
A Constraint-based Solver for the Military Unit Path Finding Problem

Louise Leenen, Johannes Vorster, Willem Hermanus le Roux
Council for Industrial and Scientific Research, South Africa

Meiring Naude Rd, Brummeria, Pretoria
lleenen@csir.co.za, jvorster@csir.co.za, whleroux@csir.co.za

Keywords: Military Unit Path Finding Problem, Constraint
Satisfaction Problem, Rural and Urban Military Operations,
Autonomous Systems, Scenario Planning

Abstract
 We describe the first phase development of a path
finding simulation in a military environment. This concept
demonstrator can be used for mission planning by
constructing what-if scenarios to investigate trade-offs such
as location of deployment and mode of transport.
 The Military Unit Path Finding Problem (MUPFP) is
the problem of finding a path from a starting point to a
destination where a military unit has to move, or be moved,
safely whilst avoiding threats and obstacles and minimising
costs in a digital representation of the real terrain [1].
Although significant research has been done on path
finding, the success of a particular technique relies on the
environment and existing constraints. The MUPFP is ideal
for a constraint-based approach because it requires
flexibility in modelling.
 We formulate the MUPFP as a constraint satisfaction
problem and a constraint-based extension of the A* search
algorithm. The concept demonstrator uses a provided map,
for example taken from Google Earth, on which various
obstacles and threats can be manually marked. Our
constraint-based approach to path finding allows for
flexibility and ease of modelling. It has the advantage of
modelling new environments or additional constraints with
ease, and it produces near-optimal solutions if solving is
halted prematurely.

1. INTRODUCTION
 During mission planning, military commanders have to
investigate trade-offs between various constraints imposed
by factors such as the location of deployment, the available
modes of transport, the mission objectives and a number of
other such factors. There is a requirement for constructive
simulation environments to conduct military-based
experiments such that human and military unit behaviour is
modelled. We describe the first phase of the development of
such a simulation concept demonstrator in which we address
the problem of path finding for military units.
 Path finding is the problem of moving an object from a
starting point to a destination point, whilst avoiding

obstacles and minimising costs in a digital representation of
a real terrain. It has many applications ranging from
computer games, transportation, robotics, networks, and
others. The path finding problem has been well studied and
there is a vast body of research in the literature. However,
each application has its own characteristics. In our intended
application, the military unit path finding problem (MUPFP)
[1], we need to maintain a balance between the two main
criteria, route speed and safety.
 We describe the simulation environment and the
different algorithms. This phase of our simulation includes
three different path finding algorithms for solving the
MUPFP:

• A constraint satisfaction problem (CSP)
formulation with a branch and bound algorithm to
solve it.

• A constraint-based extension of the well known
A* search algorithm.

• A genetic hill-climbing algorithm.
 To the best of our knowledge, the first two approaches
have not been followed for solving the MUPFP as yet.
 Our simulation concept demonstrator uses images as
the basis for marking terrain features and combatants. The
images may be from satellite sources, aerial photographs, or
even images from Google Earth. The provided image is
converted to a 2D grid. Various obstacles can be selected
and marked by the user, for example: boundaries such a
wall, buildings, parks, marshes, etc. Each such feature has
properties that determine the ease of movement for different
unit types. The user can also mark the position of a threat
such a sniper, and the reach of that threat; sniper range in
the case of a sniper, on the map. The concept demonstrator
indicates the area of the solution space that has been
explored, the best path found so far, and the current path
being explored.
 Section 2 contains an overview of methods for solving
path finding problems. In Section 3 we discuss constraint-
based solving techniques, and introduce a CSP formulation
for the MUPFP. We also discuss two algorithms to solve
this CSP. Section 4 describes our simulation concept
demonstrator, and we conclude with Section 5.

