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RMotivation: With the wealth of sequence data and the huge amount of data generated from molecular

technologies, the issue of gene classification/prediction has become a central challenge in the field of
microarray data analysis. This has led to the application of many well-established supervised learning
(SL) algorithms in an attempt to provide more accurate and automatic diagnosis class (cancer/non cancer)
prediction. Virtually all research on SL addresses the task of learning to classify complete domain
instances. However, in some research situations we often have to classify instances given incomplete vec-
tors, which can affect the predictive accuracy of learned classifiers. The task of learning an accurate
incomplete data classifier from instances raises a number of new issues some of which have not been
properly addressed by bioinformatics research. Thus, an effective missing value estimation method is
required for improving predictive accuracy.
Results: The essence of the approach is the proposal that prediction using supervised learning can be
improved in probabilistic terms given incomplete microarray data. This imputation approach is based
on the a priori probability of each value determined from the instances at that node of a decision tree
(PDT) that have specified values. The proposed approach exploits the total probability and Bayes’ theo-
rems and it has three versions. We evaluate our approach with other supervised learning techniques
including C5.0, classification and regression trees (CART), k-nearest neighbour (k-NN), linear discrimina-
tion (LD) naïve Bayes classifier (NBC), Repeated Incremental Pruning to Produce Error Reduction (RIPPER)
and support vector machines (SVMs), from the point of view of their effect or tolerance of incomplete test
data. Eight cancer related gene expression datasets are utilized for this task. Experimental results are pro-
vided to illustrate the efficiency and the robustness of the proposed algorithm.

� 2010 Published by Elsevier B.V.
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R1. Introduction

It is generally accepted that the highest accuracy results that a
SL system can achieve depend on the quality of data and the appro-
priate selection of a learning algorithm for the data. One of the cen-
tral tasks of SL algorithms is classifying instances from some
domain of application, i.e., determining whether a particular in-
stance belongs to a specified class, given a description of that in-
stance. The wealth and complexity of microarray data lends itself
well to the application of classifier or SL methods for prediction
or classification of prognosis of diseases according to their gene
expression signatures as measured by microarrays.

Virtually all research on supervised learning addresses the task
of learning to classify complete domain instances (Osareh and
Shadgar, 2009). However, in some research situations we often
have to classify instances given incomplete data vectors. The fre-
quency of poor data quality is one of the most vexing problems
77

78

79
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for functional genomics and bio-medical researchers, especially
those dealing with microarray gene expression data. Incomplete
microarray data could be caused by administrative error, defective
technique, or technology failure. For example, an intended replica-
tion may be omitted, or a feature of the robotic apparatus may fail.
A scanner may have insufficient resolution, or an image may be
corrupted. Another complication could be project managers who
flatly refuse to participate in the study. Some researchers follow
the practice of flagging readings that are suspect, and these may
be converted to missing values or otherwise excluded from the
analysis before proceeding. For instance, spots with dust particles,
irregularities or other bad features may be flagged manually. Spots
may be flagged as ‘absent’ or ‘feature not found’ when nothing is
printed in the location of a spot. Expression readings are barely
above the background correction (using a criterion such as less
than two background standard deviations above may also be
flagged.

One primary concern of classifier learning is prediction accu-
racy. Recent research has shown that missing values in either the
training data or test (unseen) data affect prediction accuracy of
ne microarray data with the use of supervised learning algorithms. Pattern
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learned classifiers (Quinlan, 1993). The task of learning an accurate
incomplete data classifier from instances raises a number of new
issues some of which have not been properly addressed by bioin-
formatics research. First, the types of processes that can cause an
instance to have missing attribute values have to be considered.
For example, whether this omission is randomly missing, uninfor-
mative, partially informative, or even misleading. Second, classifi-
cation or prediction on incomplete data versus training on the
artificially completed instances can also be considered. Intuitively,
complete data give the learner more information about each in-
stance, and hence, should make classification easier.

Robustness has a two fold meaning in terms of dealing with
missing values in supervised learning. The toleration of missing
values in the training set is one, and the toleration of missing data
in the test (validation) set is the other. For the training set, both
attribute values and/or class labels could be missing, while for
the test set, only attribute values could be missing. When missing
features are encountered in the test set, some ad hoc approaches of
listwise deletion or imputation have been utilized by biomedical
researchers to form a complete-data format. Some researchers
have used supervised learning imputation for handling incomplete
data. For purposes of this paper we are assuming that the class la-
bels are not missing; only attribute values in the test set are con-
sidered as missing.

