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Abstract 

 
Often researchers are interested in obtaining estimates of variables which are quite difficult or 
expensive to measure. To obtain these estimates, relationships between those variables of 
interest and more easily measured variables are used. These relationships are referred to as 
allometric equations. 
 
In science it is important to quantify the error associated with an estimate in order to 
determine the reliability of the estimate. Therefore, prediction intervals or standard errors are 
usually quoted with estimated values. In the case of allometric equations, information about 
the original fitting of the allometric relationship is needed in order to put a prediction interval 
around an estimated value. However, often all the information required to calculate this 
prediction interval is not provided with published allometric equations, forcing the users of 
these equations to use alternative, less rigorous methods of obtaining error estimates. 
 
This paper will explain the method behind obtaining prediction intervals for allometric 
estimates, and what information is required from the original fitting of the allometric 
relationships. This information seeks to provide researchers with the necessary parameters 
which should be published with allometric relationships. In addition, a method is explained for 
how to deal with relationships which are in the power function form – a common form for 
allometric relationships. 
 

Introduction 
 

Because of the way that living things grow and develop, their physical characteristics often 
follow simple rules. For example, the mass of a tree is strongly related to its stem diameter, 
and the metabolic rate of a mammal is related to its weight. The use of allometric equations to 
calculate the size of one body measurement based on another has been in existence since 
1897 when Eugène Dubois first published his paper containing a quantitative formula relating 
the weight of the brain to the weight of a person’s body (Gayon, 2000). Since this time, 
equations have been used to quantify the relationship between body measurements for a 
multitude of organisms and for a diverse set of objectives.  
 
For estimates to be scientifically defensible, it is important that they are associated with 
prediction intervals (confidence intervals for predicted values – estimates based on new 
information). If standard regression theory is used to obtain allometric equations, formulae are 
available for these prediction intervals. Unfortunately, authors of allometric equations often do 
not include all the relevant information required to obtain these intervals. 
 
The purpose of this paper is to provide some of the underlying theory behind fitting these 
equations and to explain how this theory can be extended to obtain prediction intervals for the 
estimated values.  
 
 
 

mailto:ANickless@csir.co.za�


 2 

Methodology 
 

 
The general form of the simple linear regression equation is 

iii xy εββ 10 ++=  …  (1) 

where i is the subject index, yi is the response variable, xi is the predictor variable, 0β  and 1β  
are the regression coefficients, and εi is the error. It is assumed that the error is normally 
distributed with zero mean and constant variance. The constant variance assumption implies 
that across the range of x values, the variability in the error does not change.  
 
In the case of many allometric relationships, the simple linear regression equation is often 
modified by assuming that the logarithm of the response variable can be explained by the 
linear equation: 

**
1

*
0 ε)ln(ββ)ln( iii xy ++=  … (2) 

where the regression parameters superscripted by asterisks denote the log regression 
parameters. The assumptions previously mentioned now apply to the regression relationship 
with the logged variables. Therefore ln(yi) is assumed to be normally distributed with mean 

)ln(ββμ *
1

*
0

*
ix+=  and variance σ2*. The fitting techniques which apply to simple linear 

regression can be used to obtain the regression parameters once the variables have been log 
transformed. This relationship is often expressed in the power form by taking exponents on 
both sides of the equation: 

)εexp()βexp( *β*
0

*
1

iii xy =  … (3). 
Often the error term is not shown. For example, this is the typical form of the equation when 
applied to plant woody biomass (Zianis, 2008). Another typical application of this form of the 
equation is the relationship between weight and height in humans (García-Berthou, 2001).  
 
The ordinary least squares (OLS) fitting method assumes that the dependent variable is 
perfectly known, and only the independent variable is prone to measurement error. In most 
cases, both the parameter which can be easily measured and the parameter of interest are 
prone to some error when measured. The major axis and reduced major axis (RMA) fitting 
methods were developed for this situation (Niklas, 2004). McArdle (1988) studied the 
accuracy of regression estimates obtained under the three different fitting techniques and 
found that if the error in the independent variable was less than a third of the error in the 
dependent variable, the OLS method was more accurate. The RMA method was shown to be 
more accurate than the major axis method. 
 
