
Fast and Robust Road Segmentation and Obstacle Map Generation

for Autonomous Navigation

F.P. Senekal

Council for Scientific and Industrial Research, South Africa

fsenekal@csir.co.za

Abstract

The ability to detect and navigate drivable road

surfaces is an important research area in autonomous

navigation for use in autonomous vehicles. In this

paper, a probabilistic computer vision algorithm for

segmentation of tarred road surfaces is developed.

Using a calibrated camera, a projection of a local

obstacle map is then laid over the segmented image

and an estimate is made of the likelihood of drivable

region in each occupancy cell.

The algorithm is both fast (can be implemented in real-

time systems) and robust (road surfaces are segmented

well). The method was tested on a set of test images

captured from a camera mounted on an autonomous

vehicle. Good classification results are achieved,

making it possible to use the algorithm and the

resulting obstacle map in conjunction with global and

local path planning algorithms to achieve autonomous

navigation.

1. Introduction

The development of intelligent autonomous vehicles

has recently gained much interest under researchers in

the field of robotics. The research interest has perhaps

been brought about by a series of competitions

organised by the Defense (sic) Advanced Research

Projects Agency (DARPA) in the United States. These

competitions (2004 Grand Challenge, 2005 Grand

Challenge and 2007 Urban Challenge) required teams

to construct a vehicle that could autonomously sense its

environment, navigate and plan its movements, under

off-road conditions (240km in the Mojave Desert

during the 2004 and 2005 competitions) or even under

simulated traffic conditions, requiring vehicles to obey

a limited set of traffic regulations and negotiating with

other traffic for right of way (2007). The competitions

generated much interest from top universities and

vehicle manufacturers and have been successfully

completed during the 2005 and 2007 challenges.

Even prior to the DARPA challenges, the EUREKA

Prometheus Project received more than a billion dollars

in research funding from the European Commission in

the period 1987 to 1995. It succeeded to construct

autonomous vehicles that could achieve speeds up to

175km/h on the German Autobahn and drove up to 158

km without human intervention.

Problems in the field of sensing and navigation for

autonomous vehicles would thus largely seem solved.

However, one of the primary sensors used for sensing

is laser scanners (especially during the DARPA

challenges). Laser scanners are able to construct an

obstacle map in a local area around the vehicle. They

are relatively fast and relatively successful in their

application. There are however a number of

shortcomings. Laser scanners are active sensors,

requiring them to emit electromagnetic energy, which

may raise safety and legal concerns. They typically

obtain measurements along a single scanning

dimension, which may mean less data to analyse.

Furthermore, they are more expensive than passive

sensors. For these reasons, there is quite a bit of

research interest in using passive sensors (cameras) to

analyse a scene image for use in autonomous vehicles.

There are two general approaches to determining a

traversable road region in a digital image – road

segmentation and lane detection. In road

segmentation, the objective is to analyse image content

to determine the properties of the projected image of

the road that will distinguish it from other content in

the image. Various approaches have been tried, such

as analysis based on appearance cues [1], analysis

based on structure and motion cues [2] various

segmentation techniques such as watershed

segmentation [3] and a variety of classifiers such as

neural networks [4].

In lane detection, the objective is to use the painted

lane markings or road boundaries as image cues in

determining the location of the road. Different lane

extraction methods have been tried, such as the Hough

transform [5], straight line approximation [6],

correlation-based detection [7] and inverse perspective

mapping [8].

Road segmentation and lane detection are

challenging computer vision tasks, since it need to be

robust under various environmental conditions, lighting

conditions, scene clutters and variable contrast. Clutter

can be due to shadows, reflections, tire skid marks, oil

drops, surface wears, dirt, occlusions by vehicles,

pedestrians and other objects, etc. In addition,

although it may conceptually be easy to characterise

roads and lanes as having a specific colour or texture,

these concepts are challenging to define in the

computer vision community and to implement in a

software algorithm.

