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Abstract 
 

The ability to detect and navigate drivable road 

surfaces is an important research area in autonomous 

navigation for use in autonomous vehicles. In this 

paper, a probabilistic computer vision algorithm for 

segmentation of tarred road surfaces is developed.  

Using a calibrated camera, a projection of a local 

obstacle map is then laid over the segmented image 

and an estimate is made of the likelihood of drivable 

region in each occupancy cell. 

 

The algorithm is both fast (can be implemented in real-

time systems) and robust (road surfaces are segmented 

well).  The method was tested on a set of test images 

captured from a camera mounted on an autonomous 

vehicle.  Good classification results are achieved, 

making it possible to use the algorithm and the 

resulting obstacle map in conjunction with global and 

local path planning algorithms to achieve autonomous 

navigation. 

 

1.  Introduction 
 

The development of intelligent autonomous vehicles 

has recently gained much interest under researchers in 

the field of robotics.  The research interest has perhaps 

been brought about by a series of competitions 

organised by the Defense (sic) Advanced Research 

Projects Agency (DARPA) in the United States.  These 

competitions (2004 Grand Challenge, 2005 Grand 

Challenge and 2007 Urban Challenge) required teams 

to construct a vehicle that could autonomously sense its 

environment, navigate and plan its movements, under 

off-road conditions (240km in the Mojave Desert 

during the 2004 and 2005 competitions) or even under 

simulated traffic conditions, requiring vehicles to obey 

a limited set of traffic regulations and negotiating with 

other traffic for right of way (2007).  The competitions 

generated much interest from top universities and 

vehicle manufacturers and have been successfully 

completed during the 2005 and 2007 challenges. 

Even prior to the DARPA challenges, the EUREKA 

Prometheus Project received more than a billion dollars 

in research funding from the European Commission in 

the period 1987 to 1995.  It succeeded to construct 

autonomous vehicles that could achieve speeds up to 

175km/h on the German Autobahn and drove up to 158 

km without human intervention. 

Problems in the field of sensing and navigation for 

autonomous vehicles would thus largely seem solved.  

However, one of the primary sensors used for sensing 

is laser scanners (especially during the DARPA 

challenges).  Laser scanners are able to construct an 

obstacle map in a local area around the vehicle.  They 

are relatively fast and relatively successful in their 

application.  There are however a number of 

shortcomings.  Laser scanners are active sensors, 

requiring them to emit electromagnetic energy, which 

may raise safety and legal concerns.  They typically 

obtain measurements along a single scanning 

dimension, which may mean less data to analyse.  

Furthermore, they are more expensive than passive 

sensors.  For these reasons, there is quite a bit of 

research interest in using passive sensors (cameras) to 

analyse a scene image for use in autonomous vehicles. 

There are two general approaches to determining a 

traversable road region in a digital image – road 

segmentation and lane detection.  In road 

segmentation, the objective is to analyse image content 

to determine the properties of the projected image of 

the road that will distinguish it from other content in 

the image.  Various approaches have been tried, such 

as analysis based on appearance cues [1], analysis 

based on structure and motion cues [2] various 

segmentation techniques such as watershed 

segmentation [3] and a variety of classifiers such as 

neural networks [4]. 

In lane detection, the objective is to use the painted 

lane markings or road boundaries as image cues in 

determining the location of the road.  Different lane 

extraction methods have been tried, such as the Hough 

transform [5], straight line approximation [6], 

correlation-based detection [7] and inverse perspective 

mapping [8]. 

Road segmentation and lane detection are 

challenging computer vision tasks, since it need to be 

robust under various environmental conditions, lighting 

conditions, scene clutters and variable contrast.  Clutter 

can be due to shadows, reflections, tire skid marks, oil 

drops, surface wears, dirt, occlusions by vehicles, 

pedestrians and other objects, etc.  In addition, 

although it may conceptually be easy to characterise 

roads and lanes as having a specific colour or texture, 

these concepts are challenging to define in the 

computer vision community and to implement in a 

software algorithm. 

For our purposes, we are interested in developing 

an algorithm that does not only perform well, but also 

executes fast, enabling implementation in a real-time 

system.   