Although the problem of incomplete data has been treated ade-
quately in various real world datasets, there are rather few pub-
lished works or empirical studies in biomedical research
concerning the task of assessing learning and classification accu-
racy with incomplete data using supervised ML algorithms such
as DTs. In fact most of the biomedical studies have focussed on
developing missing value estimation methods for incomplete
microarray data (Troyanskaya et al., 2001; Walszak and Massart,
2001; Zhou et al., 2003; Oba et al., 2003; Bø et al., 2004; Kim
et al., 2004; Nguyen et al., 2004; Kim et al., 2005; Sehgal et al.,
2005; Gan et al., 2006; Williams et al., 2007; Brás and Menezes,
2007; Tuikkala et al., 2008; Zhang et al., 2008; García-Laencina
et al., 2009) than developing techniques for prediction or classifica-
tion using incomplete microarray data. Other researchers have fo-
cussed on classification of incomplete data in other fields like data
mining or knowledge discovery (Hawarah et al., 2006; 47; 36; Far-
hangfar et al., 2008; Saar-Tsechansky and Provost, 2007; Twala
et al., 2008; Twala, 2009; Branden and Verboven, 2009). To this
end this paper provides:

� The largest number of popular and modern classifiers, namely,
C4.5 (Quinlan, 1993), k-NN (Hand, 1997), LD (Fisher, 1936;
Hand, 1997), NBC (Michie et al., 1994), CART (Breiman et al.,
1984), RIPPER (Cohen, 1996), SVMs (Vapkin, 1995);
� The range of two missing data patterns and three missing data

mechanisms for consistent amounts of missing data (5%, 10%,
20% 35% and 50%) for all datasets;
� The largest number of datasets – eight datasets ranging

between 22 and 308 instances, 200 and 15,154 attributes, and
2 and 26 classes.

The purpose of this paper is to develop probabilistic methods
for classifying incomplete test data using DTs, i.e. methods that
could be used to handle incomplete software project test data. This
approach is based on the a priori probability of each value deter-
mined from the instances at that node that have specified values.
The missing attribute values can be either continuous or nominal.
For purposes of this study, we assume that training data has no
missing values. The proposed method follows the total probability
and Bayes’ theorems (Bernado and Smith, 1994) and it has three
versions. We note that although some of these classifiers including
C4.5 have their own internal approaches of handling unknown
Please cite this article in press as: Twala, B., Phorah, M. Predicting incomplete ge
Recognition Lett. (2010), doi:10.1016/j.patrec.2010.05.006
attribute values; it is not clear how they would react to external
imputation methods.

The following section presents details of eight supervised learn-
ing techniques that are used in this paper. The framework of the
proposed probabilistic method is introduced and described in Sec-
tion 3. Section 4 presents related work. Section 5 empirically eval-
uates the robustness and accuracy of the new technique in
comparison with on eight microarray domains. We close with a
discussion and conclusions, and then directions for future research.
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2. Missing data patters and mechanisms

The two most common tasks when dealing with incomplete
data is to investigate the pattern (which values are missing) and
the law generating the missing values (whether missingness is re-
lated to the study variables). When missing values are confined to
a single variable we have a univariate pattern; monotonic pattern
occurs if a subject, say Yj, is missing then the other variables, say
Yj+1, . . . , Yp, are missing as well; arbitrary patterns occur when
any set of variables may be missing for any unit.

The law generating the missing values seems to be the most
important task since it facilitates how the missing values could
be estimated more efficiently. If data are missing completely at
random (MCAR) or missing at random (MAR), we say that missing-
ness is ignorable (Little and Rubin, 1987; Schafer, 1997). For exam-
ple, suppose that you are modelling oral cancer as a function of a
white or a red patch on the gums. There may be no particular rea-
son why some gums had white or red patches and others did not.
Such data is considered to be MCAR. Furthermore, oral cancer may
not be identified or diagnosed due to a given specific type of patch
on the gums. Such data are considered to be MAR. MAR essentially
says that the cause of missing data (oral cancer) may be dependent
on the observed data (red or white patch on the gums) but must be
independent of the missing value that would have been observed.
MAR is a less restrictive model than MCAR, which says that the
missing data cannot be dependent on either the observed or the
missing data. For data that is informative missing (IM), we have
non ignorable missingness (Rubin, 1987; Little and Rubin, 1987),
that is, the probability that oral cancer results are missing depends
on the unobserved values of oral cancer themselves. For example,
medical doctors may be less likely to reveal oral cancer diagnosis
test results of very young or very old patients with severe symp-
toms of oral cancer.
3. Existing supervised learning imputation methods

Some SL methods are inherently tolerant to incomplete data
and thus require mechanisms for handling missing attribute val-
ues. An overview of the current supervised learning imputation
methods (their strengths and limitations) used for comparative
purposes to assess the performance of PDTI is now presented.