2. PATH FINDING METHODS
 Path finding algorithms can be divided into two
different types, static (or global) and dynamic algorithms. In
a static algorithm, the environment is known and an optimal
path is calculated before the object is moved. In a dynamic
algorithm, the environment may not be completely known
before the object starts moving, or it may change whilst the
object is moving. In this case, the path plan has to be
updated while it is being executed. Our demonstrator
currently only uses static algorithms.
 A vast amount of research has been done on path
planning techniques, and the success of a particular
technique relies on the environment and the constraints that
are imposed on it. In this paper, the scope is limited to a
domain where a military unit has to move, or be moved,
safely to a destination whilst avoiding obstacles such as
threats and structures. We assume that the terrain can be
presented as a 2D grid or a graph. Tarapatta [2] gives an
overview of techniques for terrain representation.
 The most common approaches to solving path planning
problems are based on Dijkstra’s shortest path algorithm
and the A* search algorithm. We report mainly on the A*
search-based algorithms because they are most efficient.
 The A* search algorithm is a graph-based algorithm
that finds the least cost path between a source and
destination node by minimising the estimated cost to the
goal from the current node, as well as the cost of the path so
far. It is regarded as one of the most efficient graph based
path finding algorithms. It is a heuristic, optimal algorithm
and also optimally efficient, i.e. at least as efficient in terms
of node expansion as any other optimal algorithm. Consult
[3] for more information.
 One of the disadvantages of the A* search algorithm is
that it requires a large amount of memory space. Path-
finding on large maps can be problematic but many
extensions of the algorithm address this deficiency by
reducing search space, and time and memory requirements.
 The A* search algorithm is formulated for a static
environment but there is an extension for a dynamic
environment, the D* algorithm. A* search-based algorithms
are used in most electronic games for path finding.
 There are a number of extensions of A* search
algorithm such as Beam Search, Iterative Deepening, Bi-
directional Search, Hierarchical Path Finding, Multi-
resolution A* Search [4; 5], and Incremental Search [6].
Consult [7] for more information.
 There are many other approaches that also proved to be
successful for path planning, for example, probabilistic path
planning, ant colony optimization, etc. Svestka and
Overmars [8] give an overview of probabilistic path
planning. Examples of successful probabilistic planners are
the probabilistic path planner (PPP), planners using genetic
algorithms, and the randomized path planner (RPP) [9].

Mora et al. [1; 10] have adapted ant colony optimisation
(ACO) algorithms for the MUPFP with great success.
 Very little work has been done in terms of formulating
path planning as a CSP. Both Gualandi et al. [11] and Allo
et al. [12] successfully used concurrent programming to
address path planning for aircraft. We formulate the MUPFP
as a CSP. In Section 3 we give an overview of constraint
satisfaction techniques.

3. CONSTRAINT-BASED SOLVING
 The modelling of problems in terms of constraints has
the advantage of a natural, declarative formulation. When a
problem is defined as a constraint satisfaction problem
(CSP), it is a representation of what must be satisfied,
without specifying how it should be satisfied.
 A constraint is a logical relation involving one or more
variables, where each variable has a domain of possible
values. A constraint thus restricts the possible values that
variables can have.
 A CSP consist of a set of variables, a set of domains for
the variables, and a set of constraints. Each constraint is
defined over a subset of the set of variables. There are many
general purpose techniques that can be used to solve CSPs,
for example, integer programming, local search, and neural
network techniques, but there is a special purpose technique
that is widely used: tree search in conjunction with
backtracking and consistency checking.
 Constraint satisfaction techniques have proved to be
effective to solve over-constrained problems, i.e. sets of
constraints that cannot be satisfied. Soft constraint
satisfaction techniques allow the user to identify subsets of
constraints that are less important to satisfy, such that a
suitable solution to an unsatisfiable problem can be found.
 Consult Dechter [13] and Bartak [14] for an
introduction to constraint satisfaction techniques

3.1. The MUPFP formulated as a Constraint

Satisfaction Problem
 The advantage of following a constraint-based approach
to our path planning problem is the flexibility this
framework offers. The MUPFP involves an environment
and goals that can effectively be represented by constraints,
and new information can be added with ease.
 Our CSP formulation of the MUPFP is a grid-based
approach, and it is in fact formulated as a constraint
satisfaction optimisation problem. The terrain map is
divided into a 2D grid where each cell has an associated
cost. The cost is an indication of the difficulty or danger of
moving though a particular cell. For example, if there is a
structure in a cell through which a soldier cannot move, this
cell will have a maximum cost value. The objective is to
solve the CSP whilst minimising the total cost of all the
cells in the solution path.