The algorithm needs to be seen in context as part of 

a larger vision system and autonomous vehicle 

platform.  The CSIR is currently developing an 

autonomous vehicle, named the CSIR Autonomous 

Rover (CAR).  The CAR implements a number of 

systems, such various vision and positional sensors, 

vision system, localisation system, route planning, 

local planning, actuation, etc.  The vision system 

performs various tasks, such as road segmentation (as 

discussed in this paper), lane detection, traffic sign 

recognition [9], stereovision, structure from motion and 

object recognition based on appearance cues.  The 

objective of the vision system is to produce an obstacle 

map, which can be used by the route and local planning 

systems to determine a safely traversable path for the 

vehicle. 

Section 2 discusses the method that was developed 

to solve the problem of fast road segmentation and 

obstacle map generation.  In Section 3, the results are 

discussed and the computational performance of the 

algorithm characterised.  Section 4 provides 

suggestions for future work.  The article is concluded 

in Section 5. 

 

2.  Method 
 

The objective of the method presented here is to 

construct a local obstacle map in front of the 

autonomous vehicle, given a digital image captured 

from a camera mounted on the vehicle (shown in 

Figure 1).  Such a map consists of various cells, each 

cell indicating whether the associated area is part of the 

road surface or not. 

 

 
 

Figure 1:  Camera mounted on an autonomous vehicle. 

 

The obstacle map is created in a three-step process.  

Firstly, the digital image is analysed to determine 

which parts of the image are likely to be part of the 

road surface.  This is expressed in the form of a 

probability map, where each pixel in the digital image 

has an associated probability of being road.  Secondly, 

a three-dimensional planar grid is projected onto the 

two-dimensional digital image.  This projection makes 

assumptions about the image content, such as that the 

environment of the autonomous rover is mostly flat.  It 

also requires knowledge about the camera properties, 

such as how it is mounted (the tilt angle and height 

above the ground) and its intrinsic calibration 

properties.  In the third step, the probability of being 

road surface over each region in the two-dimensional 

image that corresponds to a projected three-

dimensional cell is calculated.  Cells with probabilities 

above a certain threshold are marked as being road 

surface in the final obstacle map; those below the 

threshold are marked as non-road.  The process is 

visualised in Figure 2. 

 

 
 

Figure 2:  Visualisation of steps taken during road 

segmentation and obstacle map generation.  (a) Source 

image.  (b) Probability map (light areas indicate high 

probability and dark areas low probability). (c) 

Projection of a grid onto the probability map (red lines 

indicate grid cells, yellow line indicate the horizon).  

(d) Probabilistic obstacle map (red represents higher 

probability, blue represents lower probability, grey not 

in view).  (e)  Thresholded obstacle map. 

 

2.1 Determining Road Probability 

 

The first step is to determine a probability associated 

with each pixel as being road.  We seek an approach 

that is probabilistic in nature, yet fast enough for real-

time implementation.  In this method, we build a 

Bayesian classifier, based on the colour and position of 

a pixel.  Assuming that the position and colour is 

independent, we can write 
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where P(R|r,g,b,x,y) is the conditional probability that 

a given pixel is road, given its colour and position, 

P(R|r,g,b) is the conditional probability that a pixel is 

road given its colour ((r,g,b) representing its colour 

coordinate), and P(R|x,y) is the conditional probability 

that a pixel is road given its coordinate (x,y). 

 

2.1.1 Conditioning on Position 

 

We observe that the horizon line in the scene will have 

a projection onto the image.  Given the assumptions 

and setup described in Section 2.2, the horizon line will 

project onto a single scan line, yω in the image.  Clearly 

all pixels above the yω will not be road pixels, while 

those below it will have some probability of being a 



road pixel.  We express the probability of being a road 

pixel, given its position (x, y) in the image as 
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We could try to characterise the probabilities of pixels 

below yω as being road pixels based on their position, 

rather than assigning a constant probability value of 1.  

Such a characterisation could work well given that a 

mathematical model of the road can be constructed that 

is predictive of the probabilities of being road at a 

certain position in the image and will be investigated in 

future work.  For our purposes, we found Equation 2 to 

lead to satisfactory results. 

 

2.1.2 Conditioning on Colour 

 

Our objective here is to construct a probability estimate 

for a pixel as being road or not based on its colour.  

Thus we seek a probability density function describing 

the distribution.  One approach is to construct a 

parametric distribution model, for example modelling 

the colour distribution as a three-dimensional Gaussian 

distribution.  However, to speed up the process we 

opted to use a colour lookup table, which is in essence 

a non-parametric approach. 

