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Abstract 

In a gas turbine engine secondary flows have a 
detrimental effect on efficiency. The current numerical 
study is aimed at determining which turbulence model 
in a commercially available CFD code is best suited to 
predicting the secondary flows. Experimental validation 
is used to determine the appropriateness of the model. 
The numerical study was performed using Numeca’s 
FINETM/Turbo and all of the appropriate turbulence 
models were tested. It was found that the Baldwin-
Lomax, Spalart-Allmaras and k-ε predicted the 
magnitude of the velocity well, but did not capture the 
velocity magnitude profile well. The k-ω and the SST 
k-ω captured the profile better, but did not predict the 
average value as well as the other models tested. It is for 
this reason that the SST k-ω turbulence model was 
chosen as the most suitable for analysis of secondary 
flows, as the flow features are more accurately 
predicted, thus aiding in understanding secondary flow. 
 
Nomenclature 
AGS Abu-Ghannam and Shaw transition model 
k Turbulent kinetic energy (m2.s2) 
ε Turbulent energy dissipation rate (m2.s3) 
ω Specific dissipation rate (s−2) 
SST  Shear Stress Transport 

Introduction  
 A great deal of research over the years has gone into 
secondary flows in gas turbine engines, to understand 
them better. There is yet to be a prediction method that 
accurately predicts secondary flows [1]. Most of the 
studies that have been performed have only dealt with 
experimental investigations of planar or annular 
cascades, with some studies concentrating on 
fundamental studies using cylinders [2]. 

The reason for the popularity of linear cascade 
studies is due to the reduced complexity. Detailed 
measurements between the blades are also possible. In 
an annular, rotating environment it can be prohibitively 
expensive to perform detailed measurements. For this 
reason it has become more and more popular to perform 
numerical studies in place of experimental studies.  

Computational Fluid Dynamics (CFD) is currently in 
common use to analyse turbomachinery due to the 
significant amount of information that can be obtained. 
One of the topics of study is the reduction of secondary 
flows. Reducing the secondary flows reduces the losses 
and is thus of great interest.   

The secondary flow vortex system was first 
described by Hawthorne [3]. As shown in Figure 1, the 
passage vortex is the dominant secondary flow feature 
which has been reported by numerous researchers 
namely: Marchal and Sieverding[5], Moore and Adhye 
[6], Moustapha et al. [7], Hodson and Dominy [8], and 
Harrison [9], to name a few. Quoting Gregory-Smith 
[10], Ingram [11] stated that the passage vortex is 
formed when a sheared flow is turned. The slower fluid 
follows a tighter radius of curvature, which leads to the 
tangential flow across the passage. In order to conserve 
continuity a vortical flow is generated. The cross 
passage pressure gradients act to strengthen the passage 
vortex [12].  

Horseshoe vortices are another dominant flow 
structure. They are caused by the impingement of the 
boundary layer on the leading edge of the blade, a 
phenomenon that can also be seen with cylinders [2]. In 
Figure 2 it can be seen that the horseshoe vortex gets 
entrained in the passage vortex. Figure 2 was 
reproduced from Eymann et al. [4].  

In a rotating environment the inlet flow is skewed as 
it enters the rotor. As the boundary layer flow enters the 
rotor, the boundary layer gets skewed due to the change 
of reference frame caused by the rotating hub. The 
passage vortex gets further strengthened by this flow 
[12,14,15,16]. Thus in a rotating environment, like a gas 
turbine engine, the passage vortex is more pronounced 
than in a cascade. 

Since the secondary flow has a detrimental effect on 
the performance of the turbine engine, much research 
has gone into reducing the secondary flows. Some of the 
methods used include, but are not limited to: 

• Blade stacking variations such as the approach 
of Watanabe and Harada [17].  

• Leading edge bulbs and fillets such as the work 
by Lethander et al. [18], and Zess and Thole 
[19].  

•  Axisymmetric contouring has been investigated 
by many authors, for example Boyle et al. [20]. 

•  Non-axisymmetric endwall contouring, 
Gregory-Smith [21], Brennan [22] and Harvey 
et al. [23]. 

In order to analyse how these reduction mechanisms 
work, it is necessary to understand how the flow is 
affected by addition of the mechanism. Numerical 
analyses are ideal for investigating the flow since all the 
flow properties are available everywhere in the domain. 
A suitable turbulence model is required however to 
capture the flow effects accurately. The current 
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investigation is aimed at determining which of the 
turbulence models available in a commercial 
turbomachinery CFD code; FINETM/Turbo will produce 
the best results. Once the best turbulence model is 
determined, it would prove useful in understanding how 
the previously listed loss reduction mechanisms work. 

