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Main question

Is the wealth of information contained in 126 monthly series
more useful in forecasting regional real house price growth rate
for the 9 census divisions of the US?

Why is forecasting real house price growth important?
Asset prices help to forecast both inflation and output
Models that forecast real house price inflation can be indicative of overall inflation

(Forni et al., 2003; Stock and Watson, 2003; Gupta and Das, 2008a,b; Das et al., 2008a,b)

Why use large scale models?
Large number of economic indicators help in predicting real house price growth

(Cho, 1996; Abraham and Hendershott, 1996; Rapach and Strauss, 2007, 2008)

Why use regional data?
Segmented nature of the housing market
Non-uniform economic conditions across regions

(Carlino and DeFina, 1998, 1999; Burger and van Rensburg, 2008; Gupta and Das 2008a;

Vargas-Silva 2008a,b)
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Unrestricted classical Vector Autoregressive (VAR)
model (Sims, 1980)

Model

yt = C + A(L)yt + εt , where A(L) is a n × n polynomial matrix in
the backshift operator L with lag p

atheoretical though particularly useful for forecasting

Equal lag length for all variables

Many parameters to estimate

Possible large out-of-sample forecast errors

Solution

Exclude insignificant lags

Specify unequal number of lags for different equations
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Bayesian Vector Autoregressive (BVAR)

An alternative to overcome overparameterization
(Litterman (1981, 1986), Doan et.al (1984), Todd (1984)and Spencer (1993))

Instead of eliminating longer lags, impose restrictions on these
coeff. → more likely to be near zero than the coeff. on shorter
lags

If strong effects exist from less important variables, data can
override this assumption

Restrictions: normal prior distributions with zero means and
small standard deviations for all coeff.One Exception: coeff. on
the first own lag of a variable has a mean of 1

Popularly referred to as the Minnesota Prior
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Minnesota Prior

Notationally,
βi ∼ N(1, σ2

βi
) and βj ∼ N(0, σ2

βj
)

To circumvent overparametrization, Doan et al (1984)
suggest a formula to generate standard deviations (s.d.) as
a function of a few hyperparameters: w ,d and a weighting
matrix f (i , j)
s.d. of variable j in equation i and lag m is given as

σijm = {w ×m−d × f (i , j)} ×
σ̂j

σ̂i
σ̂i : Standard error of univariate autoregression for variable i

w : Overall tightness

d : Decay factor

f (i, j): Tightness of variable j in equation i relative to variable i

f (i, j) = 1 if i = j and kij otherwise; (0 ≤ kij ≤ 1), and; d>0.
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Dynamic Factor Model

Can cope with many variables without running into degrees of
freedom problems

Common factors can affect variables not only
contemporaneously, but also with lags

Advantage over VAR models where one chooses variables
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Dynamic Factor Model

Each time series represented as sum of two latent components:
common (capturing multivariate correlation) and idiosyncratic
Let Xt = (x1t , ..., xnt )

′ be a standardized stationary process
In terms of a DFM, Xt can be written as:

Xt = B(L)ft + ξt (1)
= ∆Ft + ξt (2)

B(L) = B0 + B1L + ... + BsLs a n × q matrix of factor loadings of order s
ft is a q × 1 vector of dynamic components
Ft is the r = q(s + 1)× 1 vector of static factors, i.e., Ft = (f ′t , f ′t−1, ..., f ′t−s)

∆ is the matrix of factor loadings

10 / 24



Motivation
Models

Data
Results

Conclusion

VARs and BVARs
FAVARs

Dynamic Factor Model

Determination of number of dynamic factors
Informal criteria based on prop. of variance explained
(Bai and Ng, 2005; Stock and Watson, 2005)

Principle component (Forni et al, 2004)

Estimation of dynamic factors - Frequency domain
(Forni et al, 2000, 2002)

Spectral density matrix of Xt decomposed as
Σ(θ) = Σχ(θ) + Σξ(θ), −π < θ < π

Rank of Σχ(θ) = q, is the number of dynamic factors

Covariance of Xt can be decomposed as Γk = Γχ
k + Γξ

k
Rank of Γχ

k = r , the number of static factors
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DFM specifications considered

