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Abstract 
  We describe the first phase development of a path 
finding simulation in a military environment. This concept 
demonstrator can be used for mission planning by 
constructing what-if scenarios to investigate trade-offs such 
as location of deployment and mode of transport.  
 The Military Unit Path Finding Problem (MUPFP) is 
the problem of finding a path from a starting point to a 
destination where a military unit has to move, or be moved, 
safely whilst avoiding threats and obstacles and minimising 
costs in a digital representation of the real terrain [1]. 
Although significant research has been done on path 
finding, the success of a particular technique relies on the 
environment and existing constraints. The MUPFP is ideal 
for a constraint-based approach because it requires 
flexibility in modelling.  
 We formulate the MUPFP as a constraint satisfaction 
problem and a constraint-based extension of the A* search 
algorithm. The concept demonstrator uses a provided map, 
for example taken from Google Earth, on which various 
obstacles and threats can be manually marked. Our 
constraint-based approach to path finding allows for 
flexibility and ease of modelling. It has the advantage of 
modelling new environments or additional constraints with 
ease, and it produces near-optimal solutions if solving is 
halted prematurely. 
 
1. INTRODUCTION 
 During mission planning, military commanders have to 
investigate trade-offs between various constraints imposed 
by factors such as the location of deployment, the available 
modes of transport, the mission objectives and a number of 
other such factors. There is a requirement for constructive 
simulation environments to conduct military-based 
experiments such that human and military unit behaviour is 
modelled. We describe the first phase of the development of 
such a simulation concept demonstrator in which we address 
the problem of path finding for military units.    
 Path finding is the problem of moving an object from a 
starting point to a destination point, whilst avoiding 

obstacles and minimising costs in a digital representation of 
a real terrain. It has many applications ranging from 
computer games, transportation, robotics, networks, and 
others. The path finding problem has been well studied and 
there is a vast body of research in the literature. However, 
each application has its own characteristics. In our intended 
application, the military unit path finding problem (MUPFP) 
[1], we need to maintain a balance between the two main 
criteria, route speed and safety.  
 We describe the simulation environment and the 
different algorithms. This phase of our simulation includes 
three different path finding algorithms for solving the 
MUPFP:  

• A constraint satisfaction problem (CSP) 
formulation with a branch and bound algorithm to 
solve it. 

• A constraint-based extension of the well known 
A* search algorithm. 

• A genetic hill-climbing algorithm. 
 To the best of our knowledge, the first two approaches 
have not been followed for solving the MUPFP as yet. 
 Our simulation concept demonstrator uses images as 
the basis for marking terrain features and combatants. The 
images may be from satellite sources, aerial photographs, or 
even images from Google Earth. The provided image is 
converted to a 2D grid. Various obstacles can be selected 
and marked by the user, for example: boundaries such a 
wall, buildings, parks, marshes, etc. Each such feature has 
properties that determine the ease of movement for different 
unit types.  The user can also mark the position of a threat 
such a sniper, and the reach of that threat; sniper range in 
the case of a sniper, on the map. The concept demonstrator 
indicates the area of the solution space that has been 
explored, the best path found so far, and the current path 
being explored. 
 Section 2 contains an overview of methods for solving 
path finding problems. In Section 3 we discuss constraint-
based solving techniques, and introduce a CSP formulation 
for the MUPFP. We also discuss two algorithms to solve 
this CSP. Section 4 describes our simulation concept 
demonstrator, and we conclude with Section 5. 
  