 
Figure 1: Hawthorne’s classical secondary flow 
model [3] 

 
Figure 2: Schematic showing the various vortical 
structures in a turbine reproduced from Eymann et 
al.[4] who reproduced it from Vogt and Zippel [13]. 

Experimental setup 
The experimental rig used to validate the CFD was 

described in Snedden et al. [24].The instrumentation can 
be seen in Table 1. The geometry of the blades used was 
based on the design used in the Durham cascade [25]. 
The blades were however redesigned such that they 
would be more appropriate in an annular rotating 
environment, instead of a linear cascade as originally 
tested. Thus the blade profile at the hub is the same as in 
the Durham cascade, but the profile at the tip differs to 
account for rotation. More about the Durham cascade 
setup and geometry can be found in Harvey et al. [25], 
Hartland et al. [26], Ingram [11] and Snedden et al. 
[24].  

Since the measurement is done with a 5 hole probe, 
profiles of the absolute velocity magnitude will be used 
for comparison. The measurements downstream of the 
rotor are averaged because of the rotation and the slow 
response time inherent in 5 hole probes. Three passes 
were made downstream of the rotor at different 
tangential locations so that an average could be taken to 
minimise the effects of clocking. 

Investigation of turbulence models 
NUMECA’s FINETM/Turbo 7.4.1 CFD package was 
used for the numerical portion of the current 
investigation.  

 

 
Table 1: Experimental instrumentation used by Snedden et al. [24] 

Primary Instrumentation 
Parameter Instrument Uncertainty 
Torque Himmelstein MCRT 28002T(5-2)CNA-G + Model 721 

Mechanical Power Instrument 
±0.03N.m 

Speed 2RPM 
Barometric Pressure Siemens Sitrans P  

7MF4233-1FA10-1AB6-Z  A02+B11 
0.05% of full scale 

Differential Pressure 5 x Siemens Sitrans P  
7MF4433-1CA02-1AB6-Z A02+B11 

0.05% of full scale 

Temperature PT1000 RTD’s ±0.05°C 
Secondary Instrumentation 

Steady Flow  mapping Aeroprobe CPC5-C159-305-015.3-16  
5 hole cobra probe (1.59mm Ø head) 

0.8% in Velocity 
magnitude, 0.4° in flow 

angles 
Turbulence TSI 1211-20 single component  film ±0.77% mean velocity* 
Tangential Traverse Custom cable system rotating the outer casing Better than 0.01° 
Radial and Yaw traverse Rotodata Mini actuator 0.01mm 

0.1° 
*Stamatios (2002) 
 

Numerical boundary conditions 

The current steady state investigation is a 
precursor to future unsteady state research. The 
unsteady method decided upon was the Domain Scaling 
method, which is a moving mesh method. Thus the grid 
used is chosen such that it can be used for steady state 
as well as unsteady state simulations. To meet the 
interchangeable criterion the grid had to be created such 

that the rotor and stator have a matching periodicity. 
FINETM

/Turbo sets this requirement for the Domain 
Scaling method such that the area of the face upstream 
of the rotor/stator interface was equal to the face 
downstream of the interface. 

The profiles used to generate the turbine blades can 
be seen in Figure 3a. The 1½ stage blade assembly used 
for the CFD analysis can be seen in Figure 3b.  
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Since the current investigation is interested in the 
endwall effects, it was considered necessary to have as 
low a y+ value as possible. The grid was thus generated 
with y+<2.5 for the entire endwall and blade surfaces. In 
order to capture the flow features adequately a fine 
mesh was used, containing over 5 million cells. This 
approaches the maximum possible for the available 
computer, which had 8 gigabytes of RAM.  

Turbulence models 
The turbulence models investigated were those 

available in FINETM/Turbo V7.4, thus no user coded, or 
modified turbulence models were investigated. The 
choice of turbulence models investigated was based on 
the list of recommended, low Reynolds number models 
found in the user manual [28] for the flow conditions to 
be tested. The turbulence models investigated are as 
follows: 

 • Baldwin-Lomax  

• Spalart-Allmaras  

• Spalart-Allmaras with the Abu-Ghannam and 
Shaw (AGS) transition model  

• The low Reynolds number Yang-Shih k-ε model  

• The non-linear low Reynolds number k-ω model  

• The Wilcox k-ω 

• The Shear-Stress Transport (SST) k-ω 
 

The Baldwin-Lomax is ideal for design cycle analysis 
where a robust and fast model is required. It is a two 
layer algebraic (zero equation) model. The turbulent 
viscosity is calculated differently in the inner and outer 
layers. Prantl’s mixing length model is used in the inner 
layer, whereas the mean flow and the length scale are 
used for the outer layer [28]. 

