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Abstract

Module extraction plays an important role in the
reuse of ontologies as well as in the simplification and
optimization of some reasoning tasks such as finding
justifications for entailments. In this paper we fo-
cus on the problem of extracting small modules for
ELT entailment based on rcachability. We extend
the current notion of (forward) rcachability to ob-
tain a bi-directional version, and show that the bi-
directional reachability algorithm allows us to trans-
form an ££% ontology into a reachability preserving
context free grammar (CFG). The well known Ear-
ley algorithm for parsing strings, given some CFG,
is then applied to the problem of extracting mini-
mal reachability-bascd axioms scts for subsumption
entailments. We show that each reachability-based
axiom sct produced by the Earley algorithm corre-
sponds to a possible Minimal Axiom Set (MinA) that
preserves the given entailment. This approach has
two advantages - it has the potential to reduce the
number of subsumption tests performed during MinA
extraction, as well to minimizec the number of axioms
for cach such test.

1 Introduction

Reasoning tasks such as finding all justifications for
an entailment are inherently hard, having at least an
exponential worst casc complexity. Even for descrip-

tion logics (DLs) such as ££™ (Suntisrivaraporn 2009)
for which many reasoning tasks can be performed in
polynomial time, the exponential nature of finding all
justifications for an entailment is inescapable. Mod-
ule extraction is one of the mecthods that aims to op-
timize the performance of this process by reducing
the size of the ontology to a smaller subset of axioms
that contains only the relevant axioms required for
the entailment, thereby reducing the search space.

Extracting a minimal module is closely related to
computing a deductive conservative extension of an
ontology, which has been shown by Grau et al. (2007,
2008) to be intractable. They mtroduce syntactic
locality-based modules, an approximation of minimal
modules, that are more tractable and can be com-
puted in polynomial time, whilst preserving all en-
tailments.

Suntisrivaraporn (2009) introduced the notion of
reachability-based modules for the DL ££%. Though
the reachability-based module extraction algorithm
differs from the syntactic locality-based algorithm, he
proves that the modules extracted correspond to min-
imal syntactic locality-based modules.

The main criticism against rcachability-based
modules, as raised by Jianfeng Du & Ji (2009), is
that, given an entailment O = A C B, these meth-
ods extract a module for A and all concepts reachable
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from it without considering the super-concept B, re-
sulting in large modules that in some cases do not
reduce the size of the ontology at all. They propose a
goal-directed algorithm for extracting just-preserving
modules. The algorithm proceeds in two phases; the
first, the off-line phase, transforms the ontology into
a propositional program which preserves all logical
relationships. The second phase, the on-line phase,
utilizes the idea of maximally connected components,
as used in SAT problem optimization, to extract a
justification-preserving module. Experimental results
show that modules obtained this way are smaller by
an order of magnitude than their locality-based mod-
ule counterparts.

Once a module has been extracted, various meth-
ods are used to find all justifications. A common ap-
proach is to systematically remove axioms that do
not play a role in the entailment. After cvery itera-
tion of the axiom removal procedure, a subsumption
test determines if the cntailment still holds in the re-
sulting axiom set. This process continues until no
more axioms can be removed. The resulting axiom
set then constitutes a MinA. Subsumption testing is
a computationally expensive procedure, even for £E£7.
Minimizing the number of subsumption tests during
MinA extraction is therefore a primary concern when
developing MinA extraction algorithms.

Our approach extends the reachability heuris-
tic as introduced by Suntisrivaraporn (2009) to in-
clude backward reachability, thereby obtaining a
bi-directional version of reachability. The heuris-
tic allows us to make use of the well known Ear-
ley algorithm (Earley 1970) for parsing context free
grammars (Jurafsky & Martin 2009) to compute all
reachability-based paths between the sub- and super-
concepts for an entailment. Each such path consti-
tutes a minimal set of axioms such that reachabil-
ity is preserved. Every reachability preserving axiom
set does not guarantee cntailment in itself, and there-
fore does not necessarily constitute a MinA. We focus
on extracting all such minimal reachability preserving
axiom sects. A standard subsumption test can then be
cmployed in order to determine if the set constitutes a
valid MinA. In this way we hope to reduce the number
of subsumption tests performed during MinA extrac-
tion, as well as to minimize the number of axioms for
each such test.

The Earley algorithm has been studicd extensively
in the literature and highly optimized software and
hardware implementations exists (Chiang & Fu 1984,
Pavlatos ct al. 2003). At present we restrict our fo-
cus to ELT which, because of its particular structure,
allows us to transform any axiom into reachability
preserving CFG production rules. The original Far-
ley algorithm can then be used to extract all parse
trees.

The rest of the paper is structured as follows. Sec-
tion 2 contains the relevant background information



Name Syntax Semantics

top T AT

bottom il 0

conjunction cnbD CcTnDT

cxistential restriction Ir.C {zeAT[eAT: (m,y) crlAT €T
general concept inclusion (GCI) | CC D clc DT

role inclusion (RI) rio...orgEr|rfo. iorl Tyl

transitivity transitive(r) Vd,e,f € Al : (d,e), (e, f)erl = (d, f) er
reflexivity rellexive(r) Vd e AT (d,d) C ¢!

range restriction range(r)C C {ecAT[3d:(d,e)erT} CCT

domain restriction domain(r)C € | {d€ AT 3e: (d,e) er’} C (T

role hierarchy (RH) rCs rT Cs?

