensates for this increase to make the effective wave length constant over time.
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In deriving the simple expression t0/t1 − 1 in Eq.(48) we have ignored the time

dependence of h00 in the metric. This is justified by the fact that the contributions of

both matter and radiation to h00 are effectively constant. We would only get deviations

from this identity if creation or decay processes substantially affect the time dependence

of h00.

In order to compare our theory with the Cepheid observations we have to express

the luminosity distance in terms of z. We have [14]:

dL =
a2(t0)

a(t1)
d(t0) , (49)

where the distance d(t0) can be expressed in terms of the time of emission and the time

of observation:

d(t0) = c

t0∫

t1

dt

a(t)
. (50)

Using the vacuum metric and eliminating t1 in favour of z, we have:

dL = cH−1
0 (z + 1)ln(z + 1) = cH−1

0 z
(
1 +

1

2
z − 1

6
z2 + · · ·

)
. (51)

This corresponds to a deceleration parameter q0 and to a jerk parameter j0 both of which

are zero (see Visser [21] for a definition of these parameters and the corresponding red

shift formula). Since a co-moving observer will measure ts/t0 dL rather than dL itself,

we still have to multiply this expression by the factor ts/t0. The current notation can

be retained if we understand that H−1
0 → ts/t0 H−1

0 = ts.

We considered recent Cepheid data for distance moduli [22], which have to be

corrected by −0.27 according to a recent analysis by the same authors [23]. The best

fit for the vacuum solution is obtained for the value of H0 = 71 km s−1 Mpc−1,

which corresponds to a measured lifetime of ts = 13.8 billion years. This agrees

well with a recent WMAP analysis by Hinshaw et al. [24], who state that: H0 =

70.5±1.3 km s−1 Mpc−1. In Fig. 1 we show a comparison between the observations and

our vacuum solution result, together with some additional fits. The ratio H0 dL/z is

displayed, rather than dL itself, so as not to obscure the deviations between experiment

and theory at small values of z. The vacuum result fits the data very well. In order to put

this result in perspective, we have also fitted various power expansions of the expression

in brackets in the right-hand-side of Eq. (51). These will allow us to determine the values

for q0 and j0 preferred by the data and give an indication of the uncertainty in these

parameters. The linear fit gives q0 = .038, which is close to the value of zero obtained

in the vacuum solution. The quadratic fit yields q0 = −.63 and j0 = 1.26. The Hubble

parameters for the linear and quadratic fit are 73.0 and 75.9 km s−1 Mpc−1, respectively,

both falling outside the range given by Hinshaw et al. [24]. The corresponding ages are

13.4 and 12.9 billion years. We see that the parameters obtained depend quite strongly

on the nature of the fit, casting some doubt on the strength of evidence for a pronounced

acceleration (q0 < 0) in the current universe. As stated above, our model with a linear

expansion already fits the data very well.
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Figure 1. Comparison between Supernovae data ([22], [23]) and various theoretical
descriptions. Plotted are the distance moduli multiplied by H0 (as determined from
our model) and divided by z as a function of the red shift z. Some of the data errors
are shown to illustrate the quality of the data and the fit.

It can be expected that supernovae data at higher values of z will put stronger

constraints on these parameters. The negative q0 in the quadratic fit suggests that

the universe is currently accelerating, whereas the positive jerk parameter suggests that

there might have been a deceleration in the past. This agrees with the detailed statistical

analysis carried out in Refs. ([22], [23]). Clearly, the present theory can explain the

average expansion (linear). Within this theory it is natural to explain a possible current

acceleration by means of the presence of decay processes. The standard decay process

is radiation, as this process transforms matter into radiation. Other - more speculative

- decay processes are possible as well. The decay of WIMP like particles in dark matter
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would contribute towards acceleration. Also, the annihilation of particles by black holes

would be a possible source of acceleration. However, deviations from the linear expansion

may also be attributed to the change in h00 over time, as noted previously. Hence, a

more detailed theoretical analysis is required, in which the role of decay processes in

the current universe is elucidated. Higher order consequences of the abandonment of

the RW formulation on the red-shift formula also have to be examined. In any case, it

is clear that accurate supernovae data will yield strong constraints on the theoretical

description.