Colour images typically represent pixels with three 

channels (red, green and blue), each channel intensity 

being at one of 2
L
 levels.  L is typically 8, which means 

that a single pixel can take one of 2
24

 values (roughly 

16 million).  We could construct a colour lookup table 

that specifies a probability for each of the 2
24

 values.  

However, this would require enough training data to 

ensure that such values are statistically significant.   

To lower the training data requirements, we reduce 

the number of intensity levels of each level to 2
K
.  For 

our purposes, we use K = 4, resulting in 2
12

 (4096) 

unique values.  This reduction is achieved by simply 

truncating the least significant bits of each colour 

channel.  It is worth noting that if the lookup table is 

represented as a linear memory representation (rather 

than a three-dimensional array), the appropriate index 

can be determined very efficiently from the original 

colour coordinate through simple bit-shift and binary-

or operations.  The reduced lookup table is also much 

less memory intensive (being 1/2
L-K

 in size of the 

original). 

The probability associated with each index (colour) 

in the lookup table is now simply calculated from 

training data as the proportion of times that the specific 

colour is found as part of the road, to the total number 

of times that colour is found.  Let an image in a set of 

training images be represented by I
(i)

 and the associated 

overlay by O
(i)

, where 
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N is the number of training images and W and H are the 

width and height of the image respectively.  When 

translating to computer code, Equations 3-5 is 

efficiently implemented as a simple loop through the 

training data, indexing two arrays that keep track of the 

number of times a colour was observed and the number 

of times that colour was observed as part of a road 

pixel, followed by a final division calculation.  Of 

course, the lookup table is only constructed once 

during the training phase. 
 

2.1.3 Smoothing Filters 
 

Given equations (1), (2) and (4), we could calculate the 

road probability for any input image.  In practise, the 

input image may need to be smoothed before the 

probability calculations are applied. 

For example, under normal daylight conditions, a 

tarred surface would have a couple of areas reflecting 

light that is projected as white spots in the image.  

Since the white is not characteristic of the typical grey 

associated with a road surface, their associated 

probabilities would be lower, resulting in an effect akin 

to spot noise in the probability map.  To counter this 

effect, a smoothing filter is applied to the input image, 

thereby reducing the effect of such occurrences. 

In our work, we apply a box filter, which simply 

determines the average value in an N×N area centred 

on the pixel.  Typical applications of a box filter 

require N
2
 computations (N

2
 – 1 additions and 1 

division).  To speed up computation, we use integral 

images.  For an image I, the integral image II is defined 

as  
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The integral image can be computed efficiently using 

only two additions per pixel, as described by: 

 

]1,1[],1,0[

)1,(),(),(

]1,0[)0,()0,(

]1,0[],1,1[

),(),1(),(

]1,0[),,0(),0(

HyWx

yxIIyxsyxII

WxxsxII

HyWx

yxIyxsyxs

HyyIys

. (7) 

 



The integral image has the property that the sum of 

values over any rectangular area can be computed in 

constant time (three additions and thus the average in 

four operations).  The sum of values of an image patch 

in an image from top left coordinate (x1, y1) to bottom 

right coordinate (x2, y2) can be computed from its 

integral image as 
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The classical approach to implementing a square N×N 

box filter requires about N
2
WH operations, where the 

implementation using an integral image requires about 

6WH operations.  It is clear that there is a 

computational saving for a filter as small as 3×3 and a 

substantial saving for larger filters. 

 

2.2 Grid Projection 

 

Consider the camera mount setup depicted in Figure 3.  

The camera is mounted at a height H above the ground 

(not to be confused with the image height) at a tilt 

angle α, such that its optical axis is pointing in the 

direction of the arrow in the figure.  Typically, α would 

be close to 90° for a forward-facing camera.  We 

assume that there is no roll around the optical axis, 

such that an imaginary line on the ground plane at a 

distance Z (relative to origin O) would project onto a 

single scan line in the image.   If the effect of the roll is 

not negligible, it can be incorporated into the model, at 

the cost of increasing the computational complexity of 

further steps in the method. 

 

 
 

Figure 3:  Camera Mount Setup (Side View). 

