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Abstract 
 
Rockfalls are responsible for more than 30 percent of the fatalities on South African gold and platinum 
mines, with associated costs and lost productivity. One of the most important activities in the mitigation of 
rockfalls is the entry inspection that occurs before workers enter a newly blasted workplace.  It is also one 
of the more dangerous activities that takes place in a workplace. 
 
The CSIR has developed a sensor, called the electronic sounding device (ESD) that mimics the 
performance of a experienced miner, in order to determine whether loose rocks are present in the roof of 
the excavation, during the entry inspection. Tests of the ESD show a high degree of correlation with skilled 
human operators, allowing the device to be used where skilled operators are not available, or when skills 
are no longer viable due to hearing loss. 
 
Another sensor of loose rock is thermal infra-red imaging. This has also been proven to show the location 
of loose rock, but there is a practical problem in its routine implementation underground, due to its narrow 
field of view. This problem will be overcome using overlapping images that are stitched together. 
 
The combination of two sensors further increases the chances of correct decision making, and the visual 
sensing of the infra-red imager makes it harder to inadvertently miss inspecting risky areas. The 
combination can then be made available to unskilled workers through the addition of an augmented reality 
system based on a laser projector, that make the risk assessment system as easy to use as a torch. 
 
The ultimate aim is to combine both systems with positioning provided by an in-stope navigation system, 
in order to combine current data with historical results from a particular working place to further improve 
the estimate of risk. 
 
1. Introduction 

 
1.1  The risk of rockfalls 
 
A rockfall is defined as an uncontrolled fall (detachment or ejection) of ground of any size that causes (or 
potentially causes) injury or damage (Minerals Council of Australia, 2003). Rockfalls pose unacceptable 
risks to the South African mining industry. Using a methodology described by Terbrugge et al. (2006) and 
data published by the Department of Minerals and Energy (2009), a fatal injury rate for South African 
miners exposed to rockfalls of worse than 10-3

 

 is obtained. This is at least ten times higher than the 
acceptable fatal injury rate for voluntary risk as stated by Wong (2005). 
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1.2  Gold and platinum mining in South Africa 
 
The majority of South African gold and platinum mines have thin tabular seams in a hard rock 
environment. The mining process is mainly based on conventional drilling and blasting (as depicted in 
Figure 1), resulting in a significant number of mining personnel being exposed to fall of ground hazards. 
The working area, or stope, is typically about 1 m high, while tunnels leading in to the stope are larger, 
usually at least 2 m high. The stopes themselves are gently dipping, with slopes ranging from about 8° to 
25°. Mining occurs largely as a batch process: each mining cycle consists of drilling; charging holes with 
explosive; blasting; cleaning; and placing support. 

 
Figure 1. Gold and platinum in South Africa are mined in a thin tabular seam in a hard rock 
environment.  

Rockfalls can be classified in a number of ways: by size or by relation to support units. One of the most 
important types of rockfall is the small fall that occurs before support is installed, or between support units. 
These rockfalls are approximately only 25 kg and larger, but still have the potential to result in a serious 
injury or fatality (Stacey and Gumede, 2006). The falls typically occur within meters from the face (Brink 
and Roberts, 2007). In most cases the disturbing force or trigger is just gravity, but could also include 
ejection due to local face bursting; or even shakedown from nearby seismic events. Only small rockfalls 
are considered here. 
 
1.3  Making safe 
 
While rockfalls account for a significant number of injuries and fatalities, the risk of being injured due to a 
small rockfall is substantially larger than the risk of multiple injuries due to a large event (Stacey, 1989). 
Small rockfalls are relatively common, and while proportionally a given event is less likely to cause harm, 
the frequency leads to a large number of harm-causing events. 
 