 The terrain grid has associated cost values that are
different for each scenario, for example, if the soldiers are
dismounted, the cost values will differ from a scenario
where the soldiers are transported in a vehicle.
 The terrain map is divided into a grid where the
coordinate pair (xi,yj) represents the cell in the i-th column
and the j-th row assuming (0,0) is in the lower left hand
corner and (k,m) is in the upper right hand corner.
 The set of variables is V = {V1, V2, …, Vn}, where each
variable represents one cell in the solution path. The domain
of each variable is Dom = {(x0,y0),(x1,y0),…,(xk,y0),(x0,y1),
…,(xk,ym)}. The set of constraints, C, contains at least the
ones listed below:

• C1: An all-different constraint: V1 � V2 � … � Vn
• C2: V1 = S and Vn = D where S is the starting cell

in the path and D is the destination cell.
• C3: For every Vi+1, i = 1,…n-1, if Vi = (xi,yj)

exactly one of the following should hold:
 Vi+1 = (xi+1,yj), Vi+1 = (xi+1,yj+1),
 Vi+1 = (xi+1,yj-1), Vi+1 = (xi,yj+1),
 Vi+1 = (xi,yj-1), Vi+1 = (xi-1,yj),
 Vi+1 = (xi-1,yj+1), and Vi+1 = (xi-1,yj-1).
• These constraints express the fact that a solution

consists of a path in the search area.
 Constraints to model threats, or any additional
requirements, should also be added.
 Each member of the set Dom, (xi,yj), with i=1,..,k and
j=1,..m, has an associated cost value, c(xi,yj). The solution to
the problem is an assignment of values for the variables in
the set V such that min �s=1,..n c(xi,yj) where Vs = (xi,yj).

3.1.1. Solving the CSP formulation of the MUPFP

 A CSP has a finite, known number of variables. In our
application we do not know in advance what the length of
an optimal or good solution path is. We thus have to decide
what the value of n (number of decision variables in the
CSP) is before solving our CSP. We will start by calculating
the theoretical shortest length a solution path can have (e.g.
the minimum number of cells that have to be traversed to
reach the destination node from the start cell). The CSP is
solved for the initial value of n. Then we increase the value
of n by 1 and solve the CSP again. Retain the best solution.
Now we repeatedly solve the CSP for an increased value of
n until a pre-defined time limit is reached or a pre-defined
upper bound value for n is reached.
 In this formulation of the problem, we have to decide
on the cost function for the grid in advance. This cost
function will be different for each environment, and will
also depend on the mode of transport for the military unit.
For example, the threat values and terrain difficulty will
vary for dismounted units and units transported in a
protected vehicle.

 In order to optimise the total cost of a path, we will
solve the problem with a branch and bound algorithm.
 The main criterion that has to be optimised is the
difficulty of moving through the terrain. We therefore
regard the cost associated with each cell on the grid
representation of the terrain, to represent the level of
difficulty that elevation or an obstacle (that can be crossed)
contribute. This will require a cost matrix to be set up in
advance. Obstacles that cannot be crossed will be indicated
in the threat matrix and handled via a constraint. In this first
attempt, we will regard the costs and threats to be static.
 We model known threats by adding additional
constraints. In this phase of the simulation, these constraints
represent the way in which threats should be avoided.

3.2. Constraint-based A* Search Formulation
 Our extended A* search algorithm maintains a list of
potential (partial) solutions. From this list the best potential
partial solution is selected and expanded: a new waypoint is
added to the end of this chosen solution path for every
direction under investigation. Any new waypoint has to
satisfy all the constraints.

4. THE MUPFP SIMULATION CONCEPT

DEMONSTRATOR
 Each of the following aspects of our simulation is
discussed in one of the subsections that follow below.

• Modelling the Environment – modelling the
different aspects of the environment, the
structures, terrain and barriers.

• Agents - modelling own forces and enemy forces,
and agent behaviour.

• Simulation Aspects.
• Algorithms.

4.1. Modelling of the Environment

The concept demonstrator allows any image to be imported
as the area of operation. This allows for the flexible
integration of Geographical Information Systems (GIS),
satellite imagery or even Google Earth. In the example in
Figure 11 we imported an image from Google Earth
depicting a coastal area around the Red Sea. The next step is
to indicate a starting and a goal point, and to model different
terrain features which may be encountered.
 The types of structures we model are (see Figure 2):

• Fields and other vegetation – these structures are
passable both on foot and by vehicle.

• Hilly areas – a large hill or mountain may not be
passable for a vehicle, but may be on foot.

• Built-up areas such as informal housing areas,
residential areas and so on.

1 In Figures 1 to 5, “Global B&B” should read “A* extension”.

 The important variables for structures are:
• Movement cost for dismounted soldiers – the cost

in terms of the speed a person on foot achieves
when moving through this type of structure.

• Movement cost for vehicles – the cost of a
vehicle in terms of speed.

• Shape-polygon – describes the shape of a
structure.