Another important issue in cosmology is the horizon problem. The horizon is

defined as the distance a photon traveled since the Big Bang to a particular point in

time [2]. Obviously, this is infinite for the expression (50), as t1 = 0. Since we only

expect virtual photons to exist a finite time after the Big Bang (see Section 10), the

physical horizon is not infinite. However, it is still true that in our description the horizon

is much larger than in the typical FRW models, where the lower limit in the integral

(50) vanishes. Hence there does not appear to be a horizon problem in our approach.

This eliminates the main reason for the introduction of the inflationary hypothesis,

although we predict an inflationary phase naturally in our approach, when particles and

antiparticles were annihilated soon after they were created (see again Section 10).

9. The role of co-moving coordinates and the dual representation of

space-time

As we have seen in previous sections, co-moving observers measure physical quantities in

terms of the coordinates ~̃x and ~̃p. These coordinates are invariant under the expansion

of the universe (naturally they still function as variables in regard to local physical

processes), and make it hard to measure this universal expansion directly. For example,

the gravitational potential given in Eq.(20) remains constant in spite of the expansion

of the universe, if it is expressed in terms of co-moving coordinates ~̃x. We only measure

the expansion indirectly via the red shift observations discussed in the previous section.

These features appear to be especially simple for - and perhaps unique to - the vacuum

metric, on account of the linear nature of the transformations.

The local co-moving representation is concisely given by:

~̃x =
ts
t0

~x, (52)

t̃ =
ts
t0

t , (53)

while the conjugate relationships for the momentum reads:

~̃p =
t0
ts

~p, (54)

Ẽ =
t0
ts

E . (55)

So far we have avoided the use of the symbol Ẽ for the co-moving energy. The energy

E used in previous equations (e.g. in Section 6) can be identified with the co-moving
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energy if we use the co-variant metric
√−g, rather than 3g, in the relevant energy

integrals. In that case we have to multiply the resulting expression by the factor t0/ts
(or by the global factor t/ts) in order to obtain the standard result, called E in Section

6. We will not discuss the implications of this modification further. Eq.(53) is a local

representation of the global relationship τ = ts ln(t/ts), which was already mentioned

in Eq.(7). We can also replace t0 by t in Eqs.(52, 54 and 55) to make the equations

more global. However, for a local co-moving observer, the given equations are the

relevant ones, since they simply amount to a rescaling of the original coordinates. This

local representation is also natural in the context of the Einstein equations, since the

(temporary) replacement of t by t0 ensures that the time-dependence of ~x, t and p is

not explicit in the Einstein equations.

Under the transformation Eqs.(52 and 53) the metric expression Eq.(5) near t0
reads:

ds2 = −dt̃2 + dx̃2 + dỹ2 + dz̃2. (56)

It is natural that an observer would use a locally flat metric to carry out his observations,

which explains the important role of this co-moving representation in measurements.

The importance of such transformed variables in cosmology had already been recognized

very early on in the development of cosmology. Milne [25] introduced dual variables in

1937, although he did not base himself on a universe with a finite vacuum energy density,

so that he did not have a natural time scale ts. It would be of interest to study the

analogies further, although Milne did not use a relativistic formulation in his analysis.

As stated in the Section 8, one of the results of our particular measuring process

is that the measured Hubble constant equals (t/ts)1/t = 1/ts. Given the value of the

Hubble constant derived in the previous section from supernovae data, we find that the

vacuum energy density acquires the value ε = 3/8πGt2s = 4.06 × 10−47 GeV4. This is

the value used in previous sections of this paper, e.g. in Eq.(38). This value is very

close to the one given by Weinberg ([14], p. 476): 10−29g/cm3, which corresponds to

4.31×10−47 GeV4. Actually, the value quoted by Weinberg represents the critical energy

density of the universe, which must be close to the actual energy density for a universe

that is flat (observations have shown that the geometry of the universe is very close

to being spatially flat [1], [9]). Hence, this critical density should coincide with the

vacuum energy density in a universe dominated by vacuum energy. In our theory there

is nothing critical or accidental about the value of ε, as slightly larger or smaller values

would describe the universe equally well. Hence, this is another puzzle (why the critical

and actual energy density are so close at this very moment) that is solved by the current

theory. Carroll gives the rough estimate 10−8erg/cm3 ([2], Eq. (8.162)), corresponding

to 5× 10−47 GeV4, which is also consistent with the current estimate.

