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Abstract 

The first principles pseudopotential calculations based on the Perdew-Burke-Ernzerhof 

(PBE) form of generalized gradient approximation (GGA) within density functional 

theory (DFT) have been utilized to investigate the structural and elastic properties of 

cubic-based Mg-Li alloys. The heats of formation and elastic moduli were used in 

predicting structural stability profile, and their results are consistent with each other. In 

terms of phase stability, an interesting correlation between the calculated tetragonal shear 

modulus (C′) and formation energy of corresponding bcc and fcc ordered compounds 

relative to hcp Mg and Li lattices is drawn. The predicted stability trend due to structural 

energy difference was further confirmed by electronic structure calculations based on 

Jones-type analysis. 
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1. Introduction 

Magnesium is one of the readily available metals, constituting about 2.7% of earth's 

crust, offers several advantages including excellent machinability, recyclability, good 

castability, good weldability, good creep resistance, high thermal conductivity, and 

extreme lightness [1]. These features render magnesium alloys suitable and ideal for use 

in applications where lightweight to specific strength ratio is vital. At a density of 1.74 

g/cm³, magnesium (Mg) is amongst others the lightest structural metal. However, due to 

hexagonal close-packed (hcp) crystal structure, Mg and Mg alloys have undesirable 

mechanical properties at room temperature, including difficult workability. Fortunately, 

the addition of at least 11 weight percent (wt.%) lithium does not only reduce the density 

of magnesium but also transforms the hcp Mg into more workable body-centred cubic 

(bcc) phase [2]. The resulting magnesium-lithium (Mg-Li) alloys exhibit good 

formability and becomes the lightest metallic alloys with promising technological  

applications in transport (automotive and aerospace) and communication (portable 

electronic equipments) industries, due to their good strength-to-weight ratio and 

improved ductility. Furthermore, the existence of metastable fcc (face-centered cubic) at 

concentrations between 15 and 35 atomic percent (at.%) Mg has been predicted in the 

past, at least at very low temperatures [21]. 
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 Currently, the development of Mg alloys with desirable physical and mechanical 

properties with remarkable weight saving application remains a challenge. If the 

development of these alloys follows a path similar to Al alloys [3], using traditional trial 

and error methods and techniques, it would require a similar level of effort of many 

years. However, ab initio density functional theory (DFT) methods provide an 

opportunity to drastically accelerate materials research by efficiently predicting new 

phases and accurately describing their ground states [4]. Recently, ab initio calculations 

have concentrated on gaining a detailed knowledge of the electronic structure of materials 

and its effects on microscopic and macroscopic behaviours [5,6]. Considering these 

simulation advantages, the theoretical ab initio studies on Mg-Li system remain 

surprisingly scarce [7,8,9]. The work by Uesugi et al focused only on hcp Mg7Li alloy 

[7,8], while the more recent investigation by Counts et al emphasized the mechanical 

properties of only bcc Mg-Li alloys using the supercell approach [9]. 

 

In this paper, the ab initio calculations based on pseudopotentials plane wave method 

were used to investigate existence of fcc and bcc binary Mg-Li alloys at 0 K for various 

concentrations, using ordered crystal structures. In order to avoid unworkable hcp Mg 

alloys, the current work attempts to find suitable alternative stable or metastable cubic 

low temperature formable Mg-Li alloys, from heats of formation. Furthermore, we 

investigate if these cubic phases possess desirable mechanical properties and are easily 

malleable. The current work focuses on cubic Mg-Li ordered structures within  3:1 (L12 

and DO3) and 1:1 (L10 and B2) stoichiometries, while the end elements were taken as fcc 
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and bcc for both Mg and Li. In order to study small additions of Mg and Li to pure Li and 

Mg metals respectively, we also examine the 7:1 and 15:1 stoichiometry in the fcc and 

bcc lattice, respectively. We will find which phases are more stable based on the 

predicted negative heats of formation and the structural formation difference (∆Hf (bcc-

fcc)). Furthermore, the mechanical stability for cubic crystals will be determined from 

tetragonal shear modulus, while elastic moduli and ratio of bulk to shear modulus 

