Estimated Risk Profiles of Titanium Dioxide and Carbon Nanotubes Engineered Nanomaterials (ENMs) in the Gauteng Province environment

N. Nota^{1,2}, N. Musee¹, C. Aldrich²

- 1. CSIR, Natural Resources and Environment (NRE), Pretoria
- 2. University of Stellenbosch, Process Engineering, Cape Town

UWC, Belville campus, Cape Town
Nanosciences Young Researcher Symposium
17 September 2010

Overview of presentation

- ☐ Study background
- Objectives
- Methods
- ☐ Results and discussion
- Conclusions and recommendations

Study background

Four generations of nanotechnology development (Roco, 2004)

Nanoproducts inventory

Company declared consumer products (Project on Emerging Nanotechnologies - PEN, 2010)

Major nanomaterials in products

Most dominant nanomaterials in listed nanoproducts (PEN, 2010)

Engineered nanomaterials (ENMs) inventory

Potential pathways of ENMs to the environment

Objectives

 Estimate concentrations of nTiO₂ and CNT in aquatic and terrestrial environments of the Gauteng Province (GP), South Africa

 Estimate the potential risks of nTiO2 and CNT in aquatic and terrestrial environments

Methods: Probable environmental ENMs flows

A - release to the hazardous waste sites

B – release to the aquatic environment

C - release to the terrestrial environment

Model input and output variables

Model Equations: Aquatic Environment

$$NM_{Water,inputi} = NM_{WW,Totali} \bullet (1 - f_{STPi} \bullet f_{Removali})$$

$$C_{WW} = C_{STP} = \frac{NM_{i,WW,STP} \times 10^{12}}{WW_{percapita} \bullet f_{STP} \bullet POP}$$

$$PEC_{i} = \frac{NM_{i,Water} \bullet 10^{12}}{POP \bullet WW_{percapita} \bullet D_{k}} = C_{STP} \bullet \frac{NM_{i,Water}}{NM_{i,WW,STP}} \bullet \frac{f_{STP}}{D_{k}}$$

$$RQ = \frac{PEC_{NMi}}{PNEC_{NMi}}$$

Model equations: Terrestrial environment

$$NM_{soil, input(i)} = NM_{WW, Total(i)} \{1 - f_{STP(i)} * (1 - f_{removal(i)})\}$$

$$PEC_{soil} = \frac{A \bullet 10^9}{RHO_{soil} \bullet D_{soil}}$$

$$RQ = \frac{PEC_{NMi}}{PNEC_{NMi}}$$

Results and discussion (1)

	Modelled scenarios	Variables			
	$D_k = 1$	PEC _{water} (μg/L)	RQ water	PEC _{soil} (µg/L)	RQ _{soil}
nTiO ₂	Min	0.035591	0.355905	0.457127	0.000457
	Prob	0.121298	1.212985	1.879172	0.001879
	Max	0.30059	3.005905	3.348632	0.003349
CNT	Min	0.005301	0.053006	0.068081	0.006808
	Prob	0.018065	0.180653	0.27987	0.027987
	Max	0.044768	0.447676	0.49872	0.049872

Results and discussion (2)

Conclusions and recommendations

- nTiO₂ poses higher risk concern in the GP aquatic environment (RQ>1)
- CNT did not show any risk concerns at present (RQ<1)
- Risk was minimal in the terrestrial environment (RQ<<<1)
- Urgent risk assessment measures to be prioritised for nTiO₂
- Hence, there is a need for parallel research on risk assessment to the synthesis, characterisation and applications of ENMs in the country

Acknowledgements

- Supervisors: Dr Ndeke Musee & Prof Chris Aldrich
- Funding from DST under HSE project
- The CSIR
- The University of Stellenbosch

THANK YOU