3.1. C4.5

Fractioning of cases is a missing value strategy used for the C4.5
decision tree (DT) learning system (Quinlan, 1993). Quinlan (1993)
borrows the probabilistic complex approach by Cestnik et al.
(1987) by ‘‘fractioning” instances or cases (FC) based on a priori
probability of each value determined from the instances at that
node that have specified values. Quinlan starts by penalising the
information gain measure by the proportion of unknown instances
and then splits these instances to both subnodes. For classification,
Quinlan’s technique is to explore all branches below the node in
question and then take into account that some branches are more
probable than others. The weights of the instance fragments clas-
ne microarray data with the use of supervised learning algorithms. Pattern
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sified in different ways at the leaf nodes of the tree are summed
and then the class with the highest probability or the most proba-
ble classification is chosen. C4.5 does not consider that association
or dependencies among the attributes, thus, we shall assume a
MCAR mechanism.

3.2. Classification and regression trees

One other sophisticated but refined tree-based method worthy
of note and study is the surrogate variable splitting (SVS), which
has been used for the classification and regression trees (CART).
CART handles missing values in the database by substituting ‘‘sur-
rogate splitters”. Surrogate splitters are predictor variables that are
not as good at splitting a group as the primary splitter but which
yield similar splitting results; they mimic the splits produced by
the primary splitter; the second does second best, and so on. The
surrogates are used for tree nodes when there are missing values.
The CART system relies on the dependencies of the attributes when
dealing with missing values. Hence, we shall assume that the
mechanism generating the missingness is MAR.

3.3. k-Nearest neighbour

One of the most venerable algorithms in statistical pattern rec-
ognition is the nearest neighbour. k-nearest neighbour (k-NN) can
also be considered a supervised learning algorithm where the re-
sult of a new instance query is classified on majority of k-nearest
neighbour category. Of late, such an algorithm has become popular
in imputing missing microarray data (Troyanskaya et al., 2001;
Kim et al., 2007). k-NN methods are sometimes referred to as
memory-based reasoning or instance-based learning or case-based
learning techniques and have been used for classification tasks.
They essentially work by assigning to an unclassified sample point
the classification of the nearest of a set of previously classified
points. The entire training set is stored in the memory. k-NN re-
quires that data are MCAR.

3.4. Linear discriminant

Originally developed in 1936 by Fisher (1936), linear discrimi-
nant analysis (LDA) finds a linear transformation (‘discriminant
function”) of two predictors, say, X and Y, which yields a new set
of transformed values that provides a more accurate discrimina-
tion than either predictor alone. Linear discriminants use a mean
imputation strategy, i.e. replacing missing values of an attribute
with the mean of the attribute. This strategy is applicable for con-
tinuous data. For discrete data of the corresponding attribute, the
most frequent value (mode) was utilised. LDA is based on the
assumption that data is MCAR.

3.5. Naïve Bayes classifier

The naïve Bayes classifier (NBC) is perhaps the simplest and
most widely studied probabilistic learning method. It learns from
the training data, the conditional probability of each attribute Ai,
given the class label C (Kononenko, 1991; Michie et al., 1994).
The strong major assumption is that all attributes Ai are indepen-
dent given the value of the class C. Classification is therefore done
applying Bayes rule to compute the probability of C given A1 . . . , An

and then predicting the class with the highest posterior probabil-
ity. The probability of a class value Ci given an instance
X = {A1 . . . , An} for n observations is given by:

PðCijXÞ ¼
pðXjCiÞ:pðCiÞ

pðXÞ ¼ pðA1; . . . ;AnjCiÞ:pðCiÞ ¼
Yn

j¼1

pðAjjCiÞ:pðCiÞ:
Please cite this article in press as: Twala, B., Phorah, M. Predicting incomplete ge
Recognition Lett. (2010), doi:10.1016/j.patrec.2010.05.006
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The assumption of conditional independence of a collection of ran-
dom variables is very important for the above result. Otherwise, it
would be impossible to estimate all the parameters without such
an assumption. This is a fairly strong assumption that is often not
applicable. However, bias in estimating probabilities may not make
a difference in practice – it is the order of the probabilities, not the
exact values that determine the probabilities.

To perform imputation, we treat each attribute that contains
missing values as the class attribute, then fill each missing values
for the selected class attribute with the class predicted from the
conditional probabilities established during training.

3.6. Ripper

RIPPER (Cohen, 1996) is a rule-based learning that builds a set
of rules that identify classes while minimizing the amount of error.
The error is defined by the number of instances misclassified by the
rules. RIPPER incorporates a bias against missing values into a rule
building process; any test of an attribute whose value is unknown
(missing) returns a failure, so that the learner focuses on com-
pletely known (non-missing) features in selecting rule pre-condi-
tions. The assumption made about the law generating the
missing values when using RIPPER is that the data is MCAR.