• Colour or texture – a colour is used to display the
different types of structures. For example, fields
are light green, built-up areas are light grey whilst
building complexes are dark-grey.

A barrier is a kind of structure that is difficult to cross.
Some barriers, suburban fences for example, are difficult to
cross by vehicle, but easy to cross on foot. The aim of a
barrier in the simulation is to show where it would be
difficult to cross for a specific type of transport. Another
example of a barrier line may be the contour line of a hill
where the incline becomes so steep that a vehicle cannot
maintain grip.
 The important variables for barriers are:

• Movement cost for dismounted soldiers – the
time that it requires to cross the barrier on foot.

• Movement cost for vehicles – the time it takes a
vehicle to cross the barrier.

• Shape-polygon – describes the shape of the
barrier.

Our constraint-based approach provides a great deal of
flexibility in modelling structures and barriers. For example,
the avoidance of a structure that cannot be crossed or a

sniper’s shooting range can be enforced by a separate
constraint for that particular obstacle/threat, while the
crossing of a hilly area by a dismounted soldier can be
modelled by an increased cost.
Our model’s parametric variables are populated by subject
matter and map experts.

4.2. Agents

This simulation models all active “elements” as agents. In
that sense, this is an agent-based simulation. That is, the
underlying mechanics are agent-based in that each agent has
certain goals that could be modified in the course of the
simulation – based on the environment and actions by other
agents. Dynamic aspects have not been implemented yet, for
example, in the current instantiation of the demonstrator the
enemy agents are not movement active; they do not move.
Neither has the ability to change costs been implemented
yet.
 The friendly (own) agent may be an individual, but
more likely, this will be a group of individuals or may even
be a large group of individuals. We use the term Friendly
Combatant (FC) to refer to this group – this is more intuitive
than to constantly refer to friendly forces or own agent or
friendly agent.
 Our demonstrator has the following characteristics:
1. We model the movement of FC units from a certain

point (the starting point), through a path that consists
of a number of waypoints and ends at the goal
(finishing point).

Figure 1: Modelling the Area of Operation

2. The starting conditions are that FC units are initially in
vehicles. They may however immediately abandon the
vehicles and continue the planned path on foot.

3. The demonstrator is designed to investigate two
questions: firstly, what path should FC units follow to
the target, and secondly, at what point should the
vehicle be abandoned (if at all).

4. The terrain influences movement ability, slowing
down movement from the optimal speed.

5. The terrain may consist of different constructions, such
as fields / woods / grasslands and also buildings /
informal housing areas / building complexes, as well
as barriers that may be passable by foot but not by
vehicle. Barriers also take additional time to cross.

6. We want to find the fastest path, that is, the path that,
given the terrain and type of transport will get FC units
to the target in the shortest time.

7. Constraints: As described earlier a number of
constraints must be implemented and this bounds the
solution space that will be investigated.

8. For the purpose of this simulation, i.e. path planning,
own agents do not carry guns and will not shoot – the
aim being to find a path that will not put them in
danger. However, it is quite trivial to change the
behaviour of own forces agents to also include
shooting ranges.

 Each agent has a base position: the position where the
agent is located at the beginning of the simulation. In
addition, an agent also has a current position which is the
location that it occurs at a certain instance in time within the
simulation. Each agent also has a characteristic speed on

foot. This speed is based - for example - on the type of
equipment that the agent has to carry.
 The prime property of an agent is that it has goals, and
plans to achieve those goals. An (own) agent’s basic goal is
defined as a position that it wants to reach. For an enemy
agent it may be a better sniping location, or to intercept FC
units. In order to achieve a goal, agents will construct plans.
A plan consists of a number of waypoints. The agent will
move to each of the waypoints in succession.
 For FC units there are also the matter of when to
abandon the vehicle. Therefore, a part of a FC unit’s plan is
at what point along the planned path the vehicle will be
abandoned.
 These variables reflect the properties of the agent:

• Base Position – The initial position of the agent at
the beginning of the simulation.

• Current Position – the position of the agent at a
specific time within the simulation.

• Speed on foot.
• Colour – a representation colour for the agent. In

later versions this may be replaced by an image.
 The following variable is used to model the agent’s
goals: Position of goal – this is the final goal for this agent.
 The following variables are used to model the agent’s
planning to achieve the goal:

• Planned path – the planned path consists of a
number of positions. The agent will move to each
of these positions sequentially.