For our purposes, we are interested in developing

an algorithm that does not only perform well, but also

executes fast, enabling implementation in a real-time

system.

The algorithm needs to be seen in context as part of

a larger vision system and autonomous vehicle

platform. The CSIR is currently developing an

autonomous vehicle, named the CSIR Autonomous

Rover (CAR). The CAR implements a number of

systems, such various vision and positional sensors,

vision system, localisation system, route planning,

local planning, actuation, etc. The vision system

performs various tasks, such as road segmentation (as

discussed in this paper), lane detection, traffic sign

recognition [9], stereovision, structure from motion and

object recognition based on appearance cues. The

objective of the vision system is to produce an obstacle

map, which can be used by the route and local planning

systems to determine a safely traversable path for the

vehicle.

Section 2 discusses the method that was developed

to solve the problem of fast road segmentation and

obstacle map generation. In Section 3, the results are

discussed and the computational performance of the

algorithm characterised. Section 4 provides

suggestions for future work. The article is concluded

in Section 5.

2. Method

The objective of the method presented here is to

construct a local obstacle map in front of the

autonomous vehicle, given a digital image captured

from a camera mounted on the vehicle (shown in

Figure 1). Such a map consists of various cells, each

cell indicating whether the associated area is part of the

road surface or not.

Figure 1: Camera mounted on an autonomous vehicle.

The obstacle map is created in a three-step process.

Firstly, the digital image is analysed to determine

which parts of the image are likely to be part of the

road surface. This is expressed in the form of a

probability map, where each pixel in the digital image

has an associated probability of being road. Secondly,

a three-dimensional planar grid is projected onto the

two-dimensional digital image. This projection makes

assumptions about the image content, such as that the

environment of the autonomous rover is mostly flat. It

also requires knowledge about the camera properties,

such as how it is mounted (the tilt angle and height

above the ground) and its intrinsic calibration

properties. In the third step, the probability of being

road surface over each region in the two-dimensional

image that corresponds to a projected three-

dimensional cell is calculated. Cells with probabilities

above a certain threshold are marked as being road

surface in the final obstacle map; those below the

threshold are marked as non-road. The process is

visualised in Figure 2.

Figure 2: Visualisation of steps taken during road

segmentation and obstacle map generation. (a) Source

image. (b) Probability map (light areas indicate high

probability and dark areas low probability). (c)

Projection of a grid onto the probability map (red lines

indicate grid cells, yellow line indicate the horizon).

(d) Probabilistic obstacle map (red represents higher

probability, blue represents lower probability, grey not

in view). (e) Thresholded obstacle map.

2.1 Determining Road Probability

The first step is to determine a probability associated

with each pixel as being road. We seek an approach

that is probabilistic in nature, yet fast enough for real-

time implementation. In this method, we build a

Bayesian classifier, based on the colour and position of

a pixel. Assuming that the position and colour is

independent, we can write

),|(),,|(),,,,|(yxRPbgrRPyxbgrRP , (1)

where P(R|r,g,b,x,y) is the conditional probability that

a given pixel is road, given its colour and position,

P(R|r,g,b) is the conditional probability that a pixel is

road given its colour ((r,g,b) representing its colour

coordinate), and P(R|x,y) is the conditional probability

that a pixel is road given its coordinate (x,y).

2.1.1 Conditioning on Position

We observe that the horizon line in the scene will have

a projection onto the image. Given the assumptions

and setup described in Section 2.2, the horizon line will

project onto a single scan line, yω in the image. Clearly

all pixels above the yω will not be road pixels, while

those below it will have some probability of being a

road pixel. We express the probability of being a road

pixel, given its position (x, y) in the image as

yy

yy
yxRP

 if1

 if0
)),(|(. (2)

We could try to characterise the probabilities of pixels

below yω as being road pixels based on their position,

rather than assigning a constant probability value of 1.