One of the most important processes to manage the risk of rockfalls, particularly small rockfalls, is that of 
making safe, undertaken by the miners as they enter the stope for the first time after the blast. Currently, 
part of the process of making safe consists of using a pry-bar to tap the roof of the excavation. The miner 
then listens to the sound of the tap, and if the rock sounds loose, the miner will attempt to pry it from the 
roof or bar down, using the same pry-bar used to sound the hanging wall. 
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The process is often not conducted properly, due to problems with the process itself: the pry bar is heavy, 
the physical effort of tapping the roof in a confined space is high as is the barring, and there is pressure to 
get the making safe process over as quickly as possible so as not to delay production.  In addition, the 
sounding process is an acquired skill, performed more competently with more experience. It is also 
somewhat subjective, and the quality of sounding is related to the physical state of the miner undertaking 
the sounding. Hearing-impaired miners obviously cannot sound as effectively as their un-impaired 
counterparts, and hearing is only checked annually. Fatigue and illness also affect the competence of 
individuals, even within a single shift. 
 
In an attempt to reduce the risks associated with rockfalls, the Mine Health and Safety Council has 
sponsored a multi-year project that is being undertaken by the CSIR. The new technology being 
developed to improve entry inspection and making safe is considered here. 
 
2. The Electronic Sounding Device 
 
As discussed above, the primary method of determining rock mass integrity is sounding with a steel 
sounding bar. The sound which is heard is caused primarily by the acoustic wave generated through 
vibration of the rock mass and other sources, for example the sounding bar, in the surrounding 
environment. The sound has a unique frequency distribution which must be interpreted in order for a 
determination to be made about the integrity of the rock mass. 
 
Experienced miners know that a rock mass which is sufficiently stable to be regarded as safe, will respond 
to the applied tapping with a relatively high frequency sound. A rock mass which is insufficiently stable to 
be regarded as safe, will respond to the applied tapping with a relatively low frequency sound (Allison and 
Lama, 1979). 
 
To overcome the human factors and subjectivity, a device has been developed that mimics the 
performance of the human ear and brain: the Electronic Sounding Device, or ESD. It uses a microphone 
to capture the sound emitted by the rock mass when it is tapped with a sounding bar. The recorded sound 
is processed by an on-board Linux system through a neural network model. The neural network model 
distinguishes a safe region from an unsafe region by analyzing the envelope of the spectral distribution 
generated from the sound emitted. 
 
The ESD is designed to be an integral part of the current sounding and barring method: 

• When the sounding bar taps the roof, the ESD captures the acoustic signal generated as a result 
of the impact. 

• It then derives a frequency distribution of the captured signal. 
• The frequency distribution is processed by a neural network model trained to apply adaptive 

intelligence to assess the input data. 
• The neural network outputs a signal that is indicative of the integrity of the rock mass. 
• If the rock mass is safe, the ESD beeps once, if unsafe it beeps twice. 

 
One of the main design goals of the ESD is for the device to be portable and compact in order to be 
accepted by the miners. It should be possible to use the device to determine the integrity of the rock mass 
without any special preparations of the surface of the hanging wall. In its current embodiment, the ESD is 
adapted to be mounted on a miner’s hard hat (Figure 2). The ESD speaker is directly adjacent to the 
operator’s ear, so that the audio signal can easily be heard. A green or red LED, visible in the Figure, 
lights up if the sounding indicates a stable or unstable rock mass. This visual confirmation of the process 
is visible to the miner’s colleagues, allowing them to monitor progress from a distance. 
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Figure 2. The current manifestation of the Electronic Sounding Device as mounted on a hardhat.  

Before routine operation can commence, the neural network in the ESD needs to be trained. This is done 
using a special training unit. A skilled operator taps rocks, then tells the training unit whether the rock is 
stable or unstable. The audio signals captured by the training unit, together with the stable/unstable 
classification are later run through a computer-based neural network simulator to determine the neural 
network coefficients for the operating units. The coefficients are programmed into all the units that will be 
used under the same conditions as the training unit. 
 