Since the measurement error of the parameter of interest is likely to be much larger than that 
of the easily measurable parameter, under most circumstances using OLS to fit regression 
models will be justified. Niklas (2004) also states that if the coefficient of determination (R2) is 
more than 0.95, there will be very little difference between the slope estimates of different 
fitting methods. When dealing with strong relationships between body parameters, such as 
the relationship between a tree’s biomass and its stem diameter, generally, R2-values tend to 
be above 0.90 (e.g. Williams et al., 2003; Laclau et al., 2008), but there are always 
exceptions. For these reasons, and since OLS tends to be the most utilised method (Zianis, 
2008), the OLS method was used for fitting regression relationships in this paper. 
 
If it can be assumed that the natural logarithm of the response is normally distributed, it 
implies that the response itself must be log-normally distributed with mean  

)2/σμexp(μ *2* += … (4) 
and variance  

)σμ2exp()σ2μ2exp(σ *2**2*2 +−+= … (5) (Crow and Shimizu, 1988). 
Note that the estimate for µ is a function of both µ* and σ2*. This is why it is not possible to 
simply take the exponent of the estimates of the logged response from the linear regression 
to obtain the estimates in the required scale, as this would result in bias (Stow et al., 2006).  
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Statisticians and statistical software packages compute systems of linear equations (such as 
those that underlie linear regression analysis) using matrix algebra. A brief explanation of this 
convenient and efficient notation is included here for the non-specialists. The matrix of 
observations of the independent variable, referred to as the predictor or design matrix, is 
denoted X, and its transpose as X ′ . In the case of a simple linear regression, the first column 
of X is a column of ones (for the intercept), and the second column is the vector of 
observations of the independent variable (in the same scale as represented in the linear 
regression equation). A key calculation in the text that follows is 1)( −′XX , which is the matrix 
inversion of the matrix multiplication between X and its transpose. 
 
From regression theory it is known that the expected value (or mean value) (E) and variance 

(Var) of )(̂ln iy  is given by  

)ln(β̂β̂μ̂))(̂(lnE *
1

*
0

*
iii xy +== … (6) and  

))ln())(ln(1(MSEσ̂))(̂(lnVar 1*2
iiii xXXxy −′+== … (7) 

where )(̂ln iy  is the predicted value from a new xi value, MSE is the mean square error 
obtained from the original regression analysis, and X is the design matrix of the original 
regression. The MSE can also be referred to as the residual sum of squares or the sum of 
squares of the error. In the case of a simple linear regression, the calculation of the variance 
of a predicted value can be simplified into easily derivable terms from the original regression 

data. The term XX ′  can be simplified to 










∑∑
∑

2)(lnln
ln

jj

j

xx
xn

, where n is the sample 

size of the original regression, and the summations are applied to the predictor vector used to 
derive the original regression relationship, indicated by the subscript j. Therefore if the MSE 
and the summary terms of XX ′  are available, this closed form expression for the variance of 
a new predicted value can be used. A thorough explanation of linear regression theory can be 
found in Seber and Lee (2003). 
 

The next step in the process is to obtain the predicted value of yi from )(̂lnμ̂*
ii y= . Since the 

log of yi is normally distributed, by definition, yi is log-normally distributed. Using the theory of 
the lognormal distribution the value for the estimate of yi can be obtained by applying the 
following transformation: 

)2/σ̂)(̂exp(lnˆ *2+= ii yy … (8). 
Therefore it is necessary to have an estimate of the variance for the logged prediction in order 
to obtain an unbiased estimate for yi. In addition the variance of the predicted value can be 
obtained from the following equation: 

)σ̂μ̂2exp()σ̂2μ̂2exp(σ̂ *2**2*2
iiii +−+=  … (9) (Crow and Shimizu, 1988). 

 
The approximate 100(1 – α)%  prediction limits for a lognormal variable can be used: 

Lower Limit = ])}2
σ̂{σ̂(exp[ˆ 2

12
2

22

2
α1

i
ii zy +−

−
 … (10) 

Upper Limit = ])}2
σ̂{σ̂exp[(ˆ 2

12
2

22

2
α1

i
ii zy +

−
 … (11) 

where 
2

α1−
z  is the 1 - 2

α  quantile of the standard normal distribution. These equations were 

derived based on the method described in Zou, Huo and Taleban (2009) where confidence 
intervals were derived for the mean of a lognormal variable.  
 