Table 1: ££% syntax and semantics

on description logics, context free grammars, the Ear-
ley algorithm, and existing versions of reachability. In
Section 3 we introduce a notion of backward (top-
down) reachability. We show that a bi-dircctional
reachability-based approach may be used to extract
small modules that considers the sub-concept as well
as the super-concept in an entailment. We show
that modules obtained in this way may be smaller
than reachability-based modules that consider only
the sub-concept. In Scction 4 we provide an algorithm

for transforming any ££ ontology into a rcachability
preserving CFG and show how the Earley algorithm
can be used to extract a small strong subsumption
module for a given entailment. Furthermore, in sec-
tion 5 we show that the Earley algorithm simultane-
ously computes all parse trees, where each parse tree
corresponds to a possible MinA. Section 6 is a discus-
sion on work in progress, where we discuss possible
changes to the standard Earley algorithm specifically
aimed at optimizing the MinA discovery process. Sec-
tion 7 briefly concludes and discusses future work.

2 Preliminaries

2.1 DL terminology

In the standard sct-theoretic semantics of concept de-
scriptions, concepts arc interpreted as subscts of a
domain of interest, and roles as binary rclations over
this domain. An interpretation I consists of a non-
empty set A’ (the domain of I') and a function -! (the
interpretation function of I') which maps each atomic

concept A to a subset A’ of A!, and cach atomic

role R to a subset R’ of A’ x Al. The interpre-
tation function is extended to arbitrary concept and
role descriptions, with the specifics depending on the
particular description logic under consideration. We
provide the details for ££7 in Definition 1 below.

A DL knowledge basc consists of a TBoz which
contains terminological azioms, and an ABoxz which
contains assertions, i.e. facts about specific named
objects and relationships between objects in the do-
main. For the purposes of this paper we concern our-
selves only with Tbox statements.

TBox statements are general concept inclusions of
the form C C D, where C and D are (possibly com-
plex) concept descriptions. C' C D is also called a sub-
sumption statement, read “C is subsumed by D”. An
interpretation I satisfies C C D, written I i+ C C D,
iff C* C DI, C € D is valid, written ECCD,ifit
is satisfied by all interpretations.

An interpretation I satisfies a DL knowledge base
K iff it satisfies every statement in K. A DL knowl-
edge base K entails a DL statement ¢, written as
K & ¢, iff every interpretation that satisfics K also
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satisfies ¢.

Roughly speaking, DLs are defined by the con-
structors they provide. There exists a correlation be-
tween the expressivity of the DL and the complexity

of rcasoning over it. We consider the DL ££F which
is defined as follows:

Definition 1 (££" syntax and semantics) The

syntaz and semantics of ELY constructors are defined
in Table 1.

We further require that an ££7 ontology conform
to the following syntactic restriction (Suntisrivara-
porn 2009): For an ontology O and role names 7,s,
we write O =7 C s if and only if » = s or O con-
tains role inclusions vy C 7g,...,rx_1 C 7 with r =
ry and s = 1. Also, we write O |= range(r) C C
if there is a role name s such that O =7 C's and
range(s) C C € O. The ££% syntactic restriction is
as follows: If rio...ory C s € @ with k > 1 and
O |= range(s) & C, then O |= range(ry) C C.

Intuitively, the restriction ensures that a role in-
clusion ry0---or, C s does not induce any new range
constraints on the role composition r1 o - -+ o 7. For-
mally, it ensures that if the role inclusion implies a
role relationship (d, e)€ s’ in the model, then the
range restrictions on s do not imposc new concept
memberships on e. Without this restriction reasoning
in ££% becomes intractable (Suntisrivaraporn 2009,
Baader et al. 2008).

Given an ontology O and an entailment @ Eo
with ¢ a statement of interest, a justification for o
is a set of axioms from O such that the entailment
is preserved. A minimal aziom set (MinA) is the
smallest set of axioms that preserves the entailment.

Definition 2 (Minimal Axiom set) Let O be an
ontology, and ¢ a subsumption statement such that
O E o. A subset § C O is a minimal aziom set
(MinA) for o w.r.t. O, also written as “S is o MinA
for O = ¢, if and only if

1. SkEo, and
2. forevery 8’ C S, S o

Definition 3 (Signature of O) Let CN(O) repre-
sent the set of all concept names in O, RN(O) the
set of all role names in O. We define the signature of
O, denoted as Sig(O), as the union of all concept and
role names occurring in O i.e., Sig(O) = CN(O) U
RN(O). Similarly for any EL* statement o, Sig(c)
is the union of all concept and role names occurring
ino.



2.2 The Earley algorithm for parsing CFG
languages

Context free grammars (CFGs) provide a well-known
method for modeling the structurc of English and
other natural languages. A grammar consists of a
set of productions or rules, each of which cxpresses
the ways the symbols (strings) in a language can be
grouped together, as well as a lexicon of words or
symbols.

Definition 4 (CFG production rules) Given

that X represents a single non-terminal, the symbol
“a” represents a single terminal and o and ¢ repre-
sent mized strings of terminals and non-terminals,
including the null string. CFG production rules have

the form:

X - ao
X — a

(1)
()

Parsing a CFG string results in a parse tree, assign-
ing syntactic structure to it. The Earley parsing al-
gorithm (Earley 1970) uses a dynamic programming
approach applying a single left-to-right, top-down,
depth-first parallel search strategy to compute a chart
that contains all possible parses for a given input. It
accomplishes this in polynomial worst case time (n?),
where n is the size of the input string.

Example 1 Consider the sample CFG for a sub-
set of English grammar below. The set of symbols
{that, book, flight} represent terminal symbols and
all other symbols represent non-terminals.

S —- VP

S —- NP VP
VP — VP NP
NP — Det Noun
VP — Verb

Det — that
Verb — book
Noun —  flight

During execution the Earley algorithm gencrates
a state entry for each production rule it operates on.
The purpose of the state is to record the progress
made during the parsing process.