The constancy of the age of the universe ts also indicates that an observer could

never reach the beginning of time by moving backward in time (apart from the practical

aspect that the Big Bang defines a direction in time which allows us only to ”move”

forward). This property also is evident if we use the global transformation variable τ
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defined in Eq.(7): τ = ts ln(t/ts). This suggests that t = 0 refers to the infinite past.

As the co-moving variables Eqs.(52, 53, 54 and 55) are essential for our

measurements, the question can now be asked whether the magnitude of the original

variables, as represented by our current time t0, plays any (absolute) role. For example,

in the red shift discussion, only the relative quantity t1/t0 played a role in the definition

of z. However, in Section 10 we will see that different epochs in the evolution of the

universe can be distinguished despite the ”relativity” of the concept of time. Since

properties of particles are expressed in the original time units, as they are independent

of the expansion of the universe, the particle scale represents an independent way of

measuring time. As a consequence, there are ways of inferring t0, provided our particle

models are sufficiently accurate. Since the currently accepted elementary particle models

do not predict the masses of quarks and leptons, and in particular do not relate them to

G and ε, we are a long way away from the situation that t0 can be determined accurately.

Nonetheless we will argue in Section 10 that t0 is of the same order of magnitude as ts.

In other words: our current epoch is characterized approximately by the time scale ts
of the vacuum universe.

10. Evolution and Development of a Vacuum Dominated Universe

It is common to consider the first moments after the Big Bang as a period of extreme

complexity, during which particles are compressed into an extremely small space and

carry enormous kinetic energy. This scenario is sketched in many articles and popular

books, e.g. in a recent book by Martin Rees [27]. It also leads to the idea, often heard

these days, that the LHC experiment at CERN will reproduce the early moments of the

Big Bang [28]. Such a densely populated state of the early universe requires a reliable

unified theory of QFT and GR. Since that does not (yet) exist, a reliable picture of this

initial epoch is lacking. Our solution to the GR equations suggests another scenario.

The singularity in the classical vacuum metric implies that the universe started out in

the simple ”classical” vacuum state. The initial density of the universe was so high and

the distance scale so small that physical fermions, which we expect to have a finite -

although extremely small - size, could not form. The creation of real photons, which

is linked to the fermionic processes by the standard model Lagrangian, was likewise

suppressed. Under these circumstances, the quantum fluctuations in the early universe

do not lead to the creation of any physical particles and thus leave the vacuum state

vector of the universe unaffected, as this state will only change once physical particles

have been formed. As a consequence, in this early epoch the state vector of the universe

equals the vacuum state and displays perfect homogeneity and zero entropy. The energy

of this state is given by ε Vs, which at the same time represents the total energy of the

universe at all times and the permanent entry in the right-hand side of Eq. (33).

After the Big Bang the density decreases according to the formula εt3s/t
3 until the

first particle epoch arrives when the energy density has diminished to such an extent

that it matches the energy density of physical (as opposed to bare or virtual) quarks
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and leptons. The size of strings in the string model is of the order of the Planck

length G1/2. Similarly, we expect the volume of finite elementary particles (which in

our theory are spherical finite objects) to be O(G3/2), with a corresponding energy

density of O(G−2). Our theory of isolated elementary particles is based on non-linear

self-consistent solutions of the field equations of QFT. We intend to publish this work in

the near future. However, for now we just use the hypothesis that the physical particles

are characterized by the Planck length. The creation of particles out of the vacuum

is likely to require a matching of the energy density of the vacuum universe and the

particle energy density. This occurs at a time tc given by:

ε
√

3g(tc) = ε
t3s
t3c

= G−2, (57)

leading to:

tc =
(

G

ε

)1/6 (
3

8π

)1/2

≈ 5× 10−24sec = (125MeV)−1 . (58)

In Eq. (58) we ignored the modification of the metric due to the presence of the created

matter. From Eq.(25) we see that h(x) will rapidly increase with the creation of particles,

in particular as the volume V̂s will decrease to compensate for the energy increase

resulting from particle formation and from the fact that physical particles now consume

space. Hence, this will extend the creation epoch beyond tc, as we will still satisfy

Eq.(57) for some time after tc, if we replace 3g by 3ĝ and tc by t̂c, where t̂c > tc. Since

the large size of h(x) invalidates perturbative calculations, a more extensive theoretical

investigation is required to describe the later stages of this epoch in detail. Dimensional

considerations indicate that the initial constraints on particle creation have a spatial

nature, so that during this epoch available space must be divided homogeneously, thus,

providing a possible explanation for the homogeneous nature of our universe. This initial

epoch has both developmental and evolutionary aspects to it. The evolutionary label is

best reserved for processes with a degree of randomness (where and when the particles

are created). The quantum fluctuations responsible for these aspects are discussed later

in this section. The developmental aspects cover the fact that the universe expands

(develops) linearly with time and that the states into which it can develop are fixed by

QFT and GR together.