Such a characterisation could work well given that a

mathematical model of the road can be constructed that

is predictive of the probabilities of being road at a

certain position in the image and will be investigated in

future work. For our purposes, we found Equation 2 to

lead to satisfactory results.

2.1.2 Conditioning on Colour

Our objective here is to construct a probability estimate

for a pixel as being road or not based on its colour.

Thus we seek a probability density function describing

the distribution. One approach is to construct a

parametric distribution model, for example modelling

the colour distribution as a three-dimensional Gaussian

distribution. However, to speed up the process we

opted to use a colour lookup table, which is in essence

a non-parametric approach.

Colour images typically represent pixels with three

channels (red, green and blue), each channel intensity

being at one of 2
L
 levels. L is typically 8, which means

that a single pixel can take one of 2
24

 values (roughly

16 million). We could construct a colour lookup table

that specifies a probability for each of the 2
24

 values.

However, this would require enough training data to

ensure that such values are statistically significant.

To lower the training data requirements, we reduce

the number of intensity levels of each level to 2
K
. For

our purposes, we use K = 4, resulting in 2
12

 (4096)

unique values. This reduction is achieved by simply

truncating the least significant bits of each colour

channel. It is worth noting that if the lookup table is

represented as a linear memory representation (rather

than a three-dimensional array), the appropriate index

can be determined very efficiently from the original

colour coordinate through simple bit-shift and binary-

or operations. The reduced lookup table is also much

less memory intensive (being 1/2
L-K

 in size of the

original).

The probability associated with each index (colour)

in the lookup table is now simply calculated from

training data as the proportion of times that the specific

colour is found as part of the road, to the total number

of times that colour is found. Let an image in a set of

training images be represented by I
(i)

 and the associated

overlay by O
(i)

, where

otherwise0

pixel road a is pixel the1
),()(iff

yxO i
. (3)

Then

N

i

W

x

H
i

N

i

W

x

H
ii

yx

yxyxO

bgrRP

1

1

0

1

0

)(

1

1

0

1

0

)()(

),(

),(),(

)),,(|(, (4)

where

otherwise0

),,(),(I if1
),(

(i)
)(bgryx

yxi , (5)

N is the number of training images and W and H are the

width and height of the image respectively. When

translating to computer code, Equations 3-5 is

efficiently implemented as a simple loop through the

training data, indexing two arrays that keep track of the

number of times a colour was observed and the number

of times that colour was observed as part of a road

pixel, followed by a final division calculation. Of

course, the lookup table is only constructed once

during the training phase.

2.1.3 Smoothing Filters

Given equations (1), (2) and (4), we could calculate the

road probability for any input image. In practise, the

input image may need to be smoothed before the

probability calculations are applied.

For example, under normal daylight conditions, a

tarred surface would have a couple of areas reflecting

light that is projected as white spots in the image.

Since the white is not characteristic of the typical grey

associated with a road surface, their associated

probabilities would be lower, resulting in an effect akin

to spot noise in the probability map. To counter this

effect, a smoothing filter is applied to the input image,

thereby reducing the effect of such occurrences.

In our work, we apply a box filter, which simply

determines the average value in an N×N area centred

on the pixel. Typical applications of a box filter

require N
2
 computations (N

2
 – 1 additions and 1

division). To speed up computation, we use integral

images. For an image I, the integral image II is defined

as

x

i

y

j

jiIyxII

0 0

),(),(. (6)

The integral image can be computed efficiently using

only two additions per pixel, as described by:

]1,1[],1,0[

)1,(),(),(

]1,0[)0,()0,(

]1,0[],1,1[

),(),1(),(

]1,0[),,0(),0(

HyWx

yxIIyxsyxII

WxxsxII

HyWx

yxIyxsyxs

HyyIys

. (7)

The integral image has the property that the sum of

values over any rectangular area can be computed in

constant time (three additions and thus the average in

four operations). The sum of values of an image patch

in an image from top left coordinate (x1, y1) to bottom

right coordinate (x2, y2) can be computed from its

integral image as

)1,(),1(

)1,1(),(

1221

1122

yxIIyxII

yxIIyxIIS
. (8)

The classical approach to implementing a square N×N

box filter requires about N
2
WH operations, where the

implementation using an integral image requires about

6WH operations. It is clear that there is a

computational saving for a filter as small as 3×3 and a

substantial saving for larger filters.