Definition 5 (Parse states) Let X and Y repre-
sent single non-terminal symbols, let a represent q
single terminal symbol, and let ., § and o represent
mized strings of terminal and non-terminal symbols,
including the null string. Then for each token (word)
in the input string, the Earley algorithm creates a set
of states, called a chart. A chart at position k of the
input is represented by Ci. Each state consists of a
tuple (X — e 3, i) where

1. X — of is the current production rule,

2. e indicates the dot rule which represents the cur-
rent parsing position in the state, with oo e 3 in-
dicating that a has previously been parsed and 3
1s expected next, and

3. © indicates the starting index of the substring
where parsing of this production began.

The parser consists of three sub-parts, the predic-
tor, scanner and completer. For cach state in chart
Ci, the tuple (X — a e 3, j) is evaluated and the
appropriate sub-part exccuted:
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1. Predictor: If statc = (X — ae Y}, j) , then
for every production ¥ — o, if (Y — e0) ¢ C;
then C; :=C; + (Y — o0, i),

2. Scanner: If state = (X — aeag, j), with o the
next symbol in the input stream, and if (X —
qz)ao,@, J) ¢ Cip1thenCiyq :=Ciyy + (X — aaef,
7)s

3. Completer: If statc
every (Y — ae X33,
aX e 3, k).

The algorithm executes all states itcratively in a top-
down manner until no new states are available for
processing, and no state may appear more than once
in a given chart (Jurafsky & Martin 2009).

X — e
Cj,C,':

7), then for
C+ (Y —

= (
k) €

Il

Example 2 Table 2 shows the output of the Earley
algorithm given the input string ‘book that flight’ and
the CFG in Example 1. The state

20. § — VPe

in chart 3 represents a successful parse of the string.

Table 2: Parse for ‘book that flight’

Chart 0: e book that flight

1. S —eNPVP j =0 : Inital State

2.S - e VP j =0 : Inital State

3. NP — o Det Noun  j = 0 : Predictor 1

4. VP - ¢« VP NP j =0 Predictor 2

5. VP — e Verb j = 0: Predictor 2

6. Det — e that j =0 Predictor 3

7. Verb — e book 7 =0 : Predictor 5
Chart 1: book e that flight

8. Verb — book e J =0: Scanner 7

9. VP — Verb o j =0: Completer 5, 8
10. VP — VP ¢ NP j =0: Completer 4, 8
11. NP — e Det Noun j = 1: Predictor 10

12. Det — e that 7 =1 Predictor 11
Chart 2: book that e flight

13. Det — that e j=1: Scanner 12

14. NP — Det @ Noun j = 1: Completer 11, 13
15. Noun — e flight J = 2 : Predictor 14
Chart 3: book that Hight e

16. Noun — flight e J =2 : Scanner 15

17. NP — Det Noun e 7 =1 : Completer 14, 16
18. VP — VP NP » j = 0: Completer 10, 17
19. VP — VP ¢« NP j =0: Completer 4, 18
20. S > VP e J = 0: Completer 2, 18

2.3 Reachability-based module extraction

Given an ontology O and an entailment O |= ¢ with
o a statement of interest, extracting a module aims to
obtain a small subset O of O, such that entailment
of o is preserved, where Sig(o) is defined as in Defi-
nition 3. For the purposes of this paper ¢ is always a
subsumption statemecnt.

Definition 6 (Module for ££%) Let © be an £LT
ontology, and o a statement formulated in ELT.
Then, O" € O is a module for ¢ in O(a o-module
in O) whenever: O k= o if and only if O' = 0. We
say that O’ is a module for a signature S in O (an
S-module in O) if, for every ELT statement o with
Sig(o) € 8, O is a o-module in O.

Definition 7 (Reachability-based modules)

Let O be an EL ontology and S C Sig(0) a signa-
ture. The set of S-reachable names in O 'is defined
inductively as:
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X — ~e, j), then for
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k))ECj,Ci::Ci+(Y—>
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Chart 0: e book that flight

1.S — ¢ NP VP 7 =0 : Inital State
2.S—>eVP j = 0 : Inital State

3. NP — e Det Noun  j = 0 : Predictor 1

4. VP - ¢« VP NP 7 =10 Predictor 2

5. VP — e Verb j =0 : Predictor 2

6. Det — e that 7 =0 : Predictor 3

7. Verb — e book j =0 Predictor 5
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8. Verb — book e 7 =0: Scanner 7

9. VP — Verb e 7 =10: Completer 5, 8
10. VP - VP ¢ NP j = 0: Completer 4, 8
11. NP — e Det Noun 3 =1 : Predictor 10

12. Det — e that 7 =1: Predictor 11
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14. NP - Det @ Noun j =1: Completer 11, 13
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16. Noun — flight e j =2 Scanner 15

17. NP — Det Noun o j =1 : Completer 14, 16
18. VP — VP NP j =0: Completer 10, 17
19. VP — VP ¢« NP j = 0: Completer 4, 18
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2.3 Reachability-based module extraction

Given an ontology O and an entailment O |= ¢ with
o a statement of interest, extracting a module aims to
obtain a small subsct O of O, such that entailment
of o is preserved, where Sig(c) is defined as in Defi-
nition 3. For the purposes of this paper ¢ is always a
subsumption statcment.

Definition 6 (Module for ££%) Let © be an ££T
ontology, and ¢ a statement formulated in ELT.
Then, O' € O is @ module for ¢ in Ofa o-module
in O) whenever: O |= o if and only if O' = 0. We
say that O' is a module for a signature S in O (an
S-module in O) if, for every ELT statement ¢ with
Sig(c) C 8, O is a o-module in O.

Definition 7 (Reachability-based modules)

Let © be an ELF ontology and § C Sig(©) a signa-
ture. The set of S-reachable names in O is defined
inductively as:



e x is S-reachable in O, for every x € §;

e for all inclusion azioms oy C ag, if © is S-
reachable in O for every x € Sig(ayr), then y
is S-reachable in O for every y € Siglap).