Figure 3 shows the frequency response of typical unstable rock on the left, and stable on the right. The 
bins used by the neural network are superimposed in purple. 
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Figure 3. The spectrum recorded on the left is typical of the lower frequency, ‘hollow’ sounding 
response from loose rock, whereas the right-hand spectrum represents solid, intact rock. 

 
2.1 Trial results 
 
The ESD was tested at a number of different sites on the Driefontein gold mine. The sites had different 
gold reefs, ground water conditions and rock mass classifications. A single set of coefficients was created 
with training data from the many different environments.  
 
As there is no truly objective measure of rock stability, each ESD sounding was compared to the opinion 
of a skilled operator. Correlation between the human and machine judgments is taken as a measure of 
success (Table 1).  
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Table 1. Performance summary, in terms of positive correlation between the operator and the ESD 

Stope Judgement correlation success 

Middelvlei Reef 78.40% 

Carbon Leader 78.48% 

Carbon Leader 89.19% 

VCR-Alberton Reef 78.38% 

VCR-Westonaria Reef 76.47% 
 
The correlation mismatches between the ESD and an experienced operator can be sub-divided into the 
cases where the ESD was overly cautious, i.e. the ESD predicted an unsafe rock mass where the 
operator judged it safe, and where the ESD made a potentially dangerous error, i.e. the ESD predicted a 
safe rock mass where the operator judged the rock mass to be unsafe. 
 
It is evident in Table 2, below, that the increase in unsafe errors correlates to the ground conditions of the 
stope where the ESD was tested. Higher unsafe errors are observed from the testing results of stopes 
where the ground conditions are described as ‘intact’ and ‘stable’. Possible solutions to minimize the 
amount of unsafe errors would include sampling more recordings during the training process from stopes 
with intact ground conditions, and then evaluating whether increased exposure to such recordings 
increases the efficacy of the neural network model under these conditions. It is suspected that the make-
up of the rocks in an area with intact ground conditions might deliver a different frequency response from 
those in a crushed and fractured type of ground condition environment. 
 

Table 2. Performance summary, in terms of correlation mismatch between the operator and the 
ESD, broken down in the relative geotechnical areas 

Reef Cautious errors Unsafe errors Ground conditions 

Middelvlei Reef 7.80% 13.80% Intact 

Carbon Leader 16.46% 5.06% Crushed, fractured 

Carbon Leader 6.76% 4.05% Crushed 

VCR-Alberton Reef 16.21% 5.41% Crushed, fractured 

VCR-Westonaria Reef 11.77% 11.76% Intact 
 
It is also important to remember that the process has some subjectivity, both in training and in trials, and it 
is unlikely that perfect correlation between a single expert and the ESD will ever be achieved. However, 
the addition of the ESD to the miner’s safety equipment adds a check to the human sense of hearing and 
the human intelligence that will function consistently without fatigue or other human factors. The ESD will 
go into production shortly. 
 
3. Thermal imaging 
 
While the ESD mimics an existing process, there have been studies into other methods of determining 
rock stability, using different sensors. It has already been shown (Oldroyd, 2006) that loose hanging wall 
rocks can be identified using thermal imagery because they are cooled more by ventilation than rocks that 
are more firmly connected to the surrounding hot rock mass (Figure 4). In Figure 5, the results can be 
seen when a camera is used to view a loose rock underground. 
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Figure 4. An illustration of the concept of heat flow from warmer solid rock, with the more 
detached rock being more insulated and cooler. 

 

 
Figure 5. A loose section of rock at a Klerksdorp mine with dimensions of 0.8 m by 0.3 m and an 
estimated mass of 65 kg. With relatively newly exposed ground, the temperature differential 
between the rock and the surrounding rock is more that 2.5 °C as shown in the temperature 
profiles along L1 and L2. 

This process has become much more feasible with the drop in price of thermal infrared cameras over the 
last few years. The price is expected to come down further, as thermal infrared has been identified as a 
technique for assisting drivers to see pedestrians at night (IOL Motoring, 2005). 
  