(measure of ductility) will also be reported. Moreover, we will note the correlation on the 

trend of structural formation difference (∆Hf (bcc-fcc)) and change in shear modulus 

(∆C'). In order to validate the phase stability in terms of structural energy differences, the 

electronic structure (ES) calculations due to electron band filling (electron per atom ratio) 

spanning the entire concentration range of fcc and bcc phases will be determined. ES was 

based on rigid-band model formalized by Jones-type analysis, and therefore provides 

composition ranges in which cubic phases are stable.  

 

This paper is organized as follows, in Sec. 2, the computational details followed to solve 

the electronic structure are briefly outlined. The trends in cohesive and elastic properties 

are respectively analysed and discussed in Sec. 3. Finally, Sec. 4 presents the conclusion 

of the paper. 

 

2. Computational details 

The equilibrium lattice parameters and electronic structure calculations were optimized 

using the ab-initio plane wave (PW) pseudopotential method, embodied in the CASTEP 

code [10]. The Hohenberg-Kohn-Sham density functional theory (DFT) [11] was used 
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within the GGA formalism [12] to describe the electronic exchange-correlation 

interactions. We used the recent PBE form of the GGA [13], which was designed to be 

more robust and accurate than the original GGA formulation. The Vanderbilt ultrasoft 

pseudopotentials [14], were employed for Mg-Li structures. Calculations were carried out 

on ordered fcc-based phases, L12 (MgLi3, Mg3Li, and (MgLi7, Mg7Li) and the bcc-based 

phases B2 (MgLi), B32 (MgLi), DO3 (MgLi3), Mg3Li) and (MgLi15, Mg15Li). In addition, 

the structural energetics of tetragonal L10 (MgLi) and DO22 (MgLi3, Mg3Li) phases are 

reported. The first set of calculations were performed at our theoretically determined 

(equilibrium) lattice constants for each structure [15], with a plane-wave basis set defined 

by an energy cut-off of 500 eV for all considered superstructures. Furthermore, the 

minimum and maximum Guassian smearing width were respectively set at 0.4 and 0.1 eV 

for superstructures, and at 0.1 and 0.01 eV for elemental metals, since the lattices of the 

latter involves energy differences of the order 1 to 100 meV/atom than is required in the 

former. In addition, this condition requires the use of denser Monkhorst-Pack [16] sets of 

k-points and a little alteration to the defaulted setting within the code, especially in case 

of Li, than it is averagely and adequately acceptable, respectively, for Mg and alloyed 

compounds. These parameters are essential since the Fermi energy, and hence the total 

energy depends quite sensitively on them. The convergence criterion of less than 2x10-5 

eV on total energy per atom, 10-3 Ǻ on the displacement of atoms, 0.05 eV/Ǻ on the 

residual forces, and 0.1 GPa on the residual bulk stress was used. Uncommonly, a special 

care was taken when treating Li element, only during structure relaxations to avoid 

emanating stable phase disagreements with experiments. With our choice of mesh grid in 

the full Brillouin zone, the selected sufficient cut-off energy and k-points were converged 
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to within 1 meV/atom and 5 meV/atom for pure elements and superstructures, 

respectively. 