2.2 Grid Projection

Consider the camera mount setup depicted in Figure 3.

The camera is mounted at a height H above the ground

(not to be confused with the image height) at a tilt

angle α, such that its optical axis is pointing in the

direction of the arrow in the figure. Typically, α would

be close to 90° for a forward-facing camera. We

assume that there is no roll around the optical axis,

such that an imaginary line on the ground plane at a

distance Z (relative to origin O) would project onto a

single scan line in the image. If the effect of the roll is

not negligible, it can be incorporated into the model, at

the cost of increasing the computational complexity of

further steps in the method.

Figure 3: Camera Mount Setup (Side View).

We would like to determine the scan line y onto which

such an imaginary line at distance Z on the ground

plane would project. We calculate

`

)tan(`

)(tan 1

yyy

fy

H

Z

c

, (9)

where f is the focal length of the camera (which for

convenience sake is expressed as a number of pixels),

yc is the y-coordinate where the optical axis intersects

the image plane and y` is the offset relative to yc. For

convenience sake, we assume that the optical axis is

orthogonal to the image plane.

We are also interested in the scan line yω associated

with the horizon line. We could use the above

formulas with Z ; however it could be calculated

directly using

`

)tan(`

2

yyy

fy

c

, (10)

where y`ω is the offset relative to the yc. Assuming

there is no roll, we can calculate the x-coordinate of the

projection of a point (X, Z) on the grid as

`

`

xxx

f
Z

X
x

c

, (11)

where xc is the x-coordinate where the optical axis

intersects the image plane (see Figure 4).

Figure 4: Camera Mount Setup (Planar View).

In general, a coordinate (X, Z) in the plane at Y = 0

would thus project onto

)))(tantan(,(1
cc y

H

Z
fxf

Z

X
 (12)

in the image according to our model. The model thus

requires xc, yc, f, α and H to be determined through a

calibration process.

2.3 Determining the local obstacle map

Given equation 12, we can determine the projection of

any coordinate in a planar surface in front of the

camera in the image. We now superimpose an aligned

grid on the planar surface, with equal spacing in the X

and Z direction. The size and resolution of the grid

could be set depending on the requirements for the

local obstacle map.

For a given grid configuration, we pre-compute the

projections of the various grid line intersections ((X, Z)

coordinate pairs). Note that at a specific distance Z, all

projections will have the same y-value. This is true

since we have assumed there is no roll in the camera

orientation. We also pre-compute whether the

projection actually falls within the boundaries of the

image, since the coordinate we are interested in, may

not actually be within the field of view of the camera.

Any square grid cell will project onto a trapezium

in the image. The trapezium is defined by six

coordinates – two defining the y-coordinate of the two

parallel lines, and four defining x-coordinates of the

four corners – all of which has been pre-computed. We

can also pre-compute whether any grid cell will be

fully or partially out of view in the image, and flag it as

such.

For every grid cell, we now determine the average

probability over the projected trapezium using the

calculated probability overlay. Since the two parallel

lines of the trapezium fall onto two unique scan lines,

the average over the trapezium can be simply

computed by stepping from scan line to scan line,

computing the starting and ending x-coordinates using

linear interpolation, and keeping a running sum of the

average values and count of the number of pixels

visited, followed by a final division. (Strictly speaking

can the number of pixels being visited also be pre-

computed. One can even devise a scheme where each

pixel is back-projected onto a grid cell and the index

stored, thereby eliminating the interpolation

requirement (akin to the process in ray-tracing

applications). It is worth pointing out however, that the

further away from the camera (and depending on the

grid resolution), neighbouring cells may be projected

onto a single scan line, thus limiting such an approach.