3.7. Support vector machines

Support vector machines (SVMs) are pattern classifiers that can
be expressed in the form of hyper-planes to discriminate positive
instances from negative instances pioneered by Vapkin (1995).
The principal goal of the SVM approach is to fix the computational
problem of predicting with kernels (Breiman et al., 1984). The basic
idea of SVMs is to determine a classifier or regression machine
which minimizes the empirical risk (i.e., the training set error)
and the confidence interval (which corresponds to the generalisa-
tion or test set error). In other words, the idea is to fix the empirical
risk associated with architecture and then use a method to mini-
mize the generalisation error. Motivated by statistical learning the-
ory, SVMs have successfully been applied to numerical tasks,
including regression and classification. They can perform both bin-
ary classification (pattern recognition) and real valued function
approximation (regression estimation) tasks. Like artificial neural
networks, the standard formulation of SVMs does not allow for
missing values for any of the attributes in an instance being
learned or classified. However, for the handling of missing values
in SVM classifiers, the maximal variation approach by Bhattacher-
jee et al. (2001) is followed in this paper.
4. A new supervised imputation method

Although many supervised learning imputation methods have
already been developed, we still propose a new technique. The
motivation for introducing this imputation method is three fold:
current imputation methods consider either a very local optimisa-
tion criterion resulting in less accurate results, or a more global
imputation approach at high computational cost, other global
methods are very fast but very inaccurate. The new strategy we pro-
pose approaches the imputation of missing attribute values in a glo-
bal way but keeps the computation time under control. To construct
the new method, DT learning and estimation of probabilities using
logit models are utilized as described in the following sections.

4.1. Decision trees

A DT (Breiman et al., 1984; Quinlan, 1993) is a model of the data
that encodes the distribution of the class label in terms of the
ne microarray data with the use of supervised learning algorithms. Pattern
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Fig. 1. Example of a binary decision tree from a set of 40 training instances that are
represented by three attributes and accompanied by two classes. Note: Figures in
brackets are the number of instances in each terminal node for class 1 and 2,
respectively.
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predictor attributes. The root of the decision tree (DT) does not
have any incoming edges. Every other node has exactly one incom-
ing edge and zero or more outgoing edges. If a node n has no out-
going edges we call n a leaf node, otherwise we call n an internal
node. Each leaf node is labelled with one class label; each internal
node is labelled with one predictor attribute called the splitting
attribute. Each edge e originating from an internal node n has a
predicate q associated with it where q involves only the splitting
attribute of n.

A DT can be used to predict the values of the target or class
attribute based on the predictor attributes. To determine the pre-
dicted value of an unknown instance, you begin at the root node
of the tree. Then decide whether to go into the left or right child
node based on the value of the splitting attribute. You continue this
process using the splitting attribute for successive child nodes until
you reach a terminal or leaf node. The value of the target attribute
shown in the leaf node is the predicted value of the target attribute.

4.1.1. The probabilistic approach
The missing value problem addressed in this paper can be de-

fined as follows:
Given: A decision tree, a complete set of training data, and a set

of instances for testing, described with attributes and their values.
Some of the attribute values in the test instances are unknown.

Find: A classification rule for a new instance using the tree
structure given that it has an unknown attribute value and by
using the known attribute values.

Let A be the attribute associated with a particular node of the
tree that could either be discrete or numerical. A discrete attribute
has a certain number of possible values J and a continuous attri-
bute may attain any value from a continuous interval. Each node
is split into two sons (left and right sons). Hence, a new instance
could either go to the left (L) or to the right (R) of each internal
node. Further, let V be the binarised value for attribute A.

Let C denote a class and let there be k classes, J = 1 . . . , k. The to-
tal probability theorem is used to predict class membership of an
unknown attribute value by computing the conditional probability
of a class C given the evidence of known attribute values.

For individual j, divide the attributes in the tree into classes for
both K (the known attribute values) and M (the missing attribute
values). Assuming that K and M are statistically independent, the
conditional probability that a known attribute value belongs to a
certain class is given by the following equation:

PðCjjKÞ ¼
X

PðCjjK;MÞPðMjKÞ ¼
X

PðCjjK;MÞPðMÞ;

where

PðMjKÞ ¼ PðM;KÞÞ
PðKÞ ¼ PðMÞPðKÞ

PðKÞ ¼ PðMÞ:

The sum is over all possible combinations of values that branch
to the left (L) or right (R) at each respective internal node, taken by
the vector of the missing attribute values M. For the unknown
attribute values, the unit probability may be distributed across
the various leaves to which the new instance could belong. These
probabilities are going to be estimated in by using logit models.