2. PATH FINDING METHODS 
 Path finding algorithms can be divided into two 
different types, static (or global) and dynamic algorithms. In 
a static algorithm, the environment is known and an optimal 
path is calculated before the object is moved. In a dynamic 
algorithm, the environment may not be completely known 
before the object starts moving, or it may change whilst the 
object is moving. In this case, the path plan has to be 
updated while it is being executed. Our demonstrator 
currently only uses static algorithms. 
 A vast amount of research has been done on path 
planning techniques, and the success of a particular 
technique relies on the environment and the constraints that 
are imposed on it. In this paper, the scope is limited to a 
domain where a military unit has to move, or be moved, 
safely to a destination whilst avoiding obstacles such as 
threats and structures. We assume that the terrain can be 
presented as a 2D grid or a graph. Tarapatta [2] gives an 
overview of techniques for terrain representation.  
 The most common approaches to solving path planning 
problems are based on Dijkstra’s shortest path algorithm 
and the A* search algorithm. We report mainly on the A* 
search-based algorithms because they are most efficient. 
 The A* search algorithm is a graph-based algorithm 
that finds the least cost path between a source and 
destination node by minimising the estimated cost to the 
goal from the current node, as well as the cost of the path so 
far. It is regarded as one of the most efficient graph based 
path finding algorithms. It is a heuristic, optimal algorithm 
and also optimally efficient, i.e. at least as efficient in terms 
of node expansion as any other optimal algorithm. Consult 
[3] for more information.  
 One of the disadvantages of the A* search algorithm is 
that it requires a large amount of memory space. Path-
finding on large maps can be problematic but many 
extensions of the algorithm address this deficiency by 
reducing search space, and time and memory requirements. 
 The A* search algorithm is formulated for a static 
environment but there is an extension for a dynamic 
environment, the D* algorithm. A* search-based algorithms 
are used in most electronic games for path finding.  
 There are a number of extensions of A* search 
algorithm such as Beam Search, Iterative Deepening, Bi-
directional Search, Hierarchical Path Finding, Multi-
resolution A* Search [4; 5], and Incremental Search [6]. 
Consult [7] for more information.   
 There are many other approaches that also proved to be 
successful for path planning, for example, probabilistic path 
planning, ant colony optimization, etc. Svestka and 
Overmars [8] give an overview of probabilistic path 
planning. Examples of successful probabilistic planners are 
the probabilistic path planner (PPP), planners using genetic 
algorithms, and the randomized path planner (RPP) [9]. 

Mora et al. [1; 10] have adapted ant colony optimisation 
(ACO) algorithms for the MUPFP with great success. 
 Very little work has been done in terms of formulating 
path planning as a CSP. Both Gualandi et al. [11] and Allo 
et al. [12] successfully used concurrent programming to 
address path planning for aircraft. We formulate the MUPFP 
as a CSP. In Section 3 we give an overview of constraint 
satisfaction techniques. 
 
3. CONSTRAINT-BASED SOLVING 
 The modelling of problems in terms of constraints has 
the advantage of a natural, declarative formulation. When a 
problem is defined as a constraint satisfaction problem 
(CSP), it is a representation of what must be satisfied, 
without specifying how it should be satisfied. 
 A constraint is a logical relation involving one or more 
variables, where each variable has a domain of possible 
values. A constraint thus restricts the possible values that 
variables can have.  
 A CSP consist of a set of variables, a set of domains for 
the variables, and a set of constraints. Each constraint is 
defined over a subset of the set of variables. There are many 
general purpose techniques that can be used to solve CSPs, 
for example, integer programming, local search, and neural 
network techniques, but there is a special purpose technique 
that is widely used: tree search in conjunction with 
backtracking and consistency checking. 
 Constraint satisfaction techniques have proved to be 
effective to solve over-constrained problems, i.e. sets of 
constraints that cannot be satisfied. Soft constraint 
satisfaction techniques allow the user to identify subsets of 
constraints that are less important to satisfy, such that a 
suitable solution to an unsatisfiable problem can be found. 
 Consult Dechter [13] and Bartak [14] for an 
introduction to constraint satisfaction techniques 
 
3.1. The MUPFP formulated as a Constraint 

Satisfaction Problem 
 The advantage of following a constraint-based approach 
to our path planning problem is the flexibility this 
framework offers. The MUPFP involves an environment 
and goals that can effectively be represented by constraints, 
and new information can be added with ease. 
 Our CSP formulation of the MUPFP is a grid-based 
approach, and it is in fact formulated as a constraint 
satisfaction optimisation problem. The terrain map is 
divided into a 2D grid where each cell has an associated 
cost. The cost is an indication of the difficulty or danger of 
moving though a particular cell. For example, if there is a 
structure in a cell through which a soldier cannot move, this 
cell will have a maximum cost value. The objective is to 
solve the CSP whilst minimising the total cost of all the 
cells in the solution path. 