However, the integrity of the local obstacle map could

be questioned then in any case).

3. Results and Discussion

3.1 Dataset

For purposes of testing the success of the algorithm, a

dataset was captured from a camera mounted on an

autonomous vehicle. The vehicle was put under human

control, and driven on a road network during good

daylight conditions. A total of 6000 images were

captured, having a resolution of 900×680 pixels each.

Of the 6000 images, every 200
th

 image was taken

and manually labelled into road and non-road areas,

resulting in a total of 30 training images. A selection

of four of the 30 images is shown in Figure 5, showing

the variety of road textures, colours, lane markings,

shadows, white-washing, rubber marks and other

conditions that occur. The figure also shows the

corresponding probability maps when the algorithm

developed in this paper is applied to the images.

The process of labelling the images is quite labour

intensive, since every pixel has to be marked as either

road or non-road, limiting the amount of training data

that can be generated. It is also susceptible to

subjective assignment, especially close to the regions

between road and non-road segments. As such a

classification system that is 100% accurate is not

possible. The dataset used in [1] and [2] is a bit more

extensive and is being acquired for testing purposes.

Figure 5: Examples of road images captured from a

camera mounted on a moving vehicle (left) and the

resulting probability maps obtained by applying the

algorithm suggested in this paper (right) Red

represents higher probability and blue represents

lower probability.

3.2 Results and Discussion

In this section, we will report on the results obtained

for road segmentation. A series of tests were

conducted, ranging the filter size and probability

threshold parameters. Box filters with dimensions 1×1,

3×3, 5×5, 7×7, 9×9, 11×11 and 13×13 were tested.

Simultaneously the probability threshold parameter

was evaluated over the interval [0, 1].

The training images were first used to train the

colour distribution as discussed in Section 2.1.2. The

training process constructed the lookup table used to

index the probability associated with each colour. The

lookup table is then used on the same dataset to

determine the performance of the system. Although

this process may introduce unfair bias into the system,

we believe that such bias is minimal, since the process

was applied to a set of similar (but unlabelled) images,

which presented similar results when visually

interpreted. Future tests using a larger number of

training images will however provide a fairer

assessment of the system.

To characterise the system, the number of true

positives (tp), false positives (fp), true negatives (tn)

and false negatives (fn) over the entire dataset was

calculated. As performance measures we use accuracy

((tp + tn) / (tp + tn + fp + fn)), precision (tp / (tp + fp))

and sensitivity (tp / (tp + fn)). The results for all filter

dimensions achieve peak accuracy at a probability

threshold of about 0.45 to 0.55.

87

88

89

90

91

92

93

94

95

1×1 3×3 5×5 7×7 9×9 11×11 13×13

Filter Size

%

Accuracy Precision Sensitivity

Figure 6: Accuracy, precision and sensitivity as a

function of filter size at a probability threshold of 0.5.

The accuracy, precision and sensitivity for different

filter dimensions are plotted in Figure 6. A constant

probability threshold of 0.5 is used. Peak accuracy of

94.5% is achieved for dimensions of 3×3 and higher.

The effect of using the box filter is clearly visible in the

figure, improving from 93.8% for a 1×1 box filter

(unfiltered image). The box filter thus has the effect of

smoothing areas which may be susceptible to noise or

small reflections, as discussed in Section 2.1.3.

It is interesting to observe the change in precision

and sensitivity as a function of filter dimensions. For

larger filter dimensions there is an increase in

sensitivity but a decrease in precision. This means that

for larger filter dimensions, there is an increase in the

number of false positives and a decrease in the number

of false negatives. This provides a convenient

performance trade-off which needs to be evaluated in

terms of the requirements of the system.