We call an aziom ai C ap S-reachable in O if ev-
ery element of Sig(ay) is S-reachable in O. The
reachability-based module for S in O, denoted by
Ogmh, consists of all S-reachable axioms from O,

When § is the single concept A, we write A-
reachable and O7¢*°". An interesting result of reach-
ability is that it can be used to test negative sub-
sumption. That is, if B is not A-reachable in @, then
O £ A C B, unless A is unsatisfiable w.r.t O (Sun-
tisrivaraporn 2009).

Definition 8 (Subsumption module) Let O be
an ontology, and A a concept name occurring in O.
Then, O C O is a subsumption module for A in O
whenever: O = A C B if and only if ' = AC B
holds for every concept name B occurring in O.

A subsumption module ' for A in O is called
strong if the following holds for every concept name
B occurring in O: if O = A C B, then every Mind
for O l= AC B is a subset of @'.

Theorem 1 (Suntisrivaraporn 2009). The module
O:f“h is a strong subsumption module for A in O.

We require that an ££7 ontology O be in normal
form. We use the same form as Brandt (2004) and
Suntisrivaraporn (2009). Any ££% ontology O can
be converted to an ontology @' in normal form in
linear time, with at most a lincar increase in the size
of the ontology.

Let CN(O) represent the set of all concept names
in O, RN(O) the set of all role names in ©,
CN(O)T = CN(O) U {T} and CN(O)* = CN(O) U
{L1}.

Definition 9 (Normal Form) An £L% ontology O
is in normal form if the following conditions are sat-

isfied:

1. all concept inclusions in O have one of the fol-
lowing forms:

AN...NA4, C B,
Al E 31‘.142,
irA4, C B

where A; € CNV(O) and B € CNt(0);

2. all role inclusions in O have one of the following
forms:
e &
roLos,
ros Lt
where r,5,t € RN(O) and ¢ is the identity ele-
ment;

. there are no reflexivity statements, transitivity
statements or domain restrictions, and all range
restrictions are of the form range(r) T A with
A a concept name.

3 Bi-directional reachability-based module

Given an ££% ontology © and cntailment © EAC
B, as well as the module oreach  we have that O =

AL B if and only if O7¢*" |= A C B, where A and
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B are concepts names. O;f‘”h preserves entailments
for all concept names « such that O = A C «.

A criticism raised against reachability-based mod-
ules, in terms of finding justifications, is that they
contain many irrelevant axioms, and in some cases do
not reduce the size of the ontology at all (Jianfeng Du
& Ji 2009). This stems from the fact that 07" con-
siders only the sub-concept 4 in O = A C B; the
super-concept B is never used to elimate unwanted
axioms.

Example 3 Given the small ontology @ below, as
well as O = A T B, O7%" will consist of azioms
1, 2 and 4. Aziom { is irrelevant in terms of finding
Justifications for O |= A T B, yet it is included in
Ogeach.

A C 3D (1)
IrD C B (2
E C B (3)
ACF (4)

Given the entailment O = A C B, reachability can
be applied in two directions: The standard bottom-
up approach, which extracts Oif‘wh, and a top-down
approach, which cxtracts O%’“h, and is defined as
follows:

Definition 10 (Top-down reachability-based
module) Let O be an ELY ontology and § C Sig(®)
a signature. The set of T-reachable names in @ is
defined inductively as:

5.

® x is ‘S-reachable in O, for every x € S;

o for all inclusion azioms oy T ap, if ¢ is ‘S-
reachable in O for some x € Siglag), or if ag =
L, then y is “S-reachable in O for every y €
Siglar ).

We call an aziom ap C ar S-reachable in O if some
element of Sig(ag ) is ‘S-reachable or if ag = 1. The
top-down reachability-based module for S in ©@, de-
noted by OrgaCh, consists of all S-reachable azioms
Sfrom O.

Besides the direction of application, there is a
fundamental difference between the two approaches.
When extracting O;f“h, the axiom a; C ap be-
comes A-reachable only when all z; € Sig(ar) are
A-reachable. When extracting Org“h, the axiom
ar, © ar is ‘B-reachable whencver any z; € Sig(ag)
is “B-reachable.

By definition of reachability, axioms of the form
T C agr and € T r are A-reachable, since Sig(T)
= Sig(e) = 0, and form part of any module Oreech
extracted (Suntisrivaraporn 2009).

Further by definition of top-down reachability, ax-
ioms of the form a; £ L arc ‘B-reachable. Therefore
all axioms o, & L will also always be a part of any
module OTgaCh being extracted.

From Theorem 1 we have that Off‘“h preserves all
entailments in terms of the sub-concept A. We show
in Theorem 2 that a similar result holds for (’)Cg“h
with respect to the super-concept B.

Definition 11 (Top-down subsumption module)
Let O be an ontology, and B a concept name occur-
ring in O. Then, O' C O is a top-down subsumption
module for B in O whenever: O = A C B if and
only if O' | A T B holds for every concept name A
occurring in O.



A top-down subsumption module O’ for B in O is
called strong if the following holds for every concept
name A occurring in O: if O = A T B, then every
MinA for O = AC B is a subset of O'.

We show that top-down reachability modules
preserves all subsumption relationships i.t.o super-
concepts.

Lemma 1 Let O be an LT ontology and S C Sig(O)
a signature. Then, O = C C D if and only if
(’)%e“h = C C D for arbitrary EL* concept descrip-
tions C and D such that Sig(D) C S.