For illustration purposes, suppose that the DT shown in Fig. 1 is
constructed using a superficial dataset of, say, 40 instances. Fur-
ther, consider the values for the categorical attribute 1 (A1) and
the numerical attribute 3 (A3) are missing; attribute 2 (A2), a con-
tinuous attribute, is the only attribute with non-missing values.

From the example, it appears that all the attributes with no
missing values would be used when estimating the probabilities.
However, this does not have to be the case. The attributes that
are used are determined by where the instance branches at a par-
ticular internal node. For example, say, A1 was not missing. For any
Please cite this article in press as: Twala, B., Phorah, M. Predicting incomplete ge
Recognition Lett. (2010), doi:10.1016/j.patrec.2010.05.006
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Dinstance branching to the left of that would mean non-utilisation

of attribute A2 which is connected to the right of branch A1.
First case: Class membership for a new instance is predicted gi-

ven that it will branch to the right of the internal node A2ðAR
2Þ given

that both A1 and A3 have unknown attribute values. We can define
the probability that the predicted class membership will be class 1
given that it branches to the right of internal attribute 2, that is,
PðC1jAR

2Þ can be defined by:
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2

� �
.

4.1.2. Full estimation of probabilities from training data using logit
models

The binary logit model (BLM) is used to estimate probabilities
for those datasets that have two classes while a multinomial logit
model (MLM) is used to estimate probabilities for datasets with
three or more classes (Hosmer and Lameshow, 1989). Both models
are described below.

Let C e {0, 1} be the dependent or response variable and let
a = ai1 . . . , aip be the predictor attributes vector. A linear predictor
gi is given by b0 + b0a where b0 is the constant and b0 is the vector
of regression coefficients (b1 . . . , bp) to be estimated from the data.
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They are directly interpretable as log-odds ratios or in terms of ex-
p(b0), as odds ratios.

The a posteriori class probabilities are computed by the logistic
distribution:

PðC ¼ 1ja ¼ ai1; . . . ; aipÞ ¼ pi ¼
expfpig

1þ expfpig

b
0

are estimated by maximising the likelihood function

Lðb1; . . . ;bpÞ ¼
Yn

i¼1

pCi
i ð1� piÞ1� Ci:

Computational details can be found in (Menard, 1995)
The estimated predicted value ĝj and the estimated probability

p̂j for a new observation aj1; . . . ; ajp are given by ĝj ¼ b̂0 þ b̂0a
and

p̂j ¼ pða; b̂Þ ¼ expfĝjg
1þ expfĝjg

:

These terms are often referred to as ‘‘predictions” for given charac-
teristic vector a. One advantage of using a binary logit model (rather
than LDA) is that it is relatively robust, i.e., many types of underly-
ing assumptions lead to the same logistic formulation. By contrast
the LDA approach is strictly applicable only when the underlying
variables are jointly normal with equal covariance matrices.

For example, suppose that we have a dataset with p attributes
(A1 . . . , Ap) and two classes (C1, C2). Then the probability that an ob-
ject with values a1 . . . , av belongs to C1 as a logistic function of the
attribute variables could be modelled as:

PðC1jAÞ ¼
expfb0 þ b1b1 þ � � � þ bkbkg

1þ expfb0 þ b1b1 þ � � � þ bkbkg
:

The unknown parameters bi can be estimated from the training
data on instances with known classifications.

Using the example in our illustration, PðC1jAL
2;A

L
1;A

L
3Þ would be

estimated by:

log
P C1jAL

2;A
L
1;A

L
3

� �

P C2jAL
2;A

L
1;A

L
3

� �
2
4

3
5 ¼ b0 þ b1AL

2 þ b2AL
2 þ b2AL

1 þ b3AL
3:

The generalisation of the binary logit approach to the case of
three or more classes is knows as the MLM and the derivation is
similar to that of the BLM To give a flavour of how this model
can be used for probability estimation purposes, the procedure
for a three-class case is sketched out. In this case, the probabilities
of an observation belonging to each of the three classes, given a
particular characteristic vector, are given by the following
expressions:

Pðp1jaÞ ¼
expfĝ1g

1þ expfĝ1g þ expfĝ2g
;

Pðp2jAÞ ¼
expfĝ2g

1þ expfĝ1g þ expfĝ2g
;

Pðp3jAÞ ¼
1

1þ expfĝ1g þ expfĝ2g
:

Given estimates of the values for the population parameters for
the model, the first expression can be used to calculate the proba-
bility of a new observation with characteristic vector x belonging
to class 1, the second expression can be used to calculate the prob-
ability of a new observation with characteristic vector x belonging
to class 2, and the third expression can be used to calculate the
probability of a new observation belonging to class 3.