Given that the system makes a type I error (stating

that an area is road in the case that it is not, i.e. more

false positives), an obstacle map may be constructed

indicating that a non-road cell is a road-cell and hence

traversable. This is a serious error that may lead to an

accident. In the case of a type II error (stating that an

area in not road even if it is, i.e. more false negatives),

the system will possibly mark some road cells as non-

road. This will lead to the system simply avoiding

such cells when traversing a path, or in the worst case,

not being able to move. Clearly, type I errors are far

more severe than type II errors and a system with as

few as possible false positive errors is preferred. Thus,

smaller filter dimensions are preferred over larger filter

dimensions. This can be explained quite intuitively by

observing that for larger filter dimensions, small detail

may be smoothed and thus lost. There is also

considerable smoothing at the road/non-road

boundaries, where possible errors may be made. A 3x3

or 5x5 filter size seems to be the best choice.

The usability of the system lies in the obstacle map

that is created. Type I errors in the obstacle map are

obviously to be avoided. Due to the averaging effect of

the map over a number of pixels in the region, the

obstacle map has the effect of smoothing small errors,

at the risk truly neglecting small obstacles. Depending

on the mechanical structure and robustness of the

vehicle, this may or may not be a concern. More

serious is the occurrence of Type I errors due to larger

obstacles, which will cause damage or accidents. The

typical case is that such objects have similar colour

characteristics as the road, making them

indistinguishable to the classifier. Such objects

typically protrude above the ground and due to the

projective nature in which the obstacle map is

generated, will clutter the scene and cover many more

grid cells than usual. However, the covered grid cells

will typically be further away than the cells at the feet

of the object where it meets the road surface. For

example, the cells closest to the camera for the

projection of a vehicle are typically the ones associated

with the wheels of the vehicle. The wheels of a vehicle

typically are black, with a low probability of being

classified as road. Although cells further away may

thus create Type I errors, they might not actually be

reachable as part of path calculated by a local planner.

3.3 Performance

In this section, we discuss the performance aspects of

the algorithm. We assume that the digital image on

which the algorithm is applied has a resolution of

W×H. As discussed in Section 2.2, we are only

interested in the portion of the image below the

projected horizon line. For the purposes of this

discussion, H will be the effective height, i.e. the

number of horizontal scan lines below the projected

horizon line (these scan lines form the effective

region). Strictly speaking, the region is actually

narrower, since we are only interested in the portion of

the image below the projection of the furthest end of

the overlaid grid.

The road probability is calculated by means of a

lookup table. The index into the lookup table can be

calculated very efficiently using bit-shift and binary-or

operations based on the colour coordinate of the pixel.

In addition, two memory references are required (one

for the actual colour lookup and one for the

assignment). This step requires a single pass through

the image and could even be implemented on a parallel

processing architecture.

As discussed in Section 2.1.3, the smoothing filter

requires constant time (about 6WH simple operations)

and is completed in a single pass through the image.

Efficient parallel processing algorithms also exist to

implement box filters.

The steps during grid projection (Section 2.2)

require a calibrated camera. However, all the

calculations can be pre-computed, given a constant tilt

angle. In the case that the grid projection is calculated

in real-time based on tilt angle information provided by

an external sensor, the coordinates of the projected grid

intersection lines need be to computed. Given an m×n

grid, this requires the calculation of (m+1)n x-

coordinates and the calculation of n+1 y-coordinates.

Since m and n is typically much less than W and H, this

would require no more complexity than is required for

a single pass through the image.

The determination of the local obstacle map

(Section 2.3), require a that the average over the

projected trapezium associated with each grid cell be

computed. This means that every pixel covered by the

trapezium is visited once. Pixels associated with

trapezium boundaries are thus typically visited twice.

In the far field, when the two parallel lines associated

with the trapezium are projected onto a single scan

line, each pixel could be used in more than two

averaging calculations. Given the back-projection

scheme suggested in the final paragraph of Section 2.3,

each pixel will only be visited once. The thresholding

step is executed as part of the calculation associated

with each grid cell. In general, the time complexity of

this step is roughly equal to the number of pixels in the

effective region.