The Spalart-Allmaras turbulence model is a one 
equation model. Unlike the Baldwin-Lomax model, the 

Spalart-Allmaras model solves the transport equation 
for eddy viscosity, thus it is always continuous. Due to 
the robustness and ability to treat complex flows the 
Spalart-Allmaras has become very popular. Compared 
to the k-ε turbulence model it is more robust and less 
computationally expensive [28]. 

The Spalart-Allmaras with AGS is the standard 
Spalart-Allmaras, with a transition model incorporated 
in order to determine the transition of the boundary 
layer from laminar to turbulent. For this investigation 
only the Abu-Ghannam and Shaw model was 
investigated, even though other transition techniques are 
available. The AGS model is based on the correlations 
obtained by Abu-Ghannam and Shaw [29] obtained 
using experimental data of transition on a flat plate with 
pressure gradients [28]. 

The low Reynolds number Yang-Shih k-ε model is a 
form of the standard k-ε turbulence model that does not 
have a wall function. It infers the boundary layer profile 
from the input values at the wall [28].  

The non-linear low Reynolds number k-ε model does 
not use the first order closure model approximation 
according to the Boussinesq hypothesis. It is time 
consuming and is recommended for research only [28].  

The Wilcox k-ω model [30] predicts free shear flow 
spreading rates that show good agreement with 
experiments for far wakes, mixing layers and planar, 
round and radial jets [28]. 

The SST k-ω model was developed to blend the 
robustness and accurate formulation of the k-ω and the 
free stream independence of the k-ε. The k-ω and the k-ε 
are both multiplied by a blending function and added 
together [31]. The blending function is created such that 
in the near wall regions the k-ω is used, and in the free 
stream regions, far from the walls, the k-ε is used 
[28,32]. 

 
Figure 3: Blade geometry used for the current investigation
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Boundary Conditions 
The type of boundary conditions that were chosen 

coincided with the values that were directly measured in 
the experimental setup of Snedden et al. [24], as shown 
in Table 2. The inlet was specified by velocity 
components as velocity was the quantity that was 
controlled in the experiment. The outlet was specified as 
having a radial pressure equilibrium at midspan 
(R=0.1725). The working fluid was set as air with 
perfect gas attributes. The characteristic values listed in 
Table 2 are used by FINETM/Turbo to calculate certain 
values [28].  

 
Table 2: CFD Boundary conditions 

Inlet velocity [m/s] 21.38
Inlet temperature [K] 293
Number of rotor blades 20
Number of stator blades 30
Inlet turbulence [%] <1
Outlet pressure [kPa] 82.9
Rotational speed [RPM] 2300
Characteristic length [m] 0.06
Characteristic velocity [m/s] 25
Characteristic density [kg/m3] 1.0

 

Method of comparison 
In order to ensure that the turbulence model is 

appropriate the CFD results will be compared with 
experimental data. The experimental data used for the 
comparison was the 5-hole probe steady state 
measurements. The CFD is therefore run in steady state, 
using the experimental conditions in order to make an 
appropriate comparison. 

Comparison with pressure plots was not performed 
because the measurement technique only allowed an 
approximated static pressure. The 5-hole probe was 
connected using a modified connection method of 
Kaiser [33]. The calibration was performed using the 
method of Ingram [34]. The static pressure is calculated 
using the pitch ports only, since the yaw ports are only 
measured relative to each other, allowing a more 
accurate yaw angle but less accurate static pressure.  

Results and Discussion 
As can be seen from the list of turbulence models 

there are some variants. For instance the Spalart-
Allmaras model is run with transition modelling and 
two versions of the k-ε model were tested. 

In order to simplify the graphs the variants are 
compared with each other first. The model that fits the 
trend best is then compared with all the other turbulence 
models. By splitting up the comparison in this manner, 
the number of data series present on the graphs is 
reduced, making the graphs less cluttered, and easier to 
interpret. Downstream of the stator there is very little 
variation in the velocity profile when comparing all the 
different turbulence models and their variants. Thus 

none of the variants are plotted in Figure 5a 
It was thought that due to the low Reynolds number 

the flow might be transitional in regions. Thus the inlet 
turbulence boundary conditions were altered to 
investigate possible effects of the inlet conditions. For 
the Spalart-Allmaras three values of turbulence 
viscosities were used, namely µt=0.0001, µt=0.0005 and 
µt=0.0009. The default value in FINETM/Turbo is 
µt=0.0001 and is typical for external flows [28]. For 
turbo-machinery flows the recommended value of 
turbulence viscosity is between µ/µt=1 and µ/µt=5, thus 
the extreme values as well as a middle value is chosen 
(these values are based on the viscosity of air as being 
µ=1.8e-5Pa.s). 