Proof: We have to prove two parts. First: If
Org‘“h = C C D then O = C C D. This follows
directly from the fact that O’g‘“h C O and that ££7

is monotonic.
Second, we show that, if © = C L D then

Org‘wh F C C D: Assume the contrary, that is,
assume O = C C D but that O’g‘”h = C C D.
Then there must exist an interpretation I and an
individual w € AT such that I is a model of Org‘wh
and w € CT\ D!. Modify I to I’ by setting z = Al
for all concept names z € Sig(O) \ (SU Sig(O7gech)),
and r’’ := Al x A7 for all roles names r € Sig(®)
\ (SU Sig(O07¢*™)). I is a model of 07" since it
does not change the interpretation of any symbol in
its signature. For each o = (ar C ag) € O\ O"g*h,

4 4 . .
we have a] C ok since a is not ‘S-reachable and

thus af; = A’. Therefore I’ is a model for O. But
I and I’ correspond on all symbols y € Sig(D) C §

and C! C CT', thereforc we have that w € C7'\ DT,
contradicting the assumption.

In order to show that 072" contains all MinAs
for the entailment O = A C B, we show that Omgech
is a strong top-down subsumption module:

Theorem 2 Let O be an ELT ontology and B a con-
cept name occurring in O. Then (91;“’1 s a strong
top-down subsumption module for B in O.

Proof: That (’)T.g‘“:h is a top-down subsumption mod-
ule follows directly from Lemma 1 above. To show
that it is strong, assume that O = A C B, but there
is a MinA S for O = A C B that is not contained in
Orgach  Thus, there must be an axiom a € S\ Qreach,
Define §; := $nN Or.g‘”h. S is a strict subsct of S
since a ¢ §1. We claim that S; = A C B, which con-
tradicts the fact that S is a MinA for O A C B.
We use proof by contradiction to show this. As-
sume that S; ¥ A C B i.e., there is a model I; of
Sy such that A" ¢ BT, We modify I; to I by set-
ting y! := Al for all concept names y that arc not
‘B-reachable, and r7 := At x A" for all roles names
7 that are not “B-reachable. We have B! = B! since
B is B-reachable, and A? = A if A is “B-rcachable,
or AT = A" otherwise. Thercfore A’ Z Bl It re-
mains to be shown that I is indeed a model of S, and
therelore satisfies all axioms 8 = (8 C Bg) in S,
including A © B. There are two possibilities:

e € 8. Since §; C 0" all symbols in
Sig(fL) and one or more symbols in Sig(8g) are
‘B-reachable. Consequently, I; and I coincide on
the names occurring in 81, and since I; is a model

of S1, we have that (8;)7 = (8.) and (8g)" C
(Br)!. Therefore (8.)1 C (8r)!.
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e B & S1. Since S = 8§\ 0" we have that 8
is not ‘B-reachable. Thus no z €Sig(8g) is B-
reachable. By the definition of I, (8z)! = Al
Hence (ﬁL)I g(ﬂR)I

Therefore I is a model for S.

Example 4 Ezxtracting Ofg‘“:h from the sample on-
tology in Ezample 3, we see that it will consist of ax-
toms 1, 2 and 3. This correctly differs from O/’Qf“h n
that aziom 4 is not ‘B-reachable. Similar to Q7"
though, it contains an axiom that is irrelevant in
terms of finding justifications for O = A T B, az-
iom 3 in this case.

It is clear that when extracting modules for finding
justifications, (’)’.g’“h opens itself to the same criticism
as Q7" Given the entailment O = A © B we see
that where (’)ff“h considers only the sub-concept A4,
O’.g‘wh considers only the super-concept B.

Both reachability module extraction methods pre-
serve all entailments; Off“h entailments in terms of
the sub-concept A and Or.g‘wh cntailments in terms of
the super-concept B. Given the entailment O |= A C
B, we may now extract the module (Oge“Ch)?%“h, or

similarly (O7g*eh)meach " such that it considers both
the sub- and super concepts in the entailment. The
resulting module is a bi-directional reachability-based
module denoted by O7¢%k.

Definition 12 (Bi-directional reachability-
based module) A bi-directional reachability-based
module, denoted O;ﬁcg, 18 defined as the set of
all axioms ap € ap € O such that for every z; €
Siglar,), x; is A-reachable, and for some y; €
Sig(ar), y; is ‘B-reachable.

Example 5 Eztracting Ogegcg from the sample on-
tology in Example 3, we see that it will consist of az-
toms 1 and 2. The previous irrelevant azioms 3 and
4 are no longer present.

From Theorem 1 and Theorem 2 we have that bi-
derectional reachabiliy modules preserves all MinAs
for the entailment O = A C B.

Corollary 1 O78% preserves all MinAs for © =
AC B.

4 Reachability preserving CFG

We show how an ££7 ontology @ can be transformed
into a reachability preserving CFG. In the discussion
that follows we assume that we have an ££% ontology
O in normal form, and an entailment O = A C B,
wherc A and B are single concept names.

From the definition of O7¢%% above , we have that
cevery axiom ay C ap € O7¢%°h has the following two
properties:

1. every z; € Sig(ay) is A-reachable, and
2. some y; € Sig(ag) is “B-reachable.

Every CFG production rule we introduce must
preserve bi-directional reachability. By Property 1
above, A-reachability of the axiom «a C ap is solely
dependent on symbols in oy. Similarly, by Property
2, ‘B-reachability is solely dependent on symbols in
OR.
From the previous section we know that there ex-
ists special cases in which A- and ‘B-reachability hold.
For A-reachability these axioms have one of the forms:



e T LC ap, or

o ¢ C ap

For ‘B-reachability these axioms have the form:
e oy C |

In the steps that follow, all production rules we
introduce have the form y; — o¢. Each rule is read
as: any ‘B-reachable symbol y; is A-reachable only
if all symbols #; € o arc A-reachable. This clearly
conforms to the definition of bi-directional reachabil-
ity. We further note that the symbols on the rhs of
CFG production rules have a fixed order, whereas the

conjunction of ££F concepts and roles are symmetric,
ie. AN B = BN A, and thus order is unimportant.
We thereforce place no restrictions on the order of the
symbols on the rhs of production rules and thus con-
sider production rules differing only in the order of
symbols on the rhs as identical.