Given the fact that there are only three classes, these probabil-
ities must sum to unity. Then the classification rule is stated as fol-
lows: If faced with the problem of classifying a new observation
Please cite this article in press as: Twala, B., Phorah, M. Predicting incomplete ge
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with characteristic vector x, then classify it as belonging to the
class with the highest calculated probability. Extensions to the
four-class case and beyond are straightforward.

In order to identify the parameters of the model, bk+1 is set to 0
(a zero vector) as a normalisation procedure and thus:

PðCkþ1Þ ¼
1Pkþ1

j¼1 expfĝjg
:

In the MLM model the assumption is that the log-odds of each
response follow a linear model. Thus, the jth logit has the following
form:

log
PðCjÞ

PðCkþ1Þ

� �
¼ ĝj:

This model is analogous to the BL model, except that the prob-
ability distribution of the response is multinomial instead of bino-
mial and there are k equations instead of one. The k multinomial
logit equations contrast each of categories j = 1, . . . , k with cate-
gory k + 1, whereas a single binary logit equation is a contrast be-
tween successes and failures.

If k = 1 the ML model reduces to the usual binary logit model.
The ML model is in fact equivalent to running a series of BL models.
For purposes of this paper, the ML model was not used to estimate
probabilities based on all the attributes given in the dataset, but to
estimate only the unknown probabilities of the given attributes
specifically related to the problem. For this method the unknown
instance will be classified as belonging to class with the highest
probability.

An important property of MLM is the assumption of indepen-
dence from irrelevant alternatives (IIA), which could be a major
drawback for some practical applications. The property of IIA could
be stated as follows: the ratio of the choice of probabilities of any
two alternatives is unaffected by the systematic utilities of any
other alternatives. In other words, the odds of outcome 1 (say, Path
1) versus outcome 2 (say, Path 2) do not depend on what other out-
comes (say, a and b) are available. For more details about the logit
model and how the logits and probabilities are modelled, the read-
er is referred to Hosmer and Lameshow (1989).

5. Experiments

5.1. Experimental set-up

In order to empirically evaluate the performance of the pro-
posed probabilistic technique, we conducted a series of simulation
and experimental studies on eight microarray datasets in terms of
misclassification error rate. The primary goal of the evaluation was
to analyze the impact of erroneous data on predictive cancer diag-
nosis accuracy. Each dataset defines a different learning problem as
shown in Table 1.

The selected datasets cover a comprehensive range for each of
the following characteristics:

� the size of datasets expressed in terms of the number of
instances ranges between 22 and 308;
� the number of attributes ranges between 2000 and 15,154; the

number of classes ranges between 2 and 26.

In general the datasets were selected in order to assure reason-
able comprehensiveness of the results. The first five involve data-
sets with only two classes and the last three involve datasets
with more than two classes.

Sources of the datasets in terms of diagnostic tasks are given as:
BC (Lee et al., 2003); CC (Alon et al., 1999); LUK (Golub et al., 1999);
PC (Singh et al., 2002); OC (Shital and Kusiak, 2007); BT (Pomeroy
ne microarray data with the use of supervised learning algorithms. Pattern
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Table 1
Datasets used for the experiments.

Datasets Instances (no. of
samples)

Attributes (no. of
genes)

Classes

Two classes:
BC 22 3226 2
CC 62 2000 2
LUK 72 7129 2
PC 102 10,529 2
OC 253 15,154 2

More than two classes:
BT 90 5920 5
LC 203 12,600 5
TUM 308 15,009 26

BC = Breast cancer (breast cancer and normal tissues).
CC = Colon cancer (colon cancer and normal tissues).
LUK = Leukaemia (acute lymphoblastic and acute Myelogenous).
PC = Prostrate cancer (prostrate cancer and normal tissues).
OC = Ovarian cancer (ovarian cancer and normal tissues).
BT = Brain tumour (5 brain tumour types).
LC = Lung cancer (4 lung cancer types and normal tissues).
TUM = Tumours (14 human tumour and 12 normal tissues).

Complete
Data Set

Training Set

Classifiers

Classification Model

Classification Accuracy

SPLITTING INTO TRAINING
AND TEST SETS

MCAR data IM dataMAR data

INTRODUCE MISSING VALUES
FOR THREE MISSING DATA MECHANISMS

Test Set

Fig. 2. On supervised classification with incomplete data.
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et al., 2002); LC (Bhattacherjee et al., 2001); and TUM (Ramasway
et al., 2001).

Since the distribution of missing values among attributes and
the missing data mechanism were two of the most important
dimensions of this study, three suites of data were created corre-
sponding to MCAR, MAR and IM.

In order to simulate missing values on attributes, the original
datasets are run using a random generator (for MCAR), and for
MAR and IM, a quintile attribute-pair approach is utilized.