• Where to abandon the vehicle – the agent’s
current plan is to abandon the vehicle he starts his
journey with at some point along the planned

Figure 2: Modelling Structures, Barriers & Enemy Forces

path. It may be that the agent abandons the
vehicle at the starting position, implying that the
vehicle is never used.

 Currently, we implement only one type of enemy agent,
the sniper. A sniper will be stationary in a specific location
for a very long time, waiting, observing and striking at his
specific target from his hidden position. A sniper has a
specific shooting range. We model a sniper with a sniping
range and a fall-off range of 1.5 times the sniper range.
Within the fall-off range the sniper may still take a shot, but
the accuracy is not guaranteed.
 Visually sniper locations are indicated by red dots as
shown in Figure 2 and Figure 3. The sniping range is shown
as a light red circle and the fall-off range by more
transparent circles as seen in Figure 2.

4.3. Simulation Aspects
 There are two methods of handling such simulations;
the first is a time-step based simulation where the
simulation is conducted in time-increments. The second
method is an event-based simulation where time-stepping is
done forward to the next event. This requires an accurate
prediction of the next event, which may not be easy.
 In order to keep the model simple (this is the first
version) the approach followed here is a time-step based
simulation. The chosen time-step is one second, although
this is completely arbitrary – one second will move the
agents about one meter if moving on foot.

4.3.1. Agent Movements
 An agent has a planned path and the agent will move
along the planned path. FC units are shot at if within the gun
range of a sniper. The simulation tests if FC units are
moving within any of the structures. For this purpose, we

use an efficient point within-polygon algorithm. Finally we
also use an algorithm for testing line-segment crossing.

4.3.2. User Interface – Visualisation
 The most important parts of the visual interface that
have been implemented for this version of the demonstrator
have already been illustrated – Figures 1 to 5. Figure 2
demonstrates some of the passive elements: barriers,
structures and enemy forces with effective range circles.
Figure 3 shows some of the active elements pertaining to the
different solutions: the current best path, the current path
under investigation, and a mesh of the search-space covered.
The mesh of the covered search space is solver-dependant.
The branch and bound algorithm, for example, uses a grid
that can be displayed to show the searched area.
 Both the best path and the current path under
investigation show the path travelled by vehicle as solid
lines and the part travelled by foot as dotted lines.

4.3.3. Memory Management and Prevention of
Race-Conditions

 The implementation of simultaneous solvers
(algorithms) solving the same problem, using the underlying
simulation architecture in an asynchronous fashion will lead
to race conditions. There will also be race conditions
between the user interface aspects and the underlying solver
architectures. For the current demonstrator, three situations
where race-conditions may occur are:

• The simulation itself. Each solver will invoke the
simulation for each of the potential solutions.
Therefore a direct race-condition exists on the
simulation and care should be taken to prevent
this. Three possibilities exist: use locking
mechanisms to allow only a single solver access

Figure 3: Modelling Active Elements

to the simulation at a time, duplicate the
simulation environment for each solver or, the
third option, keep all changeable variables in the
thread-stack and within the proposed solution.

• The graphical user interface. The GUI has to
draw the current best solution, but during the time
that it takes to draw it, it may change. In addition,
if a copy is made, the copy has to be a deep-copy,
that is, all underlying structures must also be
copied. This simulation opts to use a lock on the
current best-solution variable.

• The best solution that is shared between the
different solvers. This solution must be updated
within each solver and a race condition may exist
if a solver makes a new best estimate
simultaneous with another solver. We use locks
on the update of the best solution.

4.4. Path finding Algorithms
 The demonstrator also includes an architecture that
allows for multiple path finding algorithms to be used
simultaneously. The first algorithm is a constraint-based
branch and bound algorithm (see Figure 4) and the second
one is a constrained-based A* search algorithm (see Figure
5). The third algorithm, genetic hill-climbing, is not optimal
but produces feasible solutions very quickly. It uses random
changes in an attempt to improve on an existing solution,
and can be used as an initial upper bound for the other two
algorithms which allows for improved pruning of the search
space when these algorithms are applied.
 The architecture that was chosen for this to work is to
create a solver abstract class that implements a number of
standard solver functions. Each solver is then a derived
instance of this class. Each solver will run its own thread.