 

The second set of calculations was performed to obtain elastic coefficients of Mg-Li 

alloys using CASTEP on Materials Studio version 3.0 interface [17]. We used six 

different values of the strain ±0.0008, ±0.0024 and ±0.004 for each structure. The 

application of strain on the lattice implies a lowering of symmetry from that of the 

crystal, therefore very accurate total-energy calculations are required, since the energy 

differences involved are of the order 10 to 1000 µeV/atom. In addition, this condition 

requires the use of slightly denser k-points to be utilized than in geometry optimization of 

crystals. The current set of calculations was considered converged when the maximum 

force on atoms was below 0.01 eV/Ǻ, the total energy change per atom was less than 

4x10-4 eV/atom and the displacement of atoms was below 4x10-4 Ǻ. The value of the 

stress was automatically computed for each strain, and resulted in a stress-strain linear fit 

curve, from which each component of the stress was computed, and respective gradients 

provided the values of the corresponding elastic constants. Based on three independent 

single crystal elastic constants of a cubic crystal, C11, C12, C44, , the elastic moduli of 

polycrystalline material were calculated following averaging schemes of Voigt (upper 

bound) and Reuss (lower bound) as follows [28]: 
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 where E is the Young’s modulus, G shear modulus, B bulk modulus, C′ tetragonal shear 

modulus and anisotropic factor A. 

3. Results and discussions 

3.1.  Structural stability 

The equilibrium lattice parameter, a0, of the geometrically optimized structures are listed 

in Table I. In calculations where the ordered superstructures were used, resulting to twice 

the value of a0, the calculated a0 values  listed in Table 1  were normalized, for 

comparison purposes. With increasing Li concentration, the lattice parameter decreased 

to its minimum at 50:50 equi-atomic compositions, after which a slight increase in a0 is 

observed. The observed trend, which deviates slightly from Vegard’s law for solid 

solutions, is similar in both bcc and fcc Mg-Li alloys considered in this study. This 

behaviour was also realised in earlier theoretical [18,21] as well as experimental [19,20] 

studies. Although the lattice parameter of bcc Li is underestimated by current and other 

calculations [36,37], in general our predicted lattice parameters are in good agreement 

with available experimental and theoretical results.  

The heat of formation, Hf, of the alloy is computed according to the relation 

[ ] (1)                                                           )1(
1

11 Li
solid

Mg
solid

LiMg
total

LiMg
f xEExE

n
H xxxx +−−= −−

                                    

where xxLiMg
totalE −1 is the total energy of the alloy, Mg

solidE  and Li
solidE  are the total energies of 

the stable structures of elemental Mg and Li, n is the total number of atoms in the 

superstructure, x and )1( x−  refers to the fractional concentrations of the constituent 

elements. 
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We note that the heat of formation curve shown in Figure 1 makes a V-shape, with its 

minimum at the equi-atomic concentration of MgLi compound. At 50-50 concentration, 

the B2 structure is clearly the most stable phase, since it has the lowest formation energy 

amongst its competing counterparts. The calculations predict the B2 structure to be 26.0 

meV/atom lower in energy compared to B32 phase. Our predicted heat of formation for 

the B2 structure of -73.4 meV/atom is in excellent agreement with Skriver's DFT result of 

-73.5 meV/atom [18], and is thus consistent with earlier experimental observations 

regarding tendency towards B2 (CsCl) type ordering at low temperatures [19,20]. The 

L10 structure, which was relaxed from c/a=1, collapses to c/a=0.72. This is because the 

tetragonal system is not stationary by symmetry for c/a=1 but collapses down to B2 with 

c/a=0.707. The frozen L10 with c/a=1 lies 29.25 meV/atom higher in energy compared to 

B2 phase. 

 

The heat of formation for Mg3Li alloy composition was calculated for three equivalent 

ordered crystal structures (DO3, L12, DO22) as shown in Figure 1. It clearly shows the 

preferred stability of the DO3 phase over the L12 and DO22 phases, with formation 

energies of -38.32, -23.96 and -18.82 meV/atom, respectively. Our predicted phase 

stability ordering is the same as that of Skriver [18]. However, in the MgLi3 compound, 

the DO22 structure has the lowest formation energy (-37.43 meV/atom) with the L12 and 

DO3 phases lying only 0.82 and 6.32 meV/atom higher, respectively, in contrast to 

Skriver. We see that Skriver predicts the DO3 phase to be more stable than DO22. This is 

probably because their c/a axial ratio was not relaxed from its ideal value of 2.00, as 
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compared to our relaxed equilibrium value of 2.02. The slight difference between L12 and 

DO22 indicates a strong stability contest between these phases. 