 

We would like to determine the scan line y onto which 

such an imaginary line at distance Z on the ground 

plane would project.  We calculate 
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where f is the focal length of the camera (which for 

convenience sake is expressed as a number of pixels), 

yc is the y-coordinate where the optical axis intersects 

the image plane and y` is the offset relative to yc.  For 

convenience sake, we assume that the optical axis is 

orthogonal to the image plane. 

We are also interested in the scan line yω associated 

with the horizon line.  We could use the above 

formulas with Z ; however it could be calculated 

directly using 
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where y`ω is the offset relative to the yc.  Assuming 

there is no roll, we can calculate the x-coordinate of the 

projection of a point (X, Z) on the grid as  
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where xc is the x-coordinate where the optical axis 

intersects the image plane (see Figure 4). 

 

 
 

Figure 4:  Camera Mount Setup (Planar View). 

 

In general, a coordinate (X, Z) in the plane at Y = 0 

would thus project onto  
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in the image according to our model.  The model thus 

requires xc, yc, f, α and H to be determined through a 

calibration process. 

 

2.3 Determining the local obstacle map 

 

Given equation 12, we can determine the projection of 

any coordinate in a planar surface in front of the 

camera in the image.  We now superimpose an aligned 

grid on the planar surface, with equal spacing in the X 

and Z direction.  The size and resolution of the grid 

could be set depending on the requirements for the 

local obstacle map. 

For a given grid configuration, we pre-compute the 

projections of the various grid line intersections ((X, Z) 

coordinate pairs).  Note that at a specific distance Z, all 

projections will have the same y-value.  This is true 



since we have assumed there is no roll in the camera 

orientation.  We also pre-compute whether the 

projection actually falls within the boundaries of the 

image, since the coordinate we are interested in, may 

not actually be within the field of view of the camera. 

Any square grid cell will project onto a trapezium 

in the image.  The trapezium is defined by six 

coordinates – two defining the y-coordinate of the two 

parallel lines, and four defining x-coordinates of the 

four corners – all of which has been pre-computed.  We 

can also pre-compute whether any grid cell will be 

fully or partially out of view in the image, and flag it as 

such. 

For every grid cell, we now determine the average 

probability over the projected trapezium using the 

calculated probability overlay.  Since the two parallel 

lines of the trapezium fall onto two unique scan lines, 

the average over the trapezium can be simply 

computed by stepping from scan line to scan line, 

computing the starting and ending x-coordinates using 

linear interpolation, and keeping a running sum of the 

average values and count of the number of pixels 

visited, followed by a final division.  (Strictly speaking 

can the number of pixels being visited also be pre-

computed.  One can even devise a scheme where each 

pixel is back-projected onto a grid cell and the index 

stored, thereby eliminating the interpolation 

requirement (akin to the process in ray-tracing 

applications).  It is worth pointing out however, that the 

further away from the camera (and depending on the 

grid resolution), neighbouring cells may be projected 

onto a single scan line, thus limiting such an approach.  

However, the integrity of the local obstacle map could 

be questioned then in any case). 

 

3.  Results and Discussion 
 

3.1 Dataset 

 

For purposes of testing the success of the algorithm, a 

dataset was captured from a camera mounted on an 

autonomous vehicle.  The vehicle was put under human 

control, and driven on a road network during good 

daylight conditions.  A total of 6000 images were 

captured, having a resolution of 900×680 pixels each. 

Of the 6000 images, every 200
th

 image was taken 

and manually labelled into road and non-road areas, 

resulting in a total of 30 training images.  A selection 

of four of the 30 images is shown in Figure 5, showing 

the variety of road textures, colours, lane markings, 

shadows, white-washing, rubber marks and other 

conditions that occur.  The figure also shows the 

corresponding probability maps when the algorithm 

developed in this paper is applied to the images. 

The process of labelling the images is quite labour 

intensive, since every pixel has to be marked as either 

road or non-road, limiting the amount of training data 

that can be generated.  It is also susceptible to 

subjective assignment, especially close to the regions 

between road and non-road segments.  As such a 

classification system that is 100% accurate is not 

possible.  The dataset used in [1] and [2] is a bit more 

extensive and is being acquired for testing purposes. 

 
 

Figure 5:  Examples of road images captured from a 

camera mounted on a moving vehicle (left) and the 

resulting probability maps obtained by applying the 

algorithm suggested in this paper (right) Red 

represents higher probability and blue represents 

lower probability.  

