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ABSTRACT 

SLAM, or simultaneous localization and mapping, is a key component in the development of 

truly independent robots. Vision-based SLAM utilising stereo vision is a promising approach 

to SLAM but it is computationally expensive and difficult to implement. New feature 

manipulation techniques are proposed which incorporate relational and positional 

information of the features into the extraction and data association steps. 
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1 INTRODUCTION 

The localization of a mobile robot and positioning of surrounding objects are two 

problems that must be solved to realize independent robot operation. In a known 

environment a robot can be localized by determining the relative position of the robot 

with regards to the known positions of landmarks within the environment. Conversely, if 

the position of the robot is known, a map can be created of the surroundings by 

determining landmark positions relative to the robot. For truly independent operation a 

robot must be able to both create such a map and localize itself in situations where neither 

the position of the robot nor the position of landmarks are known a priori. Simultaneous 

localization and mapping (SLAM) is defined as the solving of both problems at the same 

time.  

 

Robots require sensory input to implement SLAM. Visual sensors are well suited to 

robotic applications due to their relative inexpensiveness, lightness, low power 

consumption as well as the high rate of data that cameras produce. The disadvantage of 

these sensors is the large amount of processing that is required to convert the data into 

usable information. The extraction of the landmark depth information from images is an 

especially challenging problem that requires an accurate and efficient solution. 

 

Vision-based SLAM makes use of visual sensors in the implementation of SLAM. A 

common method employed in vision-based SLAM is to make use of image recognition 

techniques to find distinguishable features in an image. The three dimensional position of 

these feature are then determined and then recorded as landmarks within the SLAM map. 

The feature itself and the processing associated with the feature affect the performance of 

a SLAM system in both its accuracy and computational efficiency. 

2 RELATED WORK 

SLAM produces a map which consists of the estimated positions of the landmarks and a 

covariance matrix which reflects the uncertainty of the landmark positions relative to one 

another and to the estimated position of the robot. One of the difficulties in the 

implementation of SLAM is the computational expense of producing this map. Due to the 
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increasing number of landmarks used and the associated expense of landmark extraction 

and data association it is found that SLAM systems are often not implementable in real-

time, as seen in [1] and [2]. It is therefore important to improve the efficiency of the 

mapping algorithm as well as to reduce the computation time of any additional processes. 

 

Feature-based visual depth extraction involves the calculation of image depth by relating 

the difference in position of the same image primitive across several images to the 

physical configuration or movement of the camera system. Depth is only calculated for a 

number of points as opposed to the whole of the image and the relationship between 

features and SLAM landmarks is easily defined. Features that have been used in SLAM 

implementations include the Harris corner detector ([3], [4] and [5]), scale-invariant 

feature transform (SIFT) [6], speeded up robust features (SURF) [2] and Lucas-Kanade 

optical flow [7].  

 

In [8] a data association method is used which was developed specifically for a SLAM 

system and which utilizes the positional information of the map to improve feature 

matching. Features are detected using the Shi-Tomasi detector and are stored in a 

database together with an image patch centred on the corner. The positional estimates of 

the features are then used to predict where the corner will be visible in subsequent frames, 

where the robot is in a different position. An image patch of the expected corner position 

is then transformed using robot positional information to maximize the chances of 

producing a correct match. This is a very effective method and has been used in several 

other SLAM implementations, such as [9], [10] and [11]. 

 

Point features can be grouped to make use of the geometric relationships between the 

features to improve feature detection, matching and tracking. SIFT keypoints can be 

grouped according to objects that are detected in a scene [12]. This approach requires that 

the SLAM system be provided with a database of SIFT keypoints corresponding to 

specific objects. This approach is not applicable when the robot has to explore a 

completely unknown and irregular environment. In [13] the object database instantiation 

problem is avoided by finding objects in the current environment and adding them to an 

initially empty database. In [14] groups of SIFT keypoints called fingerprints are used as 

a way to identify sup-maps in a global map which improves mapping efficiency. In [4] 

groups of multi-scale Harris corners are matched. Further matching of corners based on 

the predicted position of corners relative to the matched group is then conducted. 

 

As can be seen, the feature extraction and data association steps in a vision-based SLAM 

system can benefit from innovative definition and handling of the visual feature. The 

geometric information of the landmarks can be incorporated into the data association 

process to improve efficiency and accuracy. Grouping of detected features enables the use 

of the relationships between the features to improve the detection and matching of 

features. 

3 SYSTEM DESCRIPTION 

3.1 Stereo Vision Assembly 

The stereo vision assembly consists of two E-54G10HP Power Zoom cameras mounted on 

a Perspex tray. It allows for various translational and rotational configurations. The 
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cameras are connected via S-video cables to a Sensoray 2255S USB video capture device 

which in turn is connected to a computer with a USB cable.  

 

 

Figure 1. Stereo camera rig and Sensoray 2255S frame grabber 

The video capture device, or frame grabber, interfaces with an Ubuntu 8.10 operating 

system by means of a Video 4 Linux 2 driver. The video stream is accessed and processed 

by using C based programs and OpenCV. OpenCV is an open source library used for 

computer vision applications [15]. 

 

In order for a system to compute scene depth information from stereo visual input it first 

needs to determine the geometry of the stereo vision configuration, or the system 

calibration. Thereafter the video input needs to be adjusted or rectified to compensate for 

the differences in the two camera orientations. The disparity between the two video inputs 

can then be calculated by determining the correspondence between the two signals. 

Knowledge of the geometry of the configuration is then used to transform or reproject the 

disparity values to depth values. 