 

The solid common tangent lines were constructed in Figure 1 to show the stability limits 

of the different phases. Among the structures considered, the most energetically 

favourable intermetallic phases at absolute zero are the DO3 Mg3Li, B2 MgLi, DO22 and 

L12 MgLi3 and MgLi7 compounds. The DO3 structure is metastable at 25 at.% Li, while 

the B32 and L10 structures are metastable at 50 at.% Li. Our equilibrium calculations 

predict DO3 to be the most stable structure at A3B (Mg–rich) composition, while at Li-

rich side (AB3) the face-centered structures (L12 and DO22) show more stability over the 

body-centered phase. 

The Mg-rich compounds, the bcc supercell Mg15Li and the fcc supercell Mg7Li, lie well 

above the tangent line connecting hcp Mg (Hf = 0 eV) with DO3 Mg3Li. This clearly 

indicates the instability of the bcc and fcc Mg-Li compounds around this region. This 

instability supports Hafner's earlier work [21] that hcp Mg-Li compounds are dominant in 

the region with less than 18 at.% Li concentration. The formation energy of Mg3Li in 

both the DO22 and L12 structures lie above tangent line, which indicates the instability of 

the fcc lattice in this region. Most of Mg-Li compounds at the Li-rich side lie either 

exactly or very close to the tangent line connecting B2 MgLi with elemental hcp Li. For 

example, fcc MgLi7 shows a strong sign of metastability as it was earlier pointed [21]. 

Thus, low temperature sequence of hcp → bcc → hcp alloy phases with the existence of 

metastable fcc phase in Li-rich dual phase region is predicted, resulting to possible hcp 

→ fcc → bcc → hcp stability trend. Structural formation energy differences, ∆Hf, 
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between corresponding bcc and fcc Mg-Li compounds, against the electron per atom 

ratio, as illustrated in Figure 2(a) also suggest the same trend. The above predicted 

stability profile is in full agreement with both experimental as well as theoretical results 

[21]. 

 

   

Fig. 1. Predicted heats of formation for Mg-Li alloys. The common-tangent construction for stability 

limits of the different phases is indicated by the dashed lines. 
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Fig. 2. (a) Structural formation energy differences, ∆H f between corresponding bcc and fcc Mg-Li 

compounds, against the electron per atom ratio and (b) change in shear modulus between bcc and fcc 

superstructures. Note that the plot (a) has negative axis running vertically upwards to make 

comparison  with (b) real. 

 

3.2  Mechanical stability 

The calculated elastic constants for the cubic Mg-Li alloys are listed in Table 1. The 

elastic constants of the fcc Mg lattice are in good agreement with the available theoretical 

results [22] while the bcc phase is found to be mechanically unstable, since the tetragonal 

shear modulus C′ is negative. Our results for pure Li in both fcc and bcc lattices show 

mechanical stability with the elastic constants being in good agreement with both 
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experimental [23,24] and previous theoretical [25] results, except for the case of  C11 and 

C44 of the bcc lattice which are overestimated. The elastic constants in Ref. 40 are 

derived from calculated phonon dispersions. Our predicted elasitic constants were 

calculated at equilibrium lattice constants rather than the experimental values, hence led 

to slight difference from experimentally determined elasticity. This may be ascribed to 

the elastic constants  being sensitive to the lattice constant of the crystal [41]. 

Other elastic moduli such as shear modulus (G), Young's modulus (E), and B/G ratio of 

Mg-Li alloys are also listed in Table 1. Most of the elastic constants of Mg-Li structures 

listed in satisfy the mechanical stability criteria of cubic systems as outlined elsewhere 

[15,25,42] as follows: 

,044 >C 1211 CC >    and 02 1211 >+ CC  

 except for Mg bcc, Mg7Li, Mg3Li (L12) and MgLi7 structures which are mechanically 

unstable. These elastic stability conditions also lead to a restriction on the magnitude of 

B. Since B is a weighed average of C11 and C12 and stability requires that C12 be smaller 

than C11, we are then left with the result that B is required to be intermediate in value 

between C11 and C12: C12<B<C11. 