The conversion process below procecds in a step
by step manner until all axioms in O have been pro-
cessed.

Step 1: All axioms a; T «p in @ such that
Sig(ar) = 0 arc ‘B-reachable by definition. By
Property 2 above, in order to preserve both B-
reachability as well as bi-directional reachability,
‘B-reachability depends solely on ag. For each
such axiom the implicit *B-reachability of ap is
made explicit by introducing the following pro-
duction rule:

B — Sig(ayr)

Step 2: All axioms ar C ap in O such that Sig(ayr)
= 0 are (implicitly) A-reachable. By property 1
above, in order to preserve both A-reachability as
well as bi-directional rcachability, A-reachability
depends solely on ay. For each such axiom the
implicit A-reachability of oy is made cxplicit by
introducing the production rule:

vi— A
for cach y; € Sig(ag).

Step 3: For each axiom a; C op in © such that
[Sig{ar)l > 1 and |Sig(ar)| > 1, introduce the
production rule:

¥ — Siglay)

for each y; € Sig(ag). Axioms of this kind do
not have any implicit reachability concerns like
those in Steps 1 and 2 above, and bi-dircetional
reachability is preserved trivially.

We note that it follows from the normal form in Defi-
nition 9 that, for every rule introduced in Steps 2 and
3 above where |Sig(ag)| = 2, ag has the form 3rC.
By property 2 above, ‘B-rcachability is preserved if
either one of r or C is ‘B-reachable. Bi-directional
reachability is therefore preserved by the two rules:

r — Sig(ar)

C — Siglar)

in Step 3 above, and similarly for Step 2. We therefore

define the reachability preserving CFG for an ££7F
ontology O as:

Definition 13 (Reachability preserving CFG)
Let O be an ELY ontology in normal form, and
O = A C B an entailment, then the reachability
preserving CFG, denoted CFGo, is the minimal set
of CFG production rules such that for each aziom
o Cag e O:
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o if Siglar) = 0, the rule B — Siglar) € CFGo;

o if Siglar) = 0 the rule x; — A € CFGo for each
z; € Siglar);

o for all other awioms the rule T; — Siglay) €
CFGo for each z; € Sigar);

where the symbol A represents the only terminal sym-
bol and the set Sig{O)\A represent the set of non-
terminals.

Ezample 6 All production rules for CFGo may be
obtained from the ontology in Example 3 above as fol-
lows:

A (Step 8 applied to aziom 1)
A (Step 8 applied to aziom 1)
r D (Step 3 applied to aziom 2)
E
A

o

(Step 8 applied to aziom 3)
(Step 3 applied to aziom 4)

Given an £L' ontology O, with @' being O in
normal form, and n the number of axioms in @,
we sce that there can be at most 2 x n production
rules in CFGp:. This follows directly from the def-
inition of CFGgyr, and the fact that therc is a one-
to-one correspondence between all CFG production
rules introduced and axioms in ¢, cxcept for axioms
ar £ ag € O where ag = 3r.C; for these axioms
two production rules are introduced.

5 Earley as a MinA extraction algorithm

Given an L% ontology O, an entailment O EACB
and the resulting CFG CFGp, the Earley algorithm
may be applied to extract all possible parsc trees.

Before the algorithm is executed we introduce the
start state S — I, where S ¢ Sig(O). The algorithm
now proceeds in a top-down manner, starting with
this state, and then proceeds to find all production
rules oy — op such that o is “B-rcachable and all
x; € op are A-reachable.

From the definition of CFGe» we have that the
symbol A is the only terminal symbol and all other
symbols are considered to be non-terminals. The
standard algorithm requires an input string to parse.
While in terms of reachability therc is no explicit in-
put string, it is implicit from the definition of CFGp
that the input string consists of a finite string of As.

The standard Earley algorithm may now be ap-
plied in order to extract all possible reachability paths
between the concepts A and B. However, since the
Earley algorithm is not explicitly bound by an input
string, the situation arises that it may never termi-
nate. The algorithm inherently handles cycles, but
the absence of an explicit input-sentence may lead to
non-termination. This occurs when a cycle is right-
recursive, where the recursive part is not A-reachable.
For example let the rules:

B—-CD
C—- A
D— B

represent such a cycle. Then D can never be A-
rcachable, however since C' is A-reachable the Earley
algorithm will go into an infinite loop.

There are a few ways to remedy this. The first is
to introduce a depth bound n, where n is the sum to-
tal of production rulesl symbols appearing on the rhs
of production rules. The choice of n stems from the

fact that the Earley algorithm exhaustively searches



for parse troes, each node represented by some pro-
duction rule. In chart &, the Early algorithm searches
trees with the length of the longest branch in the tree
equal to k+1. This branch then represents the longest
chain of bi-directional reachability preserving produc-
tion rules, with each rule appearing at most j times,
where j is the sum total of times the lhs symbols of
the production rule appears on the rhs of other pro-
duction rules. Thus the longest branch of any parsc
tree cannot exceed n. The standard Earley algorithm
will in this case run in O(n3) worst case time.

A different approach is to first extract O7¢*°* and
running the Earley algorithm on it. This guaran-
tees that all production rules arc A-reachable and the
above cycle can never occur, this however does not
gurantee that no other bad cycles exists. A third ap-
proach involves changing the algorithm itself similar
to the method used in Scction 6.

Both O7¢%" and Ofg‘"h can be extracted in linear

time, and hence so can Of‘fﬂfg. The standard Earley
algorithm is thereforc non-optimal by two orders of
magnitude in terms of module extraction. The benefit
gained from the Earley algorithm however is that all
parse trees are computed simultaneously.