 The terrain grid has associated cost values that are 
different for each scenario, for example, if the soldiers are 
dismounted, the cost values will differ from a scenario 
where the soldiers are transported in a vehicle.  
 The terrain map is divided into a grid where the 
coordinate pair (xi,yj) represents the cell in the i-th column 
and the j-th row assuming (0,0) is in the lower left hand 
corner and (k,m) is in the upper right hand corner. 
 The set of variables is V = {V1, V2, …, Vn}, where each 
variable represents one cell in the solution path. The domain 
of each variable is Dom = {(x0,y0),(x1,y0),…,(xk,y0),(x0,y1), 
…,(xk,ym)}. The set of constraints, C, contains at least the 
ones listed below: 

• C1: An all-different constraint: V1 � V2 � … � Vn 
• C2: V1 = S and Vn = D where S is the starting cell 

in the path and D is the destination cell. 
• C3:  For every Vi+1, i = 1,…n-1,  if Vi = (xi,yj) 

exactly one of the following should hold:  
    Vi+1 =   (xi+1,yj), Vi+1 =   (xi+1,yj+1),  
    Vi+1 =   (xi+1,yj-1), Vi+1 =   (xi,yj+1),  
   Vi+1 =   (xi,yj-1), Vi+1 =   (xi-1,yj),  
   Vi+1 =   (xi-1,yj+1), and Vi+1 =   (xi-1,yj-1). 
• These constraints express the fact that a solution 

consists of a path in the search area. 
 Constraints to model threats, or any additional 
requirements, should also be added. 
 Each member of the set Dom, (xi,yj), with i=1,..,k and 
j=1,..m, has an associated cost value, c(xi,yj). The solution to 
the problem is an assignment of values for the variables in 
the set V such that min �s=1,..n c(xi,yj)  where Vs = (xi,yj).  

3.1.1. Solving the CSP formulation of the MUPFP 

 A CSP has a finite, known number of variables. In our 
application we do not know in advance what the length of 
an optimal or good solution path is. We thus have to decide 
what the value of n (number of decision variables in the 
CSP) is before solving our CSP. We will start by calculating 
the theoretical shortest length a solution path can have (e.g. 
the minimum number of cells that have to be traversed to 
reach the destination node from the start cell). The CSP is 
solved for the initial value of n. Then we increase the value 
of n by 1 and solve the CSP again. Retain the best solution. 
Now we repeatedly solve the CSP for an increased value of 
n until a pre-defined time limit is reached or a pre-defined 
upper bound value for n is reached. 
 In this formulation of the problem, we have to decide 
on the cost function for the grid in advance. This cost 
function will be different for each environment, and will 
also depend on the mode of transport for the military unit. 
For example, the threat values and terrain difficulty will 
vary for dismounted units and units transported in a 
protected vehicle. 

 In order to optimise the total cost of a path, we will 
solve the problem with a branch and bound algorithm.  
 The main criterion that has to be optimised is the 
difficulty of moving through the terrain. We therefore 
regard the cost associated with each cell on the grid 
representation of the terrain, to represent the level of 
difficulty that elevation or an obstacle (that can be crossed) 
contribute. This will require a cost matrix to be set up in 
advance. Obstacles that cannot be crossed will be indicated 
in the threat matrix and handled via a constraint. In this first 
attempt, we will regard the costs and threats to be static.  
 We model known threats by adding additional 
constraints. In this phase of the simulation, these constraints 
represent the way in which threats should be avoided.   
 
3.2. Constraint-based A* Search Formulation 
 Our extended A* search algorithm maintains a list of 
potential (partial) solutions. From this list the best potential 
partial solution is selected and expanded: a new waypoint is 
added to the end of this chosen solution path for every 
direction under investigation. Any new waypoint has to 
satisfy all the constraints. 
  