There is a good agreement between the bulk moduli obtained from elastic constants as 

well as from equation of states with available experimental [26] and other previous 

theoretical results [9,18]. With increasing Li concentration, the bulk modulus decreased 

monotonically. Pugh proposed the B/G ratio to predict the ductility (> 1.75) or brittleness 

(< 1.75) 27. For cubic Mg-Li alloys in Table 1, the B/G increases from very brittle (≤ 50 

at.% Li) to ductile (> 50 at.% Li) with increasing Li composition. The bcc phases has 

maximum ductility at 75 at.% Li, while the same is achieved at 87.5 at.% Li for fcc Mg-
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Li structures although accompanied by mechanically instability. The negative values of 

B/G also reflect instability of the corresponding compounds. As expected from 

thermodynamics, it is evident from Table 1 that the fcc phases at low Li content (< 

50at.%) are mechanically unstable. It is also interesting to note that the bcc Mg15Li and 

DO3 (Mg3Li) structures are the only mechanically stable phases (C11 > C12) in this Mg-

rich region, although their B/G values is lower than 1.75, indicating brittleness, and hence 

have the highest Young's modulus E. This stability is in agreement with experiment, that 

in this composition range the bcc phase is mechanically stable, and coexist with the hcp 

phase [2,21]. However, in agreement with predictions by Counts et al [9], our results 

reveal brittleness between 25 and 50 at.% Li. Furthermore, at 50:50 composition we 

predict B2 to be the most stable phase compared to B32 but we note the opposite with 

regard to ductility, where B2 is brittle. The superiority of B32 in ductility is in agreement 

with results obtained in Ref. 9. At MgLi3 composition, our elasticity results suggest the 

fcc phase to be the most mechanically stable than bcc, in agreement with Hafner’s work 

[21] and experiment at low temperature, although bcc is still the most ductile than any 

other composition, in agreement with recent reports [9].  

Besides B/G, it was recently found that the C' is also very significant on the mechanical 

properties of materials [43]. The mechanical stability can be quantified by calculation of 

the tetragonal shear modulus, C′. The C′ for the bcc and fcc ordered phases is also listed 

in Table 1 and shown as a function of composition in Figure 3. The ordered fcc phases 

are mechanically unstable at 50 at.% Mg and above (Mg-rich), while for concentrations 

less than 50 at% Mg, the ordered bcc structures are either unstable or metastable 

compared to fcc. The elastically unstable structures showed negative Young’s modulus. 
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As observed in Li-rich compositions, the smaller C' the lower the Young’s modulus. This 

elastic behaviour in crystals has been reported to yield better plasticity [43,44]. 

 

Table 1. Predicted elastic constants of Mg-Li alloys at equilibrium lattice parameters. The bulk 

moduli determined from elastic constants is compared with the ones calculated from equation of 

states. Asterisks denote the results generated from this work. For comparison, theoretical  and 

experimental results are shown in  parentheses, normal and square brackets, respectively. 

Comp. Phase a0 

Å 

C11 

GPa 

C12 

GPa 

C44 

GPa 

B 

GPa 

C' 

GPa 

G 

GPa 
2

2

0
dV

Ed
VB =  

GPa 

B/G 

 
 

E 

GPa 

A 

Mg fcc* 4.530 42.8 31.0 23.1 34.9 5.9 13.4 34.1 2.60 35.7 1.8 

 fcc 4.520(22) 

4.516(37) 

46.0 27.4 30.0 33.6 9.3      

 

 

bcc* 3.585 

3.571(37) 