 

3.2 Results and Discussion 

 

In this section, we will report on the results obtained 

for road segmentation.  A series of tests were 

conducted, ranging the filter size and probability 

threshold parameters.  Box filters with dimensions 1×1, 

3×3, 5×5, 7×7, 9×9, 11×11 and 13×13 were tested.  

Simultaneously the probability threshold parameter 

was evaluated over the interval [0, 1]. 

The training images were first used to train the 

colour distribution as discussed in Section 2.1.2.  The 

training process constructed the lookup table used to 

index the probability associated with each colour.  The 

lookup table is then used on the same dataset to 

determine the performance of the system.  Although 

this process may introduce unfair bias into the system, 

we believe that such bias is minimal, since the process 

was applied to a set of similar (but unlabelled) images, 

which presented similar results when visually 

interpreted.  Future tests using a larger number of 

training images will however provide a fairer 

assessment of the system. 

To characterise the system, the number of true 

positives (tp), false positives (fp), true negatives (tn) 



and false negatives (fn) over the entire dataset was 

calculated.  As performance measures we use accuracy 

((tp + tn) / (tp + tn + fp + fn)), precision (tp / (tp + fp)) 

and sensitivity (tp / (tp + fn)).  The results for all filter 

dimensions achieve peak accuracy at a probability 

threshold of about 0.45 to 0.55. 
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Figure 6:  Accuracy, precision and sensitivity as a 

function of filter size at a probability threshold of 0.5. 

 

The accuracy, precision and sensitivity for different 

filter dimensions are plotted in Figure 6.  A constant 

probability threshold of 0.5 is used.  Peak accuracy of 

94.5% is achieved for dimensions of 3×3 and higher.  

The effect of using the box filter is clearly visible in the 

figure, improving from 93.8% for a 1×1 box filter 

(unfiltered image).  The box filter thus has the effect of 

smoothing areas which may be susceptible to noise or 

small reflections, as discussed in Section 2.1.3. 

It is interesting to observe the change in precision 

and sensitivity as a function of filter dimensions.  For 

larger filter dimensions there is an increase in 

sensitivity but a decrease in precision.  This means that 

for larger filter dimensions, there is an increase in the 

number of false positives and a decrease in the number 

of false negatives.  This provides a convenient 

performance trade-off which needs to be evaluated in 

terms of the requirements of the system. 

Given that the system makes a type I error (stating 

that an area is road in the case that it is not, i.e. more 

false positives), an obstacle map may be constructed 

indicating that a non-road cell is a road-cell and hence 

traversable.  This is a serious error that may lead to an 

accident.  In the case of a type II error (stating that an 

area in not road even if it is, i.e. more false negatives), 

the system will possibly mark some road cells as non-

road.  This will lead to the system simply avoiding 

such cells when traversing a path, or in the worst case, 

not being able to move.  Clearly, type I errors are far 

more severe than type II errors and a system with as 

few as possible false positive errors is preferred.  Thus, 

smaller filter dimensions are preferred over larger filter 

dimensions.  This can be explained quite intuitively by 

observing that for larger filter dimensions, small detail 

may be smoothed and thus lost.  There is also 

considerable smoothing at the road/non-road 

boundaries, where possible errors may be made.  A 3x3 

or 5x5 filter size seems to be the best choice. 

The usability of the system lies in the obstacle map 

that is created.  Type I errors in the obstacle map are 

obviously to be avoided.  Due to the averaging effect of 

the map over a number of pixels in the region, the 

obstacle map has the effect of smoothing small errors, 

at the risk truly neglecting small obstacles.  Depending 

on the mechanical structure and robustness of the 

vehicle, this may or may not be a concern.  More 

serious is the occurrence of Type I errors due to larger 

obstacles, which will cause damage or accidents.  The 

typical case is that such objects have similar colour 

characteristics as the road, making them 

indistinguishable to the classifier.  Such objects 

typically protrude above the ground and due to the 

projective nature in which the obstacle map is 

generated, will clutter the scene and cover many more 

grid cells than usual.  However, the covered grid cells 

will typically be further away than the cells at the feet 

of the object where it meets the road surface.  For 

example, the cells closest to the camera for the 

projection of a vehicle are typically the ones associated 

with the wheels of the vehicle.  The wheels of a vehicle 

typically are black, with a low probability of being 

classified as road.  Although cells further away may 

thus create Type I errors, they might not actually be 

reachable as part of path calculated by a local planner. 