UFAVAR: includes one of the variables of interest and the
obtained number of common static factors;
MFAVAR: includes all the nine real house price growth rates and
the common static factors;
UBFAVAR: uses one of the variables of interest and the common
static factors, and which, in turn, are estimated based on
Bayesian restrictions discussed in the previous subsection;

MBFAVAR: with a specification similar to the MFAVAR, except
that the current model applies Bayesian restrictions on lag of the
variables based on the Minnesota prior.
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US Census Regions and Divisions
Forecast period
Variables

The bureau recognizes four census regions

Further organizes them into nine divisions

For the presentation of data

Not to be construed as necessarily being grouped

owing to any geographical, historical, or cultural bonds.
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US Census Regions and Divisions
Forecast period
Variables

In-sample analyses period: 1991(02) to 2000(12)
Out-of-sample forecast evaluation period: 2001(01) to 2005(06)
Out-of-sample forecast is done for one to twelve months ahead

Choice of 2001:01 as the onset of forecast horizon motivated
from Iacoviello and Neri (2008)
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US Census Regions and Divisions
Forecast period
Variables

Small-scale VARs, both the classical and Bayesian variants
– Only the nine variables of interest, namely, real house
price growth rates of the nine census divisions of the US

Large-scale BVARs and the DFM:
– Based on 126 monthly series (9 + 1 + 116).

The nominal house price figures for these nine US census divisions and for the whole of US were obtained from the

Office of Federal Housing Enterprize Oversight (OFEO), and were converted to their real counterpart by dividing

them with the personal consumption expenditure deflator.
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US Census Regions and Divisions
Forecast period
Variables

Remaining 116 variables from dataset of Boivin et al. (2008)
which contains a broad range of macroeconomic variables such as

industrial production, income, employment and unemployment, housing starts, inventories and orders, stock prices,

exchange rates, interest rates, money aggregates, consumer prices, producer prices, earnings, and consumption

expenditure

Balanced panel of 126 monthly series from 1991:02-2005:06

All data transformed to induce stationarity
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‘optimal’ model based on minimum average RMSE for real
house price growth rate For all the 9 census divisions, a large

model outperforms small-scale models
UVFAVAR for East South Central and West South Central, UVBFAVAR (w=0.1, d=2) for East North Central and

Mountain, LBVAR (w=0.1, d=1) for Middle Atlantic, MVBFAVAR (w=0.2, d=2) for New England, MVBFAVAR (w=0.1,

d=2) for South Atlantic and West North Central, and MVFAVAR for Pacific Even the second-best

performing model are large-scale in nature
barring West South Central for which the SBVAR (w=0.1, d=1) comes second There always exists

at least one small-scale model that outperforms the large-scale
BVAR
exceptions being Middle Atlantic under w=0.3, d=0.5, w= 0.2, d=1, w=0.1, d=1 and w=0.1, d=
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‘optimal’ model based on minimum average RMSE for real
house price growth rate

For all the 9 census divisions, some large model
outperforms small-scale models
UVFAVAR for East South Central and West South Central, UVBFAVAR (w=0.1, d=2) for East North Central

and Mountain, LBVAR (w=0.1, d=1) for Middle Atlantic, MVBFAVAR (w=0.2, d=2) for New England,

MVBFAVAR (w=0.1, d=2) for South Atlantic and West North Central, and MVFAVAR for Pacific

Even the second-best performing model are large-scale in
nature
barring West South Central for which the SBVAR (w=0.1, d=1) comes second

There always exists at least one small-scale model that
outperforms the large-scale BVAR
exceptions being Middle Atlantic under w=0.3, d=0.5, w= 0.2, d=1, w=0.1, d=1 and w=0.1, d=
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FAVARs, in their various forms, are standout performers

Data rich environment of the FAVAR models that include a wide
range of macroeconomic series of the US economy, besides
the house price growth rates of the census divisions, more
informative when forecasting the house price growth rate of the
nine census regions

Role of fundamentals in affecting the housing market cannot be
underestimated
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First - detailed look at the factors to determine the dominant
macroeconomic variables that comprise these factors;

Second - incorporate role of the house price growth rate of the
neighboring division(s) in the forecasting process of a particular
census division, by developing spatial versions of the above
models.
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