The method presented in this paper thus requires

three passes through the effective region (four under

the condition of changing tilt angle). During each of

these passes, only a few simple operations are done,

which means that the algorithm executes very fast,

achieving real-time speed for fairly large images.

4. Future Work

One possible way of improving the road segmentation,

is to incorporate a probabilistic approach based on

texture, rather than colour. Since texture may be a

better distinguishing feature for a road surface than

colour, especially with regard to greyish objects that

may be visible in a scene, it is expected that fewer false

positives will be generated. An additional idea is the

incorporation of a multi-scale approach, where texture

probabilities over multiple scales are used during

classification.

Another area that requires improvement is the

detection of lane markings. Lane markings are falsely

rejected as being part of the road surface, since they are

not characterised well based solely on colour (more

accurately, the training data provides many examples

where the same colours are used in a different context

than a road surface, hence the associated probabilities

are lower). The multi-scale texture-based approach

may solve this problem.

Finally, the algorithm is sensitive to the tilt angle of

the camera relative to the ground plane. Although it

does not have a mayor effect in the near field, a

fraction of a degree change in tilt angle may have a

large effect in the far field. In the absence of a sensor

in the system that could directly measure tilt,

techniques need to be developed to stabilise the image

and determine tilt angle relative to a feature in the far

field.

5. Conclusions

A technique to segment a road surface from a digital

image using a probabilistic approach was presented.

Using a calibrated camera, a projection of a local

obstacle map is laid over the segmented image and an

estimate is made of the likelihood of drivable region in

each occupancy cell.

The technique performs reasonably well and has the

advantage that it is fast enough that it can be

implemented on a real-time system. When used in

conjunction with global and local path planning

algorithms, the obstacle map can be used to achieve

autonomous navigation in an autonomous vehicle.

6. Acknowledgements

The research conducted and reported on in this paper

was funded by the Council for Scientific and Industrial

Research (CSIR), South Africa, under the CSIR

Autonomous Rover (CAR) project.

7. References

[1] J. Shotton, M. Johnson and R. Cipolla, “Semantic

texton forests for image categorization and

segmentation”, in Proceedings of the IEEE

Conference on Computer Vision and Pattern

Recognition 2008.

[2] G.J. Brostow, J. Shotton, J. Fauqueur and R.

Cipolla, “Segmentation and recognition using

structure from motion point clouds”, in ECCV, pp.

44-57, 2008.

[3] S. Beucher, M. Bilodeau and X. Yu, “Road

segmentation by watershed algorithms”, in

Proceedings of PROMETHEUS workshop,

Sophia-Antipolis, 1990.

[4] C. Fernandez and W. Bonner, “Texture and neural

network for road segmentation”, in Proceedings of

the IEEE Intelligent Vehicles Symposium 1995, pp.

344-349, Detroit, MI, USA, 1995.

[5] P.S. Liou and R.C. Jain, “Road following using

vanishing points”, Computer Vision Graphics and

Image Processing, Volume 39, pp. 116-130, 1987.

[6] C. Thorpe, M.H. Herbert, T. Kanade and S.A.

Shafer, “Vision and navigation for the Carnegie-

Mellon Navlab”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Volume 10,

Issue 3, pp. 362-373, 1988.

[7] C.J. Taylor, J. Malik and J. Weber, “A real-time

approach to stereopsis and lane-finding”, in

Proceedings of the IEEE Intelligent Vehicles

Symposium 1996, pp. 207-212, 1996.

[8] D. Pomerlau, “RALPH: Rapidly adapting lateral

position handler”, in Proceedings of the IEEE

Intelligent Vehicle Symposium 1995, Detroit, MI,

USA, pp. 90-95, 1995.

[9] F.P. Senekal, “Traffic sign detection and

classification using colour and shape cues”, in

Proceedings of the Nineteenth Annual Symposium

of the Pattern Recognition Association of South

Africa, pp. 131-136, Cape Town, South Africa,

2008.