Application 
 

To demonstrate this method, the stem diameters collected during a field campaign 
characterising the vegetation structure at the Skukuza flux site, located in the Kruger National 
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Park, South Africa, were used to obtain the estimated biomass at the site, along with the 
variance estimates and 95% prediction intervals. In this example both woody biomass and 
leaf biomass were estimated. 
 
The area in which the tree census was carried out measured 200 m by 200 m. It was 
accurately demarcated into a 50 m by 50 m sampling grid. All the stems taller than 1.0 m 
within the entire area were measured to obtain diameter just above the basal swelling. 
 
Before biomass estimates could be obtained, the available allometric datasets specific to the 
tree species at the site were collected and the appropriate regression parameters were 
calculated. To collect the allometric datasets, plant parameters, including stem diameter, were 
measured on the selected trees. Once these measurements were taken, the tree or branch of 
the tree was cut at the base. The biomass was then separated into woody and leaf biomass 
and then oven-dried for at least 48 hours.  The sources for all the allometric datasets are from 
Scholes (1988) and Goodman (1990). Both of these authors gave access to their original 
data, and therefore the regression coefficients and required regression statistics could be 
derived. Originally only the regression coefficients, R2 value, sample size and range of stem 
diameters were reported.  
 
Table 1: Regression statistics obtained from allometric datasets. The data used to fit 
these equations are from Scholes (1988). 
 

Woody Biomass: )ln(ˆˆ)(̂ln *
1

*
0 iWWWi xy ββ +=  

Species *
0

ˆ
Wβ  *

1
ˆ

Wβ  MSE N ∑ )(ln jx
 

2)(ln∑ jx
 

R2 Range of 
diameter 
(cm) 

Combretum 
apiculatum 

-3.27 2.80 4.24 
×10-2 

30 61.37 133.39 0.98 2.1 – 18.2 

 

Leaf Biomass: 2
10

ˆˆˆ iLLLi xy ββ +=  
Species *

0
ˆ

Lβ  *
1

ˆ
Lβ  MSE N ∑ )( 2

jx  22 )(∑ jx  
R2 Range of 

diameter 
(cm) 

Combretum 
apiculatum 

-
0.156 

0.012 3.80 
×10-3 

28 725.00 26583.00 0.92 2.8 – 10.2 

 
 
 
For demonstration purposes, estimates will be obtained using the equation for Combretum 
apiculatum. Table 1 gives the equation and a summary of the regression results. The 
regression coefficients were derived using R open-source statistical software (http://www.r-
project.org). The statistics supplied in this table are sufficient to calculate the variance of 
biomass estimates obtained from the given regression equations. The units of the MSE are 
the squared units of the response, therefore in this example they depend on whether biomass 
was logged or not. The MSE is reported with the standard regression output, and the sums of 
predictor variable can easily be obtained using the sum function in R or in most spreadsheet 
applications.  
 
The equation fitted to woody biomass was **

1
*

0 )ln()ln( WiiWWWi xy εββ ++=  , where yWi is 

the dried woody biomass in kg, ix  is the stem diameter in cm, *
0Wβ  and *

1Wβ  are the 

regression coefficients for the logged woody biomass, and *
Wiε  is the error in the estimation of 

logged woody biomass. The equation fitted to leaf biomass was LiiLLLi xy εββ ++= 2
10 , 

where yLi is the leaf biomass in kg, 0Lβ  and 1Lβ  are the regression coefficients for leaf 

biomass, and Liε  is the estimation error. For leaf biomass it was found that a linear form of 
the relationship fit the data better than a power equation, and that a relationship with the 

http://www.r-project.org/�
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square of stem diameter fit better than the unsquared diameter, which can be explained since 
tree volume should scale with cross-sectional area of the trunk (Scholes (1988) and 
Chidumayo (1990) have also reported linear equations for leaf biomass). 
 