For MAR, the idea is to condition the generation of missing val-
ues based upon the distribution of the observed values. Attributes
of a dataset are separated into pairs, say, (AX, AY), where AY is the
attribute into which missing values are introduced and AX is the
attribute on the distribution of which missingness of AY is condi-
tioned. For example, to generate missingness in half of the attri-
butes for a dataset with, say, 12 attributes (A1, . . . , A12), the pairs
(A1, A2), (A3, A4) and (A5, A6) could be utilised. We assume that A1

is highly correlated with A2; A3 highly correlated with A4, and so
on. For the (A1, A2) pairing, A1 is used to generate a missing value
template of zeros and ones utilizing the quintile approach. The
template is then used to ‘‘knock off” values (i.e., generating miss-
ingness) in A2, and vice versa.

IM data arise due to the data missingness mechanism being
explainable, and only explainable by the very variable(s) on which
the data are missing. For conditions with IM data, a procedure
identical to MAR was implemented. However, for IM, the missing
values template was created using the same attribute variable for
which values are deleted in different proportions. Both of these
procedures have the same percentage of missing values as their
parameters. These two approaches were also run to get datasets
with four levels of proportion of missingness p. The experiment
consists of having p% of data missing from only the testing (classi-
fication) set.

For each dataset, two suites were created. First, missing values
were simulated on half of the attributes (MCARhalf, MARhalf, IM-
half). Second, missing values were introduced on all the attribute
variables (MCARall, MARall, IMall). For both suites, the missingness
was evenly distributed across all the attributes. To measure the
performance of methods, the training set/test set methodology is
employed as shown in Fig. 2 (supervised classification with incom-
plete data).

For each run, each dataset is split randomly into 80% training
and 20% testing, with different percentages of missing data (i.e.,
5%, 10%, 20%, 35% and 50%) in the covariates for testing set. five fold
Please cite this article in press as: Twala, B., Phorah, M. Predicting incomplete ge
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Ecross validation was used for the experiment. It was also reasoned
that the condition with no missing data should be used as a base-
line and what should be analysed is not the error rate itself but the
increase or excess error induced by the combination of conditions
under consideration. Therefore, the excess error is the error
achieved given that the dataset is incomplete less the error exhib-
ited given that dataset is complete.

All statistical tests were conducted using the MINITAB statisti-
cal software program (MINITAB, 2002). Analyses of variance, using
the general linear model procedure were used to examine the main
effects and their respective interactions. The comparison of means
was conducted by using the Tukey post hoc test (Kirk, 1982). This
was done using a 5-way factorial design experiment, with four
fixed effect factors (the testing methods; number of attributes with
missing values; missing data proportions; and missing data mech-
anisms) and random effect factor (eight datasets). Results were
averaged across five folds of the cross-validation process before
carrying out the statistical analysis. The averaging was done as a
reduction in error variance benefit.

5.2. Experimental results

Experimental results on the effects of new and existing methods
for handling incomplete and test data (testing methods) on cancer
diagnostic predictive accuracy are described.

5.2.1. Main effects
All the main effects were found to be significant at the 5% level

of significance (F = 11.2, df = 7 for testing methods; F = 9.8, df = 1
for number of attributes with missing values (pattern); F = 129.4,
df = 2 for missing data proportions; F = 52.8, df = 2 for missing data
mechanisms; p < 0.05 for each main effect).

Fig. 3 plots the overall excess error rates for eight testing meth-
ods, which shows PDT achieving the highest accuracy rates, fol-
lowed by SVM, NBC, and RIPPER. The worst overall performance
ne microarray data with the use of supervised learning algorithms. Pattern
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Fig. 3. Overall means for current and new testing methods. Fig. 6. Overall means for missing data mechanisms (current and new testing
methods).

Fig. 7. interaction between current and new testing methods and missing data
mechanisms.
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is by LDA. The difference in error rate between PDT and the exist-
ing methods was found to the statistically significant at the 5% le-
vel (p < 0.05). Also, no significant differences in performance were
found between CART and k-NN.

From Fig. 4, it appears that for all the testing methods (both cur-
rent and new) missing values have a greater effect when they are
distributed among half of the attributes compared with when
missing values are in all the attribute variables.

The performance of all the testing methods degrades with in-
creases in missing values, and vice versa. Also, the relationship be-
tween performance and missing data proportions appears to be
linear (Fig. 5).

The severe impact of IM data on predictive accuracy is quite
noticeable on Fig. 6. The excess error exhibited by the eight testing
methods is 19.2% compared with an error rate of 9.7% for MCAR
data. The significant difference between the MCAR and MAR is also
significant with the impact of the latter mechanism more severe.
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Fig. 4. Overall means for number of attributes with missing values (current and
new testing methods).