4. THE MUPFP SIMULATION CONCEPT 

DEMONSTRATOR 
  Each of the following aspects of our simulation is 
discussed in one of the subsections that follow below. 

• Modelling the Environment – modelling the 
different aspects of the environment, the 
structures, terrain and barriers. 

• Agents - modelling own forces and enemy forces, 
and agent behaviour. 

• Simulation Aspects. 
• Algorithms. 

4.1. Modelling of the Environment 

The concept demonstrator allows any image to be imported 
as the area of operation.  This allows for the flexible 
integration of Geographical Information Systems (GIS), 
satellite imagery or even Google Earth.  In the example in 
Figure 11 we imported an image from Google Earth 
depicting a coastal area around the Red Sea. The next step is 
to indicate a starting and a goal point, and to model different 
terrain features which may be encountered.   
 The types of structures we model are (see Figure 2): 

• Fields and other vegetation – these structures are 
passable both on foot and by vehicle.  

• Hilly areas – a large hill or mountain may not be 
passable for a vehicle, but may be on foot. 

• Built-up areas such as informal housing areas, 
residential areas and so on. 

                                                 
1 In Figures 1 to 5, “Global B&B” should read “A* extension”. 



 The important variables for structures are: 
• Movement cost for dismounted soldiers – the cost 

in terms of the speed a person on foot achieves 
when moving through this type of structure.  

• Movement cost for vehicles – the cost of a 
vehicle in terms of speed.  

• Shape-polygon – describes the shape of a 
structure. 

• Colour or texture – a colour is used to display the 
different types of structures.  For example, fields 
are light green, built-up areas are light grey whilst 
building complexes are dark-grey. 

A barrier is a kind of structure that is difficult to cross.  
Some barriers, suburban fences for example, are difficult to 
cross by vehicle, but easy to cross on foot. The aim of a 
barrier in the simulation is to show where it would be 
difficult to cross for a specific type of transport. Another 
example of a barrier line may be the contour line of a hill 
where the incline becomes so steep that a vehicle cannot 
maintain grip. 
 The important variables for barriers are: 

• Movement cost for dismounted soldiers – the 
time that it requires to cross the barrier on foot.  

• Movement cost for vehicles – the time it takes a 
vehicle to cross the barrier. 

• Shape-polygon – describes the shape of the 
barrier. 

Our constraint-based approach provides a great deal of 
flexibility in modelling structures and barriers. For example, 
the avoidance of a structure that cannot be crossed or a 

sniper’s shooting range can be enforced by a separate 
constraint for that particular obstacle/threat, while the 
crossing of a hilly area by a dismounted soldier can be 
modelled by an increased cost. 
Our model’s parametric variables are populated by subject 
matter and map experts. 

4.2. Agents 

This simulation models all active “elements” as agents. In 
that sense, this is an agent-based simulation. That is, the 
underlying mechanics are agent-based in that each agent has 
certain goals that could be modified in the course of the 
simulation – based on the environment and actions by other 
agents. Dynamic aspects have not been implemented yet, for 
example, in the current instantiation of the demonstrator the 
enemy agents are not movement active; they do not move. 
Neither has the ability to change costs been implemented 
yet. 
 The friendly (own) agent may be an individual, but 
more likely, this will be a group of individuals or may even 
be a large group of individuals. We use the term Friendly 
Combatant (FC) to refer to this group – this is more intuitive 
than to constantly refer to friendly forces or own agent or 
friendly agent. 
 Our demonstrator has the following characteristics:  
1. We model the movement of FC units from a certain 

point (the starting point), through a path that consists 
of a number of waypoints and ends at the goal 
(finishing point). 

Figure 1: Modelling the Area of Operation 

 



2. The starting conditions are that FC units are initially in 
vehicles. They may however immediately abandon the 
vehicles and continue the planned path on foot. 

3. The demonstrator is designed to investigate two 
questions: firstly, what path should FC units follow to 
the target, and secondly, at what point should the 
vehicle be abandoned (if at all). 