Eq.(58) illustrates how the particle physics scale can arise from the two fundamental

dimensionfull constants of Nature, ε and G, and gives credence to our expectation that a

truly fundamental understanding of elementary particles requires consideration of GR.

Since the equations of motion in QFT do not contain any fundamental dimensional

constants, it is not unexpected that the particle physics scale in QFT only emerges

when QFT is unified with GR. As part of our model of particle creation, we also suggest

that a creation process in QFT mimicks the creation process of particles at the tc epoch

after the Big Bang. Such a mechanism is required in our theory of isolated elementary

particles in order to stabilize the solution. The distortion of space resulting from the

formation of a physical particle of Planck size must counter the collapse of the dressed
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particle to a singular point. This is roughly opposite to the situation of a black hole,

where the metric induces rather than prevents the collapse. The creation terminates

at the time tc and thereby explains the typical creation time of elementary particles.

The annihilation of a particle is the reverse process, again characterized by the same

time tc. Although many aspects of our particle theory are still under development, the

possibility of being able to explain the nature of particles and to give an explanation of

their masses and of their creation and annihilation properties is a very exciting prospect,

indeed.

If these notions are confirmed after further development, we see a phenomenon in

elementary particle physics that reminds us of a mechanism known in biology, namely

that the development of a current entity recapitulates a (series of) historical process(es).

In biology these processes are called ontogeny (the development of an organism) and

phylogeny (ancestor-dependent relationships in a group) and the biogenetic law to which

we refer states that ontogeny recapitulates phylogeny (Haeckel [29]). In the physics

analogy the historical process would be the creation of particles from the vacuum at the

appropriate epoch tc, whereas the current process of creation repeats this process as part

of the full process of particle creation. The epoch at tc is associated with an increase in

entropy and is irreversible, whereas the current physical process of particle creation does

not increase entropy and is reversible (annihilation is the reverse process). Of course,

the analogy with biology is to a large extent symbolic, still apart from the fact that

Haeckel’s law itself has a very limited range of validity in biology and has been severely

criticized [30]. Nonetheless it is gratifying that Nature finds ways of expressing similar

mechanisms under very different circumstances. To emphasize the limitations of this

principle, we note that the annihilation of particles does not have a corresponding epoch

in the development of the universe, unless the universe were to die in a big crunch in

which particles are converted back into vacuum energy. This would require the decrease

of entropy in order to return to a state of zero entropy and would violate thermodynamic

laws.

It should be noted that the derivation of the particle physics scale only is only

valid for our particular vacuum metric, confirming again the unique role of the current

vacuum solution. The result is also contingent on physical elementary particles being

three dimensional (spherical) objects, and therefore cannot be derived in the common

form of string theory. Within our picture the creation epoch starts much later than the

Planck time, which is often considered to be the critical time period for events near the

Big Bang. In this way we have avoided the difficult question of the unification of GR

and QFT at the Planck scale, although this question returns in a more controlled form

in the treatment of elementary particles of size G1/2 and energy density G−2. It should

also be noted that the particle physics scale (ts/t0)× tc, rather than tc, is measured at

present. An accurate model of particle properties will therefore give information on the

ratio ts/t0, and thus on t0. Since tc is of the order of the (currently) measured particle

scale, we conclude that t0 is currently of the same order of magnitude as ts. Hence, we

are living in a time and age t0 characterized by the typical cosmological time unit ts.
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Naturally this is a rather qualitative statement as there is a large difference between

the hadronic and the leptonic scale, making the definition of the particle physics scale

rather uncertain. If we go back to the time t = tc when the first particles were created,

then the measured age of the universe would still be ts. However, the measured particle

properties would be characterized by an interaction time (ts/tc) × tc = ts, which is

comparable to the age of the universe. Hence, the changing factor ts/t0 ensures that the

universe proceeds through different physical epochs.