3.1 Limits of wide-angle vision 
 
While thermal imaging is a viable technique for determining which rocks are loose, readily available infra-
red cameras have an angle of view of about 55°. In large excavations such as tunnels, they work well, but 
in the stope itself where the floor and roof are just 1 m apart, only a very limited portion of the roof can be 
viewed at one time. At that distance, the angle of view delineates a target of only 0.5 m across. 
 
Thermal imaging for loose rock detection functions by comparing the temperature of particular rocks, such 
as that seen in Figure 5, with the average temperature of the background. With a limited angle of view, it 
becomes possible that the target rock will fill the whole image and cannot be compared to the background. 
In Figure 6, the large anomaly cannot be differentiated from the surroundings from a single image only. It 
becomes necessary, therefore, to stitch thermal images together to create a larger view, which clearly 
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displays single cooler rocks. The stitching is an automatic process that does not rely on human 
intervention. An early attempt to do this is presented in Figure 7.  
 

 
Figure 6. An illustration of a hanging wall viewed thermally with a view 0.3 × 0.3 m and a thermal 
anomaly with an approximate radius of 0.6 m 

 
Figure 7. Thermal images stitched together (images obtained at Driefontein mine). The temperature 
scale is relative to the average temperature in the image. The highlighted feature is a steel support 
unit attached to the roof. 

 
4. Spatial augmented reality 
 
The CSIR is investigating the use of spatial augmented reality to present data in an intuitive  manner to 
users underground. Wikipedia (2010) defines augmented reality (AR) as a term for a live direct or indirect 
view of a physical real-world environment whose elements are augmented by virtual computer-generated 
imagery. A good early review is provided by Azuma (1997). AR is often achieved by placing a screen 
between the observer and the environment on which augmented data is added. This screen could be a 
head-up display on a fighter aircraft, or a head mounted device (HMD) that might project augmented data 
onto glasses worn by the observer. The screen may also be the screen of a mobile phone that adds 
legends to items seen by the phone camera (Figure 8). The spatial AR used by the CSIR is created by 
projecting augmented information onto real scenes. 
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Figure 8. Augmented reality: details of a tourist site overlayed on a picture of the site itself, and 
found by knowing the location of the mobile phone and direction of view (Clellan-Jones 2009). 

 
In the underground environment, augmented data can easily be presented as Spatial Augmented Reality, 
where projectors are used to display graphical information onto physical objects. In the CSIR’s first proof 
of concept for rockfall management, the thermal imager discussed in the previous section is coupled to a 
micro projector, which projects the thermal image as an optical image with a colour scale back onto the 
surface that generated it (Figure 9). 
 
As an example, in Figure 10 a heater in operation is placed against a cold wall. The thermal information 
for the heater and the wall around it is projected back onto the area. In the Figure, the temperature of the 
heater is projected onto the heater in a red colour. It can also be seen that the wall, which is cooler, has 
the cooler colour, blue, projected on to it.  
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Figure 9. Augmenting reality by projecting thermal images back onto the source. 
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Figure 10. Demonstration of augmented reality: the warm heater is coloured orange by the 
projector, while the cool wall is coloured blue and green. 

 
A combination of thermal sensor and projector in a single tool would produce a ‘safety torch’, which would 
illuminate rocks in colours that would depend on their likelihood of coming loose. As discussed below in 
the section on future work, there are some restrictions on a simple safety torch: it works best when the 
distance from torch to rock is 2 m or more, but the technique lends itself to further elaboration. 
 
5. Conclusion 
 
Small rockfalls have a disproportionate effect on injury and fatality rates in deep gold and platinum mines 
in South Africa. The procedures of entry inspection and making safe are designed to lower the risk of 
rockfall by identifying and bringing down rocks that are not firmly attached to the roof. These procedures 
are, however, physically demanding and not always conducted as thoroughly as is necessary.  Any 
technolgical assistance  is therefore welcomed. 
 