Each parse trec computed by the Earley algo-
rithm corresponds to a sct of production rules, start-
ing with the state S — B, such that for each rule
gr — oR, we have that oy, is ‘B-reachable and op is
A-reachable. Each branch of a parse tree corresponds
to a minimal set of productions rules such that B
is A-reachable and A is “B-reachable, rcmoving any
rule from this set would cause reachability to be lost
for that branch, and hence the whole tree would not
preserve bi-directional reahcability. Each parse trec
therefore corresponds to a possible MinA, dependent
only upon a positive subsumption test.

It must be noted that in the worst case, there is an
exponential number of parse trees. The Earley algo-
rithm computes all parse trees in parallel in polyno-
mial time. However, extracting an exponential num-
ber of parse trees will run in exponential time.

6 Work in progress

In this section we outline some modifications to the
Earley algortihm to improve its efficiency in terms of
MinA extraction.

During its search for parse trces, the predictor
procedure expands all production rules for a non-
terminal symbol it encounters. Terminal symbols are
not expanded and are handled by the scanncr proce-
dure. We note that, in our case, when a concept C be-
comes A-reachable, future expansions of production
rules for C are unneccesary. When a specific reach-
ability path between the concept A and C has been
found, we never need to traverse that path again, and
the symbol C effectively becomes a terminal symbol.

The algorithm may therefore be improved by in-
troducing a dynamic terminal set. That is, initially
only the symbol A is a terminal symbol. When any
symbol becomes A-reachable we add it to the sct of
terminals and remove it from the set of non-terminals.

The completer procedure forms the core of mark-
ing parse trees. It keeps track of the production rules
responsible for completions; for every symbol in a pro-
duction rule, it maintains a list of pointers to other
states responsible for completing it. Having a dy-
namic terminal set complicates this bookkeeping pro-
cess and requires changes to the data-structures used,
as well as the completer and predictor procedures.

1. Data structures: We introduce an array such
that, for each concept/symbol that becomes A-
reachable, we maintain a set of pointers to states,
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responsible for completing the symbol. Each
pointer records the state in which the symbol be-
comes A-reachable, i.e. whenever the completer
is run, a pointer to this state entry is recorded in
the array of pointers for the symbol being com-
pleted.

2. Predictor: The predictor procedure normally
expands all relevant production rules for a sym-
bol and adds new states to the current chart. It
never adds the same state more than once to the
current chart. In a different chart however it may
expand the same symbol again. We restrict the
procedure so that it may never introduce a pro-
duction rule more than once, irrespective of the
chart it which it occurs.

3. Completer: For cach state completed the com-
pleter stores a pointer to the state in the array
above for the symbol being completed. Every
symbol completed also gets marked as a termi-
nal symbol. The changes in the predictor further
neccesitates that once a new symbol D becomes a
terminal, that the completer completes all states
o — o e D in any prior chart, and that the scan-
ner be called for ecach state &« — o o D in the
current chart.

. Production states: Production states no
longer require an index to mark their originat-
ing charts, because, for cach state, the new com-
pleter procedure will scan all previous charts for
symbols to the right of the dot to complete, and
not only those from the chart the state originated
from.

These optimizations have the potential for a more
efficient algorithm. The problem of non-termination
described earlicr is no longer relevant, since every pro-
duction rule can only ever be introduced once by the
predictor. From this we have that the only way a
production rule occurs more than once in any chart
is by virtue of the scanner or completer procedures.
Each of these advances the dot in somc way and new
symbols may need to be expanded, but these expan-
sions can only be done by the predictor which would
never expand any production rule more than once.

The proposed modified Early algorithm is listed
in Table 3. Before the algorithm is executed we ob-
tain C¥Go. For the entailment O = A C B the ap-
propriate substitutions have been made and the start
state S — B added to CFGp and chart[0]. The set
TERMINALS represent the set of all terminals, ini-
tialised to {A}, NONTERMINALS the set of non-
terminals initialised to Sig(0)\ 4, and REF|[q] an ini-
tially empty array which will contain pointers to all
states where the symbol « has been completed.

Once the algorithm terminates all MinAs still need
to be extracted. The process is similar to the method
used to extract the parse trees from the original Ear-
ley algorithm. The algorithm proceeds in a standard
depth-first manner. Starting with the completion ref-
ercnces for the symbol S, select the production rule
refercnced. Let this state be S — . Then for
cach symbol x; € « choose a production rule from
REF(x;); this process continues recursively. Once no
new production rules can be added, the set of all
states represent a possible MinA. Mapping back to
the origional axioms in normal form the set can be
tested for subsumption, and if subsumption holds the
MinA is valid. More parse treces may be extracted
by backtracking and making alternate choices where
[REF(z;)|> 1.

We use the standard example in the literature
(Brandt 2004), showing that there exists an ontology
O such that it contains exponentially many MinAs



Table 3: Modified Earley algorithm

function EARLY-PARSE returns chart
cIndex = 0
do
for each statc in chart[cIndex] do
if next symbol € NONTERMINALS then
PREDICTOR (state, cIndex)
elseif next symbol € TERMINALS then
SCANNER (statc, cIndex)
else
COMPLETER (state, cIndex)
end
while(hasNextChart)
return chart

procedure ENQUEUE((statc, chart-cntry)
if state not in chart-cntry then
PUSH(state, chart-entry)

procedure SCANNER((A — « e Bf), cIndex)
if B € TERMINALS then
ENQUEUE((A — aB e ), chart[cIndex+1])

procedure PREDICTOR((A — o e Bj3), cIndex)
if B € NONTERMINALS and
if no B-productions have becn expanded then
ENQUEUE((B — eaf), chart[cIndex])
for all production rules for B

procedure COMPLETER((B — ~e), clndex)

REF|[B] += Pointer(B — e)

TERMINALS += B

NONTERMINALS -=

for each (A — o e Bg) in chart{0 — cIndex-1] do
ENQUEUE((A — aB e 3), cIndex)

if B is a new terminal then
for each (A — a e Bf) in chart[cIndex] do

SCANNER((A — « ¢ Bj), cIndex)

for an entailment, and show how the improved Earley
algorithm can be used to extract all MinAs.