 

3.3 Performance 

 

In this section, we discuss the performance aspects of 

the algorithm.  We assume that the digital image on 

which the algorithm is applied has a resolution of 

W×H.  As discussed in Section 2.2, we are only 

interested in the portion of the image below the 

projected horizon line.  For the purposes of this 

discussion, H will be the effective height, i.e. the 

number of horizontal scan lines below the projected 

horizon line (these scan lines form the effective 

region).  Strictly speaking, the region is actually 

narrower, since we are only interested in the portion of 

the image below the projection of the furthest end of 

the overlaid grid. 

The road probability is calculated by means of a 

lookup table.  The index into the lookup table can be 

calculated very efficiently using bit-shift and binary-or 

operations based on the colour coordinate of the pixel.  

In addition, two memory references are required (one 

for the actual colour lookup and one for the 

assignment).  This step requires a single pass through 

the image and could even be implemented on a parallel 

processing architecture. 

As discussed in Section 2.1.3, the smoothing filter 

requires constant time (about 6WH simple operations) 

and is completed in a single pass through the image.  

Efficient parallel processing algorithms also exist to 

implement box filters. 

The steps during grid projection (Section 2.2) 

require a calibrated camera.  However, all the 

calculations can be pre-computed, given a constant tilt 



angle.  In the case that the grid projection is calculated 

in real-time based on tilt angle information provided by 

an external sensor, the coordinates of the projected grid 

intersection lines need be to computed.  Given an m×n 

grid, this requires the calculation of (m+1)n x-

coordinates and the calculation of n+1 y-coordinates.  

Since m and n is typically much less than W and H, this 

would require no more complexity than is required for 

a single pass through the image. 

The determination of the local obstacle map 

(Section 2.3), require a that the average over the 

projected trapezium associated with each grid cell be 

computed.  This means that every pixel covered by the 

trapezium is visited once.  Pixels associated with 

trapezium boundaries are thus typically visited twice.  

In the far field, when the two parallel lines associated 

with the trapezium are projected onto a single scan 

line, each pixel could be used in more than two 

averaging calculations.  Given the back-projection 

scheme suggested in the final paragraph of Section 2.3, 

each pixel will only be visited once.  The thresholding 

step is executed as part of the calculation associated 

with each grid cell.  In general, the time complexity of 

this step is roughly equal to the number of pixels in the 

effective region. 

The method presented in this paper thus requires 

three passes through the effective region (four under 

the condition of changing tilt angle).  During each of 

these passes, only a few simple operations are done, 

which means that the algorithm executes very fast, 

achieving real-time speed for fairly large images. 

 

4.  Future Work 
 

One possible way of improving the road segmentation, 

is to incorporate a probabilistic approach based on 

texture, rather than colour.  Since texture may be a 

better distinguishing feature for a road surface than 

colour, especially with regard to greyish objects that 

may be visible in a scene, it is expected that fewer false 

positives will be generated.  An additional idea is the 

incorporation of a multi-scale approach, where texture 

probabilities over multiple scales are used during 

classification. 

Another area that requires improvement is the 

detection of lane markings.  Lane markings are falsely 

rejected as being part of the road surface, since they are 

not characterised well based solely on colour (more 

accurately, the training data provides many examples 

where the same colours are used in a different context 

than a road surface, hence the associated probabilities 

are lower).  The multi-scale texture-based approach 

may solve this problem. 

Finally, the algorithm is sensitive to the tilt angle of 

the camera relative to the ground plane.  Although it 

does not have a mayor effect in the near field, a 

fraction of a degree change in tilt angle may have a 

large effect in the far field.  In the absence of a sensor 

in the system that could directly measure tilt, 

techniques need to be developed to stabilise the image 

and determine tilt angle relative to a feature in the far 

field. 

 

5.  Conclusions 
 

A technique to segment a road surface from a digital 

image using a probabilistic approach was presented.  

Using a calibrated camera, a projection of a local 

obstacle map is laid over the segmented image and an 

estimate is made of the likelihood of drivable region in 

each occupancy cell.   

The technique performs reasonably well and has the 

advantage that it is fast enough that it can be 

implemented on a real-time system.  When used in 

conjunction with global and local path planning 

algorithms, the obstacle map can be used to achieve 

autonomous navigation in an autonomous vehicle. 
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