Care should be taken to synchronise the threads if multiple
solvers can update the best solution found.
 The main solver thread is quite simple: instantiate the
solvers, start a thread for each solver, periodically check if
any of the solvers have found a new best solution.
 In the user interface as shown in Figure 3, the current
best found solution to the MUPFP is displayed as a “green”
path. The three different solvers are shown and the black
dots show the search space that has been searched by the
different algorithms.
 The simulation produces optimal solutions or near-
optimal solutions reasonable quickly.

5. CONCLUSIONS
 We describe the implementation of an initial phase of a
simulation concept demonstrator for military path finding.
This concept demonstrator can be used to determine an
optimal path for soldiers to follow during a military
operation, as well as the best mode of transport. The path is
optimal in terms of user-specified constraints relating to the
operational terrain and the safety of the troops. The user can
also get a near-optimal solution if the available time is
limited, by halting the solvers prematurely. A tactical
mission planner can use this demonstrator to investigate
different scenarios.
 The simulation uses three different path finding
algorithms: a constraint-based branch and bound algorithm,
a constraint-based extension of an A* search algorithm and
a hill-climbing algorithm.
 The main advantage of our constraint-based approach is
the ease of modelling new environments or additional
constraints.
 We plan to extend this simulation to cater for dynamic
changes in the environment.

Figure 4: The Branch and Bound Algorithm

References
[1] Mora, A.M., Merello, J.J., Millan, C., Torrecillas, J.
and Laredo, J.L.T., CHAC. "A MOACO Algorithm for
Computation of Bi-Criteria Military Unit Path in the
Battlefield", Proceedings of the Workshop on Nature
Inspired Cooperative Strategies for Optimization, 2006.
[2] Tarapata, Z., 2003. Military Route planning in
Battlefield Simulation: "Effectiveness Problems and
Potential Solutions". Journal of Telecommunications and
Information technology, 4.
[3] Russel, S. and Norvig, P., 1995. Artificial
Intelligence: A Modern Approach. Prentice-Hall.
[4] Wichmann, D.R. and Wuensche, B.C., "Automated
Route Finding on Digital Terrains", International Image and
Vision Computing New Zealand Conference, 2004.
[5] Holte, R., Perez, M., Zimmer, R. and MacDonald, A.,
"Hierarchical A*": Searching Abstraction Hierarchies
Efficiently, Proceedings of AAAI-96, 1996.
[6] Koenig, S., Likachev, M., Liu, Y. and Furcy, D.,
2004. "Incremental Heuristic Search in Artificial
Intelligence". Artificial Intelligence Magazine, 25(2).
[7] Patel, A., Patel's A* pages. Available:
http://theory.stanford.edu/~amitp/GameProgramming/
[8] Svestka, P. and Overmars, M.H., 1998. "Probabilistic
Path Planning". In: J. Laumond, ed, Robot Motion Planning
and Control,. Springer-Verlag, pp. 255-304.
[9] Barraquand, J. and Latombe, J.C., 1991. "Robot
Motion Planning: A Distributed Representation Approach".
International Journal Robotics Research, 10(6).
[10] Mora, A.M., Merelo, J.J., Laredo, J.L.J., Castillo,
P.A., Millan, C. and Torrecillas, J., "Balancing Safety and
Speed in the Military Path Finding Problem: Analysis of
Different ACO Algorithms", Genetic and Evolutionary

Computation Conference, July, 2007.
[11] Gualandi, S. and Tranchero, B., "Concurrent
Constraint Programming-based Path Planning for
Uninhabited Air Vehicles", Proceedings of SPIE's Defense
and Security Symposium, 2004.
[12] Allo, B., Guettier, C., Legendre, V., Poncet, J.C. and
Strady_Lecubin, N., "Constraint Model-Based Planning and
Scheduling with Multiple Resources and Complex
Collaboration Schema", AIPS, 2002.
[13] Dechter, R., 2003. Constraint Processing. San
Fancisco: Morgan Kaufman Publishers.
[14] Bartak, R., On-line guide to constraint
programming, http://kti.mff.cuni.cz/bartak/constraints.

Biography

Louise Leenen is a Senior Researcher in the Command,
Control and Information Warfare Competency Area of the
CSIR, South Africa. Her main interest is in the solution of
combinatorial problems.

Johannes Vorster is a Senior Researcher in the Command,
Control and Information Warfare Competency Area of the
CSIR, South Africa. His main research interest is in Cyber
Defence.

Herman le Roux is a Principal Researcher in the
Command, Control and Information Warfare Competency
Area of the CSIR, South Africa. His main area of interest is
Command and Control Simulation Technologies.

Figure 5: The A* Search Based Algorithm