Comparison of variants 
Looking at Figure 4a and Figure 4b it is evident that 

there is negligible difference between the different 
variants, even when changing the inlet turbulence level. 
Changing the turbulent viscosity level any more 
increases it beyond the recommended levels [28], thus 
ratios beyond this limit were not tested. Figure 4a shows 
that the predicted values were at the appropriate level.  

The experimental average velocity is v=24.92m/s 
compared to the numerical average velocity of 
v=24.79m/s. The trend is approximately correct, but it 
does not capture all features in the profile. Since all the 
variants of the Spalart-Allmaras produce approximately 
the same velocity profile, only the standard Spalart-
Allmaras will be compared with the other turbulence 
models, due to its reduced computational expense. 

The biggest differences between the experimental 
results and the numerical results are found at the hub 
and casing. Since the resolution in the experimental 
measurements at the hub and casing are not as fine as 
the numerical results, the differences in turbulence 
models in this region are not relevant. 

As with the Spalart-Allmaras, the k-ε variants are 
very similar. To reduce complexity the Yang-Shih k-ε 
turbulence model is thus treated as the best, since the 
added complexity of the variants do not improve the 
accuracy. 

The k-ω variants are significantly different, and are 
thus compared directly with the other turbulence 
models. 
 
Comparison of turbulence models 

With the differences in the turbulence model 
variants known it is now possible to find which 
turbulence model produces the best correlation. Looking 
at Figure 5a it is evident that none of the turbulence 
models show an ideal correlation. The turbulence 
models either have a good area averaged velocity, or a 
good reproduction of the velocity profile. A good 
reproduction of the velocity profile is sought, since the 
current investigation is more interested with flow 
features and not mean values.  

Figure 5 shows that all the turbulence models 
produce very similar results. At the casing, however the 
correlation is not as good as at the hub. The low value of 
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the point R=0.196m in the experimental velocity profile 
is thought to be due to the tip leakage flow. It is thought 
that the over-prediction of the velocity at the casing is 
due to manufacturing anomalies in the experimental 
setup. The tip gap could be slightly larger then 
predicted, either due to a blade being slightly shorter or 
due to the casing not being perfectly circular at the 
measurement locations. Some of the discrepancy could 

also be attributed to the hole through which the probe is 
inserted into the flow.  

With reference to Figure 5b it is clear that all the 
turbulence models fail in some aspect or another. The 
Spalart-Allmaras, Baldwin-Lomax and the k-ε follow 
the values at an appropriate level, but do not capture the 
profile very well. The k-ω and the SST k-ω however 
follow the profile reasonably well, but fail to capture the 
correct values.
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In the current investigation the trend is of more 
importance then the actual values, since the values can 
generally be captured experimentally. The trend is a 
result of the flow features, these features and the manner 
and location in which they are initiated are of 
importance, since this aids in understanding of the flow 
features. Thus the k-ω models are the most appropriate. 

The Wilcox k-ω [30] captures the trend very well at 
the casing, with the tip leakage flows peaking in the 
same locations. Conversely at the hub it does not quite 
capture the position of the peaks. The trend shows the 
correct type of features, but in the wrong locations. The 
SST k-ω however captures the hub features very well, 
but captures the flow features poorly at the casing. 
Therefore the SST k-ω was chosen, since the area of 
interest is the flow near the end wall. 

Conclusions and Recommendations 
Looking at the velocity profiles it was evident that 

none of the current turbulence models were sufficient to 
model the secondary flows present in a rotating 
environment. Thus the most appropriate turbulence 
model was determined from a set of available 
turbulence models in a commercial CFD code, 
Numeca’s FINETM/Turbo. It was found that the Spalart-
Allmaras and the Baldwin-Lomax models are adequate 
for the cases where the average velocity, and thus flow 
rates are of importance. The Spalart-Allmaras and the 
Baldwin-Lomax models also have a lower 
computational expense then the other models.  

The k-ε models gave a fair approximation, but did 
not improve the accuracy of the simulation when 
compared to the added computational expense. The SST 
k-ω model performed the best out of the two k-ω models 
tested. It did not capture the velocity values very 
accurately, but it captured the velocity magnitude 
profile the best of all the turbulence models tested.  

With reference to the data it is evident that Baldwin-
Lomax is still one of the best all purpose models for 
turbomachinery. The SST k-ω shows some promise as it 
predicted the velocity magnitude reasonably well, but 
the Baldwin-Lomax predicted the radial and tangential 
velocities better. 

Due to the complex nature of secondary flow it may 
still be sometime before computational hardware and 
the numerical models are such that the complexities can 
be appropriately modelled. Until such time it is 
important that new models be investigated and validated 
against experimental data. It is also recommended that 
the computational expense be carefully weighed against 
the required accuracy. FINETM/Turbo does offer higher 
order turbulence models, but they are non-linear and not 
recommended for use in design cycle analysis [28] due 
to the added computational expense.  
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