Since the first creation process of physical particles takes place in a homogenous

vacuum universe, we would expect the created particles to be distributed homogenously,

disturbed only slightly by the quantum fluctuations and randomness of the quantum

processes that created them. It is only through these random processes that we can

break the initial perfect symmetry and form increasingly complex and diverse structures,

allowing an increase in the value of the entropy. Such a creation of entropy is discussed

elsewhere in the literature [26]. Initially the linear expansion of space will be halted -

or even reversed - when the creation of particles increases the mass terms in the energy

balance, an energy increase which has to be matched by a corresponding decrease in

the total vacuum energy, i.e. a decrease in V̂s. However, after the initial creation of

particles and anti-particles, we would expect an inflationary period, when most of the

particle-anti-particle pairs annihilate. These processes destroy most of the initial mass

energy and the induced matter-vacuum energy, leaving only a small residue of ”particles”

and converting some of the energy into radiation and its associated negative mixed

radiation-vacuum energy. To compensate for this energy loss the universe would have

to expand very rapidly in a short time (an inflationary phase). Clearly, this inflationary

period has an origin and nature quite different from that considered in currently popular

inflationary scenarios. A phase of extremely quick inflation does not seem to be required

in the current theory to explain the uniformity of the temperature distribution in the

universe, as the infinite horizon in our description allows particles to interact over much

larger distances than in the standard picture.

Since the current universe contains only a relatively small percentage of matter,

we would expect that after these violent processes have been essentially completed,

the universe would return to a state in which the vacuum energy dominates and the

expansion is dominated by the linear trend. However, the effective density will still be

huge initially, because of the factor t3s/t
3, as we saw in (35). Hence, we expect that the

usual hot Big Bang phase, which is responsible for primordial nucleosynthesis, can be

derived in the usual way, although further study is required to confirm this in detail.

There are other characteristic epochs in the evolution of the universe which can be

characterized in terms of G and ε. For example the epoch that the vacuum energy

equals the particle physics scale is characterized by:

ε
√

3g(tN) = ε
t3s
t3N

= t−4
c , (59)

leading to a time tN = ε−7/18G−5/18 ≈ 8 hrs.
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Finally we discuss the observation of early galaxies. In FRW calculations one

usually employs a t2/3 expansion for the early universe. Using this type of time scale,

Bouwens et al [31] conclude from certain Hubble observations that the first galaxies

were formed about 900 Myr after the Big Bang. Similar conclusions were reached by

a Japanese group [32], which found early galaxies dating from 750 Myr after the Big

Bang. By demanding that these events take place with the same value of z as they

do in the analysis by these authors, we find that in our theory the formation of the

early galaxies would take place 1.9 and 1.7 billion years respectively after the Big Bang.

Although the creation and annihilation events in the early universe might modify these

estimates slightly, the net result is that the early galaxies were formed much later than

claimed by the authors above, reducing the mystery of the early formation of galaxies.

11. Summary and Concluding Remarks

We have solved the standard equations of general relativity for the vacuum with a

”classical” vacuum energy density. We have shown that this leads to a Big Bang

solution with an associated linear expansion of the universe, even after the introduction

of matter and radiation. The contributions of matter and radiation to the total energy

and the distortions of the metric are effectively constant under this linear expansion.

Deviations from this basic behaviour, which is controlled by total energy conservation,

can appear through creation and annihilation processes. This model can explain many

crucial observations of the universe without the need to introduce new variants of

the basic theory of general relativity or extensions beyond the Standard Model. In

particular the cosmological constant problem and the horizon problem are absent in

this approach. The evolution of this universe proceeds from a classical beginning with

perfect spatial symmetry and zero entropy to a diverse and complex future thanks to

quantum fluctuations. Although, various details of this picture still have to be worked

out, the initial results are very promising.

The abandonment of the RW formalism necessitates a reassessment of various

properties of the universe, such as its matter and radiation content. Improved

supernovae data will impose strong constraints on the current model and on the nature

and intensity of the decay processes in the universe (mainly radiative processes), as in

our theory, the latter are seen as the cause of the current acceleration of the expansion of

the universe. The explanation we suggest for the observation of ”dark matter” should

also be studied further, since it will be affected by higher order effects that are not

considered in this paper.
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