4. The terrain influences movement ability, slowing 
down movement from the optimal speed. 

5. The terrain may consist of different constructions, such 
as fields / woods / grasslands and also buildings / 
informal housing areas / building complexes, as well 
as barriers that may be passable by foot but not by 
vehicle. Barriers also take additional time to cross. 

6. We want to find the fastest path, that is, the path that, 
given the terrain and type of transport will get FC units 
to the target in the shortest time. 

7. Constraints: As described earlier a number of 
constraints must be implemented and this bounds the 
solution space that will be investigated. 

8. For the purpose of this simulation, i.e. path planning, 
own agents do not carry guns and will not shoot – the 
aim being to find a path that will not put them in 
danger. However, it is quite trivial to change the 
behaviour of own forces agents to also include 
shooting ranges. 

 Each agent has a base position: the position where the 
agent is located at the beginning of the simulation. In 
addition, an agent also has a current position which is the 
location that it occurs at a certain instance in time within the 
simulation. Each agent also has a characteristic speed on 

foot. This speed is based - for example - on the type of 
equipment that the agent has to carry. 
 The prime property of an agent is that it has goals, and 
plans to achieve those goals. An (own) agent’s basic goal is 
defined as a position that it wants to reach. For an enemy 
agent it may be a better sniping location, or to intercept FC 
units. In order to achieve a goal, agents will construct plans. 
A plan consists of a number of waypoints. The agent will 
move to each of the waypoints in succession.  
 For FC units there are also the matter of when to 
abandon the vehicle. Therefore, a part of a FC unit’s plan is 
at what point along the planned path the vehicle will be 
abandoned. 
 These variables reflect the properties of the agent: 

• Base Position – The initial position of the agent at 
the beginning of the simulation. 

• Current Position – the position of the agent at a 
specific time within the simulation. 

• Speed on foot. 
• Colour – a representation colour for the agent. In 

later versions this may be replaced by an image. 
 The following variable is used to model the agent’s 
goals: Position of goal – this is the final goal for this agent. 
 The following variables are used to model the agent’s 
planning to achieve the goal: 

• Planned path – the planned path consists of a 
number of positions. The agent will move to each 
of these positions sequentially. 

• Where to abandon the vehicle – the agent’s 
current plan is to abandon the vehicle he starts his 
journey with at some point along the planned 

Figure 2:  Modelling Structures, Barriers & Enemy Forces 



path. It may be that the agent abandons the 
vehicle at the starting position, implying that the 
vehicle is never used. 

 Currently, we implement only one type of enemy agent, 
the sniper. A sniper will be stationary in a specific location 
for a very long time, waiting, observing and striking at his 
specific target from his hidden position. A sniper has a 
specific shooting range. We model a sniper with a sniping 
range and a fall-off range of 1.5 times the sniper range. 
Within the fall-off range the sniper may still take a shot, but 
the accuracy is not guaranteed.  
 Visually sniper locations are indicated by red dots as 
shown in Figure 2 and Figure 3. The sniping range is shown 
as a light red circle and the fall-off range by more 
transparent circles as seen in Figure 2. 
    
4.3. Simulation Aspects 
 There are two methods of handling such simulations; 
the first is a time-step based simulation where the 
simulation is conducted in time-increments. The second 
method is an event-based simulation where time-stepping is 
done forward to the next event. This requires an accurate 
prediction of the next event, which may not be easy.   
 In order to keep the model simple (this is the first 
version) the approach followed here is a time-step based 
simulation. The chosen time-step is one second, although 
this is completely arbitrary – one second will move the 
agents about one meter if moving on foot. 
 

4.3.1. Agent Movements 
 An agent has a planned path and the agent will move 
along the planned path. FC units are shot at if within the gun 
range of a sniper.  The simulation tests if FC units are 
moving within any of the structures. For this purpose, we 

use an efficient point within-polygon algorithm. Finally we 
also use an algorithm for testing line-segment crossing. 
 