25.6 39.4 36.0 34.8 -6.9 -5.4 37.6 -6.44 -1.7 4.3 

Mg15Li bcc* 3.568 55.8 24.7 50.9 35.1 15.5 31.7 32.9 1.11 73.1 1.7 

Mg7Li fcc* 4.495 22.2 29.5 24.2 27.0 -3.6 0.6 34.0 45.00 1.8 3.5 

L12* 4.458 25.8 29.9 24.5 28.5 -2.1 -2.9 27.2 

(29.4)18 

-9.83 -9.0 3.1 Mg3Li 

 

35%Li DO3*  

bcc[38] 

3.512 

 

40.0 

35.1 

25.6 

24.4 

41.0 

26.4 

30.4 

28.0 

7.2 20.9 32.8 

(30.5)18 

25.0 

1.45 51.0 2.7 

B2* 3.420 

3.458(36) 

37.5 19.7 25.9 25.6 8.9 16.9 22.1 

(20.2)18 

27.5 (36) 

1.51 41.6 1.9 

55%   32.2 19.8 26.6 23.9  -     

MgLi 

 

Exp.[29] 

45%  28.5 20.5 19.4 23.2  -     
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B32* 3.474 31.0 24.6 28.6 26.7 3.2 12.6 25.2 2.12 32.7 2.5 

L10* 4.820 

c/a=0.72 

25.4 

C33=15.3 

29.2 

C13=19.1 

24.8 

C66=27.0 

22.3 -1.9 15.0 25.2 

(24.2)18 

1.49 36.7 39.7 

-

14.2 

MgLi 3 L12* 4.309 25.8 15.9 18.7 19.2 4.9 11.0 19.1 

(18.8)18 

1.74 27.7 2.1 

 

75%Li 

DO3* 

bcc[38] 

3.423 19.4 

15.7 

17.8 

15.0 

15.4 

13.6 

18.3 

15.2 

0.8 5.7 18.0 

(18.8)18 

15.0 

3.21 15.5 2.5 

MgLi 7 fcc* 4.305 15.8 16.9 11.7 16.6 -0.6 2.7 16.4 6.15 8.2 2.5 

MgLi 15 bcc* 3.421 18.2 13.2 11.5 14.9 2.5 6.3 23.1 2.36 16.5 2.0 

Li fcc* 4.307 17.5 11.4 9.3 13.4 3.0 6.0 13.9 2.23 15.7 1.7 

fcc 4.321(37) 19.8(40) 13.6 10.9 15.7  -   14.0 2.7 

bcc* 3.424 19.6 10.9 16.1 13.8 4.4 9.6 12.0 1.44 23.4 2.2 

Cal  

 

Cal 

Cal 

bcc 

bcc 

3.442(37) 17.7(39) 

16.8(40) 

13.4 

13.0 

10.0 

11.0 

14.8 

14.3 

2.0 - 15.2    

Exp.24 bcc[24] 3.491 14.8 12.5 10.8 13.3  -     

        

The corresponding structural shear modulus C′ differences, ∆C′, between bcc and fcc 

ordered Mg-Li compounds, against the electron per atom ratio ranging from 1 (Li) to 2 

(Mg), relative to hcp Mg and Li lattices, are plotted in Fig. 2(b). We find an interesting 

correlation between these quantities, that, in the region where bcc is very stable compared 

to fcc, the shear modulus is positive for bcc but negative for fcc (i.e. the fcc lattice is 

mechanically unstable) and vice versa.  A similar behaviour had been pointed out earlier 

for Ni-Cr disordered bcc and fcc phases by Craievich et al [30] and for B2 and L10 TiAl 

by Sob et al [31]. This reflects the underlying change in hcp to fcc to bcc to hcp structural 
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stability as the electron per atom ratio changes from 1 (Li) to 2 (Mg). In terms of the 

predicted phase stability trend, a common behaviour is found between the change in 

tetragonal shear modulus (∆C′) and formation energy differences of corresponding bcc 

and fcc ordered compounds relative to hcp Mg and Li lattices, which seems to correlate 

the two structural properties. However, since in the low concentration limit as well as for 

higher temperatures the effect of the chemical disorder on the elastic properties of Mg-Li 

alloys could be significant, some more work concerning the random fcc and bcc phases 

would require attention. 