To obtain the variance estimates for the leaf biomass, a similar approach as described above 
for the logged regression equation can be implemented, but it is now not necessary to make 
the adjustments for the lognormal distribution. The estimate for the variance of Liŷ  when the 
relationship is in the form of a simple linear regression, with stem diameter squared as the 
predictor variable, is   

))(1(ˆ)ˆ(Var 2122
iiLiLi xXXxMSEy −′+== σ  … (12) 

where XX ′  can now be simplified to  










∑∑
∑

222

2

)( jj

j

xx
xn

. For this example, the estimate 

for Liŷ  will be in kilograms, and therefore the variance term will be in squared kilograms. The 

95% prediction interval will then be 2ˆ96.1ˆ LiLiy σ×± . 
 
The derived regression equations, as well as the additional regression statistics, were used to 
obtain biomass estimates and their variances based on the stem diameter measurements 
taken at the Skukuza flux site. As an example, a stem with diameter measured as 8.27 cm 
would have an estimated logged biomass of 2.65 with a variance of 0.044. Converting these 
logged estimates into kilograms, using the equation for unbiased estimates, gives an estimate 
14.5 kg and a variance of 9.47 kg2. Applying the formulae for the prediction intervals when the 
logged variable is modelled, the 95% prediction interval is then (9.63, 21.92) kg. The same 
stem diameter can be used to estimate the leaf biomass for that stem. Since the biomass was 
modelled directly (rather than log transformed), the estimate for leaf biomass is 0.67 kg with a 
variance of 0.0048 kg2, and no further transformations are required. The 95% prediction 
interval for this estimate is (0.53; 0.80) kg.  
 
A stem diameter of 28.32 cm results in an estimated woody biomass of 460.30 kg with a 
variance of 11524.68 kg2. The corresponding prediction interval is then (292.9, 723.23) kg. 
Estimating leaf biomass gives an estimate of 9.52 kg with a variance of 0.29 kg and a 95% 
prediction interval of (8.45, 10.58) kg. Compared to the previous stem diameter, these 
estimates are much larger, and also have much wider prediction intervals. This diameter 
value lies outside of the original range of stem diameters used to derive the allometric 
equations (Table 1). 
 
Large diameter values will give wide prediction intervals because, as the diameter of the trees 
moves further outside of the range of the original regression, the prediction interval becomes 
wider since the uncertainty in the estimate will be greater. In the case of a simple linear 
regression, the standard deviation of a predicted value can be written as:  



















−

−
++=

∑
=

n

j
j

i
i

xx

xx
n

MSE

1

2

2

)(

)(11σ̂  … (13) (Chatterjee and Hadi, 2006). 

This formulation shows that the standard deviation of the predicted value from xi, iσ̂ , will get 
larger the further the new x value moves from the mean of the x’s from the original regression, 
x . The standard deviation is the component of the prediction interval for a predicted value 
which determines how wide the interval will be, and therefore the prediction interval becomes 
wider for larger x values. This has been illustrated by plotting diameter values against the 
corresponding estimates for biomass, including the prediction intervals (Fig. 1). This result 
implies that allometric relationships are best suited for obtaining estimates from predictor 
variables which are in the same range as those used to fit the original regression equation. 
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Fig.1: The best estimate and upper and lower 95% confidence limits for wood biomass 
(broken line, left axis) and leaf biomass (solid line, right axis) in Combretum 
apiculatum, as a function of stem diameter.  
 

Conclusions 
 

The method explained in this paper provides a straightforward means of obtaining allometric 
estimates and their variances, along with prediction intervals. This method makes use of the 
regression theory already universally used to obtain allometric relationships, and goes further 
into the theory to extract the variance of predicted values. Therefore no additional 
assumptions are made and no additional field work is required. For the widely used power-law 
formulation, lognormal distribution theory is used to obtain appropriate estimates and 
asymmetric prediction intervals for the estimates in the required units.  

 
If this method is to be widely implemented, publications on allometric relationships based on 
standard regression theory must report, in addition to the regression coefficients, the sum of 
the squared and unsquared predictor variable, the mean square error, and the sample size. 
These statistics are readily available from current statistical analysis software. Together these 
parameters fully define the relationship. If other methods of fitting allometric relationships are 
used, such as non-linear regression methods, enough information must be reported to allow 
users of these relationships to construct prediction intervals for estimates. 
 
This methodology can be extended to any application where a linear regression equation 
obtained from historic data is used to predict on new data, including those applications where 
a logged dependent variable is used. 
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