Fig. 5. Overall means for missing data proportions (current and new testing
methods).
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5.2.2. Interaction effects
The only interaction effect that was found to be statistically sig-

nificant at 5% is between testing methods and missing data mech-
anisms as displayed in Fig. 7. Fig. 7 further shows all the testing
methods performing worse under the IM condition compared with
when data are either MCAR or MAR. Compared with SVM, PDT ap-
pears to handle both MCAR and MAR data better with SVM coping
better with IM data. Surprisingly LDA (which is based on the MCAR
assumption) struggles with both MCAR and MAR data but does
better than well-established supervised methods such as C4.5
and k-NN for IM data.
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6. Conclusion and discussion

Our main contribution is the development of a novel probabilis-
tic algorithm for the classification of incomplete (erroneous)
microarray data. By making a couple of mild probabilistic assump-
tions, the proposed approach solves the incomplete microarray
data problem in a principled manner, avoiding imputation
heuristics.

As expected, the performance of the classifiers differs among
the datasets even though our results were averaged. For example,
the overall performance by classifier methods on datasets with
more than two classes is poor compared with performances on
two-class-problem domains. The former is intrinsically more diffi-
cult because the classification algorithm has to learn to construct a
great number of separation boundaries or relations; each class has
to be defined explicitly.

All the current and proposed SL methods exhibit bigger error
rates when missing values are distributed among half of the attri-
butes compared with when the missing values are in all attributes.
ne microarray data with the use of supervised learning algorithms. Pattern
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The experiments further showed missing data mechanism as hav-
ing more impact on the performances of the SL methods. The im-
pact of MCAR data seems less severe on classification accuracy
compared to MAR or IM. These results are in support with statisti-
cal theory and to our prior results reported in (Twala, 2009). Also, it
was not surprising that all the techniques struggled with IM data
(which is always a difficult assumption to deal with).

Overall, PDT is the most effective with serious competition from
SVM. The strength of PDT lies on its MAR data assumption and its
variance reduction ability due to its ‘naïve’ but still very reliable
variable probability estimation strategy. Even if not an especially
good model, the logistic model is less prone to over-fitting the data
and hence better predictions (since one does not slavishly follow
the idiosyncrasies of the training data. This is crucial in the micro-
array domain, which is characterized by thousands of genes/attri-
butes and a very few samples. Unlike most other algorithms (for
example k-NN), PDT performs very well because of its feature
selection (DT induction) strategy.

The theoretical advantage of SVM made it competitive with
PDT. For SVM, the idea of margin and stability mitigates the prob-
lem of over-fitting the training data as already discussed. SVM is
also helpful when there are few training samples. Other algorithms
are made stable by removing the noisy genes and reducing the
number of features.

LDA is evidently the worst overall method due to its single
imputation strategy that does not permit assessment of the uncer-
tainty due to imputation. In other words, LDA does not adequately
represent the uncertainty about the missing value.

The poor performance of SVS could be attributed to low corre-
lations among attributes for some of the datasets. Both methods
are suitable for domains in which strong relation exist between
the attributes.

The difficulty with k-NNS could have been the choice of the dis-
tance metric k that is unknown for finite n. The good performance
of NBC for handling MCAR data is attributed to its strategy of com-
puting distributions of attributes; those distributions do not
change for any missing data pattern. However, NBC encounters
problems similar to k-NN, in particular because they rely on
Euclidean of Mahalanobis distance for density estimation that gen-
erally require exponential sample to the data dimensionality.

The bias of RIPPER against attributes with missing values is
quite appropriate. However, it seems that the way the rules are ex-
tracted makes the algorithm more sensitive to missing values.

Although numerous algorithms about classification with incom-
plete data have been developed, what sets apart our proposed no-
vel strategy is its maximum achievable variance reduction ability
or equivalently a maximum achievable smoothness of the proba-
bilities. The proposed algorithm was also successful even when a
high percentage of features are missing. Furthermore, the proposed
approach does not make representational assumptions or pre-sup-
poses other model constraints. Therefore, it is suitable for a wide
variety of datasets. Despite its strengths, the proposed approach
can be quite a slow, computationally intensive process especially
for big DTs. This is because several branches must do the calcula-
tion simultaneously. So, if, say, K branches do the calculation, then
the central processing unit time spent is K times the individual
branch calculation.

Several exciting directions exist for future research. One topic
deserving future study would be to assess the impact of missing
values when they are in both the training and test sets and using
model-based statistical imputation methods such as multiple
imputation. PDT was also applied on only eight small datasets.
This work could be extended by considering a more detailed sim-
ulation study using much more balanced types of datasets re-
quired to understand the merits of the technique, especially
larger datasets.
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