Another crucial elastic moduli considered to have a significant implication in engineering 

science is the elastic anisotropy of crystals,  since it is reported to be highly correlated 

with the possibility to induce micro-cracks in the material [45]. For a completely 

isotropic material A = 1, while values smaller or greater than unity measure the degree of 

elastic anisotropy.  As observed in Table 1, cubic Mg-Li alloys are generally anisotropic. 

 

FIG. 3. Calculated Mg-Li elastic constants (tetragonal shear modulus) C'=(C11-C12)/2 as a function of 

composition for ordered bcc and fcc phases. 
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3. 3 Electronic structure 

 

The relation between structural stability and the behaviour of the electronic density of 

states (DOS) in the vicinity of the Fermi energy can be formalized by a Jones-type 

analysis [32]. Using a rigid-band model, the theory shows how structure in the density of 

states translates into an energy difference for competing phases as a function of the 

electron count. Within the rigid-band approximation we assume that the bands of hcp, 

fcc, and bcc lithium remain unchanged (or rigid) on alloying. A Jones-type analysis then 

states that the structural energy difference between any two lattices at the same atomic 

volume is given by 

( ) (2)                                                             











∆=∆=∆ ∫

FE

band dEEEnUU

 

 where ( )En  is the electronic density of state (DOS) per atom and EF is the Fermi energy. 

The difference in the band energy ∆Uband, is calculated under the constraint that the 

potential within the Wigner-Seitz (WS) spheres remain unchanged on going from one 

structure-type to another. The band energy difference equation allows us to perform a 

Jones-type analysis that links the relative stability of the two structures to the relative 

behaviour of the corresponding DOS. This link results from the relationship between the 

Fermi energy, EF, and the number of valence electrons, N, according to 

( ) (3)                                                                        dEEnN
FE

∫=

In order to understand the behaviour of the band energy difference, ∆Uband, we exploit the 



following expressions for the first and

respect to the electron number, 

( )band

dE
U

dN

d



∆=∆

( )
2

2





∆=∆ bandU

dN

d



a maximum around 

where the fcc DOS is lowest, and a maximum around 

lowest, whereas the fcc

lowest.  The hcp structure is most stable around

is lowest. We see that with increasing electron concentration

trend from (Li) hcp 
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Fig. 4. Analysis of fcc, bcc, and hcp relative structural stabilities within the rigid-band approximat ion 

for Mg-Li alloys. The difference in band energy ∆Uband  with respect to elemental (a) Li and (b) Mg 

rigid bands, Fermi energies ∆EF, and the density of states at the Fermi level EF for bcc, fcc, and hcp 

lattices, are plotted as a function of band filling, N. 
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4. Conclusions 

Using ab initio technique, the phase stability of cubic Mg-Li alloys has been predicted 

from heats of formation and elasticity, both complementing each other. The observed 

stability trend (Li) hcp → fcc → bcc → hcp (Mg) has also been confirmed by the Jones-

type analysis based density of states due to electron band filling. On the basis of 

established phase stability, the existence of cubic Mg-Li alloys in chosen compositions is 

validated. In terms of the predicted phase stability trend, a common behaviour is found 

between the change in tetragonal shear modulus (∆C′) and formation energy differences 

of corresponding bcc and fcc ordered compounds relative to hcp Mg and Li lattices, 

which seems to correlate the two structural properties. The ductility of cubic phases 

improves with increasing Li concentration, although at the expense of monotonically 

decreasing bulk modulus. Furthermore, increasing Li content results in smaller C′ and 

thus lower Young’s modulus, meanwhile yielding better plasticity. 
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