4.3.2. User Interface – Visualisation 
 The most important parts of the visual interface that 
have been implemented for this version of the demonstrator 
have already been illustrated – Figures 1 to 5. Figure 2 
demonstrates some of the passive elements: barriers, 
structures and enemy forces with effective range circles. 
Figure 3 shows some of the active elements pertaining to the 
different solutions: the current best path, the current path 
under investigation, and a mesh of the search-space covered. 
The mesh of the covered search space is solver-dependant. 
The branch and bound algorithm, for example, uses a grid 
that can be displayed to show the searched area. 
 Both the best path and the current path under 
investigation show the path travelled by vehicle as solid 
lines and the part travelled by foot as dotted lines. 
 

4.3.3. Memory Management and Prevention of 
Race-Conditions 

 The implementation of simultaneous solvers 
(algorithms) solving the same problem, using the underlying 
simulation architecture in an asynchronous fashion will lead 
to race conditions. There will also be race conditions 
between the user interface aspects and the underlying solver 
architectures. For the current demonstrator, three situations 
where race-conditions may occur are:  

• The simulation itself. Each solver will invoke the 
simulation for each of the potential solutions. 
Therefore a direct race-condition exists on the 
simulation and care should be taken to prevent 
this. Three possibilities exist: use locking 
mechanisms to allow only a single solver access 

Figure 3: Modelling Active Elements 



to the simulation at a time, duplicate the 
simulation environment for each solver or, the 
third option, keep all changeable variables in the 
thread-stack and within the proposed solution.   

• The graphical user interface. The GUI has to 
draw the current best solution, but during the time 
that it takes to draw it, it may change. In addition, 
if a copy is made, the copy has to be a deep-copy, 
that is, all underlying structures must also be 
copied. This simulation opts to use a lock on the 
current best-solution variable. 

• The best solution that is shared between the 
different solvers. This solution must be updated 
within each solver and a race condition may exist 
if a solver makes a new best estimate 
simultaneous with another solver. We use locks 
on the update of the best solution. 

 
4.4. Path finding Algorithms 
 The demonstrator also includes an architecture that 
allows for multiple path finding algorithms to be used 
simultaneously. The first algorithm is a constraint-based 
branch and bound algorithm (see Figure 4) and the second 
one is a constrained-based A* search algorithm (see Figure 
5). The third algorithm, genetic hill-climbing, is not optimal 
but produces feasible solutions very quickly. It uses random 
changes in an attempt to improve on an existing solution, 
and can be used as an initial upper bound for the other two 
algorithms which allows for improved pruning of the search 
space when these algorithms are applied. 
 The architecture that was chosen for this to work is to 
create a solver abstract class that implements a number of 
standard solver functions. Each solver is then a derived 
instance of this class. Each solver will run its own thread. 

Care should be taken to synchronise the threads if multiple 
solvers can update the best solution found.  
 The main solver thread is quite simple: instantiate the 
solvers, start a thread for each solver, periodically check if 
any of the solvers have found a new best solution. 
 In the user interface as shown in Figure 3, the current 
best found solution to the MUPFP is displayed as a “green” 
path. The three different solvers are shown and the black 
dots show the search space that has been searched by the 
different algorithms. 
 The simulation produces optimal solutions or near-
optimal solutions reasonable quickly.   
 
5. CONCLUSIONS 
 We describe the implementation of an initial phase of a 
simulation concept demonstrator for military path finding. 
This concept demonstrator can be used to determine an 
optimal path for soldiers to follow during a military 
operation, as well as the best mode of transport. The path is 
optimal in terms of user-specified constraints relating to the 
operational terrain and the safety of the troops. The user can 
also get a near-optimal solution if the available time is 
limited, by halting the solvers prematurely. A tactical 
mission planner can use this demonstrator to investigate 
different scenarios. 
 The simulation uses three different path finding 
algorithms: a constraint-based branch and bound algorithm, 
a constraint-based extension of an A* search algorithm and 
a hill-climbing algorithm. 
 The main advantage of our constraint-based approach is 
the ease of modelling new environments or additional 
constraints. 
 We plan to extend this simulation to cater for dynamic 
changes in the environment. 
 

Figure 4: The Branch and Bound Algorithm 
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