Example 7 Let O be an ELT ontology consisting of
the azioms:

alegplﬂQl ()44ZP2EB

a: PACPRNQs a5:Q:C B

a3: Q1 E PNQy

O in normal form is:

wleEPl WQ:AEQl wg:PIEPg
wg: PPEQe ws: Qi EPR wg: Q1T Qe

wr: B CB w:(CB

Then CFGo for the entailment O | AC B is:

0,: 88— B 04:B—>Qy o07:B— P
02: Q2> Q1 05:Q2— P 05: P —Q
0'32P2—’P1 0'62Q1—->A 0’9:P1-—>A

The chart returned by the algorithm consist of
only two chart entries for this problem as shown in Ta-
ble 4. With the final completion reference list shown
in Table 5. Extracting all parse trecs using a depth
first search results in all the MinAs being extracted
for the problem as shown in Table 6.
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Table 4: Solution chart

Chart 0

1. § > eB Initial State

2. B — ()3  Predictor from 1

3. B— &P, Predictor from 1

4. Q3 — eP;  Predictor from 2

5. Q2 — ()17 Predictor from 2

6. P, > oP; Predictor from 3

7. P, — o(); Predictor from 3

8. Py — o4 Predictor from 4 and 6

9. @1 — A  Predictor from 5 and 7
Chart 1

10. Py — Ae Scanner from 8

11. @1 — Ae  Scanner from 9

12. P, — Pye  Completer (10-6)

13. Q2 — Pre Completer (10-4)

14. Q2 — Q1o Completer (11-5)

15. P, — Qe Completer (11-7)

16. B — Pye  Completer (12-3), (15-3)
17. B — Qe Completer (13-2), (14-2)
18. S - Be Completer (16-1), (17-1)

Table 5: Completed reference list

REF[S] = [18] REF[B] = [16, 17]
REF|Q;] = [13,14] REF[P] = [12, 15]
REF[Q:] = [11] REF[P] = [10]
REF[P] = [10]

Table 6: Extracted MinAs

MinA;: 18 16 12 10
MinA,: 18 16 15 11
MinAs: 18 17 13 10
MinAs: 18 17 14 11

Mapping back to the origional axioms we have:

M’LTLAI Loy Gy
MiTLAQ oGy Q3 Oy
M’inAg L5 g g
MinA4 O (i3 O3

7 Conclusion and future work

The combinatorial naturc of MinA extraction makes
it an inherently hard problem, with most approaches
extracting a module based on reachability or syntac-
tic locality. The set of axioms within this module is
then systematically reduced by various methods, af-
ter which subsumption tests determine if the desired
entailment still holds. Though these aproaches work
well, the cost of repetitive subsumption testing is pro-
hibitive. It is therefore desirable to eliminate as many
axioms as possible before each subsumption test is
performed. To this end partition methods can be em-
ployed, with the hope of eliminating large chunks of
axioms that do not play a role in an entailment.
The Earley algorithm presented, based on bi-
directional reachability, aims to extract all reacha-
bility based paths for an entailment directly, with-
out first extracting smaller modules. Each parse tree
extracted by the algorithm corresponds to a mini-
mal axiom set such that reachabilty between the sub-
and super-concepts in an entailment is preserved. A
standard subsumption test is then performed to test



whether the axiom set is a valid MinA. This has the
potential to reduce the number of subsumption tests
drastically since for each parse tree the Earley algo-
rithm extracts, the set of axioms extracted is mini-
mal. No additional procedures need to be employed
to further reduce the set of axioms and only a single
subsumption test is neccesary in order to dectermine
if the sct represents a valid MinA.

We require two mapping layers, the first map-
ping between the original axioms in the ontology and
the axioms in the normal form, the second between
the normal form axioms and the production rules.
Though these mappings may secm to introducc a high
memory and computational overhead, in our opinion
they perform an important function in debugging on-
tologies. Consider the axiom A € B M C which forms
part of a MinA for some entailment, where only con-
cept C actually plays a role in the entailment. The
mappings allow us to identify exactly which concepts
play arole in the entailment. Therefore instead of just
presenting whole complex axioms for debugging, we
have the ability to highlight exactly which concepts
within the axioms are relevant to the entailment.

There are two possible problems with our ap-
proach: The first being that parse trees are minimal
bi-directionally preserving axioms sets, and since they
are minimal, it may occur that that all such scts arc
only subsets of a MinA. Thus not all MinAs may be
obtained as parsc trees. This boils down to the com-
pleteness question of the algorithm i.t.0. finding justi-
fications. The second issue is that there does not exist
a onc-one correspondence between the axioms in the
different mapping layers. Thereforc when mapping
back from a minimal parse tree to original axioms,
we may find that the set of axioms is not a MinA
anymore, in that it contains extra axioms. Though
we do not directly address thesc issues in the current
paper, we belicve that the ideas presented in this pa-
per, arc both interesting and promosing, and as such
warrant further investigation.

For future work we intend to implement the algo-
rithm as a plugin for the widely used ontology editor
Protégé! in order to test its usefulness in practise on
large scale ontologics, as well as to optimize it as much
as possible. If the algorithm proves useful we will in-
vestigate the possibility of extending it towards more
expressive DLs. We also aim to investigate the pos-
sible link between our appraoch and automata-based
pinpointing approaches (Pefialoza 2008).
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