• The ESD mimics the process of sounding during entry inspection, maintaining quality of inspection 
under all conditions. The device's second opinion on the state of the rock-mass can reduce 
uncertainty for operators who sound manually. 

• Thermal imaging allows miners to “see” loose rock at a glance and can greatly streamline the 
process of determining what to sound. 

• A process of spatial AR can project the risk back onto the rock in an intuitive way. 
 
These tools can immediately reduce working place risk and when combined, offer the opportunity to 
reduce the number of undetected hazards and allow the incorporation of other regional information and 
historical data into the determination of risk. These future developments are discussed in the next section. 
 
6. Future work 
 
6.1 Data integration 
 
Both of the tools presented here, the ESD and thermal imaging, determine risk as a function of immediate 
location, without any perspective in time. The ESD helps to identify rock that sounds unstable, where there 
is an increase in risk from that single rock. A single thermal image is similarly closely linked to location: if a 
rock in the view-finder of the image is cooler than its surroundings, that single rock is at higher risk of 
coming loose. 
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While such tools have their place, fusing the results from more than one sensor and from more than one 
data acquisition time can greatly enhance the risk assessment of a working area: 

• Creating a wider field of view: if thermal sensor results are stitched together, a large cooler area 
will be detectable as such by comparison to the entire stitched thermal image.  

• Merging sensors: if ESD results can be superimposed on thermal images, the combination will 
quickly highlight correspondence, which will provide greater certainty about unstable areas.  

• Merging historical data: if ESD results can be presented from a current survey, together with 
results from historical surveys yesterday or the day before, trends should appear on the roof, 
showing trends of unstable roof conditions, and again adding confidence to the risk assessment 
from a single sensor at a single time. 

• Incorporate regional risk: this paper discussed the assessment of the risk of individual rocks 
falling from the roof because they are not well attached. However, in general the risk of rocks 
falling is also controlled by regional effects, such as trends in faulting and jointing. These regional 
trends cannot indicate which rock could fall, but contribute to an overall understanding of the risk 
of a rockfall event. 

 
6.2 Localization 
 
Fusing sensor data only becomes possible if the location of each data capture is known. This requires a 
localization system. While there are many techniques being developed for localization (Comport et al, 
2006), the CSIR is initially using simple and robust ultrasonic beacons (Ferreira, 2007). 
 
The beacons are deployed on the roof of the excavation. In tests in a controlled environment, it is capable 
of determining location in the working area with a horizontal accuracy of 2.5 cm. The stope environment is 
typically planar, so the resolution in the third dimension is very limited. For many data collection purposes, 
this 2D positional data is adequate. However, for image sensors and reality augmentation, it is necessary 
to know the position of the transducer in 3D (the distance to the roof or floor is important), as well as the 
direction, elevation and rotation of the sensor. Alternatively, image sensors can be roughly located using 
the 2D beacon system, then can define their location more accurately using a search algorithm where the 
sensed image is compared to a stitched image already built up in memory. Both approaches are being 
developed and it is likely that each approach will better suit some types of sensors. 
 
6.3 Data presentation 
 
In its simplest form, the risk of rockfall in a stope can be presented as a map that is colour-scaled or 
contoured as a function of overall risk. However, for the specific purpose of improving the quality of entry 
examinations and making safe, it is necessary to identify individual unstable rocks in the roof. Two 
methods are proposed: 

• The spatial AR approach of projecting information onto the rock is simple to use and apply if a 
beacon system is available. 

• The CSIR is also developing a robot that can independently undertake the entry examination 
before the shift reaches the working place. It is likely that the robot will mark areas of the hanging 
wall directly, using spray paint. 

 
6.4 System approach 
 
Ultimately, an entry examination tool that would assist with making safe should be part of a more inclusive 
rockfall risk management system. All the approaches suggested here to advance the current 
developments fit into the AziSA system currently under intensive development at the CSIR. In particular, 
an AR solution for data presentation in the stope would mark a major breakthrough in implementing simple 
communication between a risk management system and an individual miner. 
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