 

3.2 Calibration 

The geometry of a stereo vision configuration is determined not only by the relative 

position of the cameras to each other but also by the individual intrinsic parameters of 

each camera. The intrinsic parameters consist of the focal length and central axis 

displacement variables. The radial and tangential distortions of the camera influence the 

rectification process and are also computed during calibration. 

 

The intrinsic parameters relate the spatial position of objects to their position on the image 

plane. If the object points are known and the image points can be determined, then the 

intrinsic parameters can be computed. The corners on a grid of black and white squares (a 

chessboard) are used as object points and corner detection is used to extract the image 

points. Several views of the chessboard held at different angles must be used for accurate 

computation of the intrinsic parameters.  

 

After each camera has been calibrated a stereo calibration function determines the 

rotational and translational matrices that relate the two camera views. This function uses 

image pairs of a chessboard as captured by the two cameras. The function also further 

refines the intrinsic camera parameters.  
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3.3 Rectification 

The stereo images are rectified to ease the computation of the image disparities and to 

compensate for camera distortion of the images. The goal of rectification is to transform 

the images in such a way that it appears as if the camera were perfectly parallel and 

horizontally aligned so that the image pixels will be row aligned. The disparity in the 

scene is then indicated by the difference in the x coordinate of the image screens.  

 

The rectification function is based on Bouguet’s algorithm which attempts to minimize the 

adjustment for each image while maximizing the common viewing area between the 

images. The function uses the intrinsic parameters for each camera as well as the 

configuration rotation and translational matrices, as computed during calibration. The 

algorithm provides the necessary transformation matrices for each camera. It also 

computes the reprojection matrix to be used during the disparity to depth transformation. 

 

3.4 Correspondence 

Stereo correspondence involves determining which points in the two camera images are 

the same point. If it is known which points are the same, then the disparity between the 

points can be computed. Feature-based correspondence restricts the matching process to 

interesting features in each image. Corners are found in each image using the Shi-Tomasi 

corner detector. A large number of corners are usually found and corners are filtered out 

according to the quality of the corner as well as the number of corners in an area. Corners 

are matched between the left and right images using a normalised corner coefficient 

(NCC) method described in [16]. The disparity between matched corners is then 

computed.  

 

The result produced by the corner matching algorithm is shown in the following figure. 

 
Figure 2. Matching corners are indicated by circles of the same colour. 

 

3.5 Reprojection 

The stereo correspondence step provides the coordinates of a number of image pixels in 

disparity space. These points need to be reprojected to three dimensional space to provide 

the needed positional information for the SLAM system. The reprojection matrix 

computed during the rectification step is used to transform the coordinates. This matrix 

contains the focal length, central axis displacement and distance between the cameras in 
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an appropriate ordering. The following figure shows an example of depth reprojection. 

The depth indicated are relative values and not calibrated. 

 

 

Figure 3. Corner depth is indicated by both colour and rating. 

3.6 Landmark Instantiation 

Shi-Tomasi corners are detected, matched and projected to a three dimensional space. 

Corners that are close to one another are clustered together. A hierarchical agglomerative 

complete-link clustering algorithm [17] is used. Merging of clusters is stopped when the 

complete-link similarity between clusters reaches a threshold. This threshold is based on 

experimental observation. 

 

The clusters are now used to denote a number of corners. Clusters are defined by a centre 

point and a farthest point. The centre point is the mean of the three dimensional positions 

of the corners in the cluster and the farthest point is the position of the corner situated the 

farthest from the centre point.  

 

Clusters can be used to speed up feature extraction in the following manner. The 

coordinates of centre and farthest points are projected to the current disparity space. This 

disparity space is dependent on the new position of the robot and the new orientation of 

the cameras. The distance between the image centre and farthest points can then be used to 

determine the size of the region of interest in which the corners should be searched for. 

Instead of trying to match the previously detected corners to newly detected corners in the 

whole of the image, corners are now matched in a smaller search space. 

 



 

 

 
Joubert                                                                                                                                                      Page 6 of 7 

 

25
th 

International Conference of CAD/CAM, Robotics & Factories of the Future Conference, 

13-16 July 2010, Pretoria, South Africa 
 
 

 

 
Figure 4. Corner clusters indicated by large circles. 

 

The region of interest is valid only for the left camera image. The region of interest for the 

right camera needs to be determined. Corners are clustered according to spatial 

coordinates. The larger clusters are expected to be found on surfaces perpendicular to the 

line of sight and should have similar disparity values. Therefore the adjustment that must 

be made to the region of interest for the right camera image can be computed using the 

projected centre point disparity value.  

 

The clusters can also be used to determine the areas in a view where features are sparse. 

As each cluster defines a region where corners are detected, the regions of the image 

where regions have not been declared can then be declared as unknown regions. Feature 

extraction applied to these areas would lead to a more comprehensive map and better 

localization. It is also possible to lower the limits of the detection and matching filters so 

that more corners with less quality can be detected in areas where detection is difficult. In 

such a case a measure of the quality of the corners in the cluster should be recorded for use 

in the SLAM system.  

4 CONCLUSION 

Feature management techniques have been developed to improve the accuracy and 

performance of the feature extraction and data association processes of a SLAM system. 

These techniques are based on feature clustering and the utilisation of the recorded feature 

positional information. The system described in this paper is still a work in progress but it 

is believed that, if refined, the techniques can greatly improve the performance of a robot 

employing vision-based SLAM. The future goal is to incorporate multiple features into a 

single landmark which would improve the fundamental operation of a SLAM system. 

5 RECOMMENDATIONS 

The Shi-Tomasi corners can be replaced with a visual feature that is invariant to scale 

changes, such as SIFT or SURF. Furthermore, the adjustment of the region of interest for 

the right camera relies on a questionable assumption and it should be further developed. 
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