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Figure 1: A glossy transmission through roughened stained glass simulated in real-time.

Abstract

From the literature, it is known that backward polygon beam trac-
ing and other light volume methods are well suited to gather path
coherency from specular scattering surfaces. This is of course
useful for modelling and efficiently simulating caustics (LS+DE
paths). This paper generalises backward polygon beam tracing to
also model glossy scattering surfaces. To this end the details of
a backward polygon beam tracing model and implementation of
source-to-glossy-to-diffuse light transport (LG+DE) paths are re-
searched.
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1 Introduction

This section introduces the importance of and the problems asso-
ciated with the simulation of light transport for interactive global
illumination. The scope of the paper is then presented followed by
an outline of the structure.

1.1 Background

Global illumination refers to a rendering approach that attempts to
consider energy contributions from all possible light transport paths
between the light source and the eye. Monte Carlo ray tracing based
techniques are probably the only techniques that can handle the
complexity of the full rendering equation [Kajiya 1986] in large
and highly detailed scenes. Such techniques are however computa-
tionally expensive. The backward polygon beam tracing technique
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investigated in this paper may be used to efficiently approximate
(or at least lower the variance of a Monte Carlo simulation of) a
selection of the possible light transport paths.

The aim with polygon beam tracing is to gather similar light rays—
rays that intersect the same polygon—into a beam that may then
be processed as a unit. The advantage of beam tracing is that the
spatial coherence of the polygons in the image may be exploited to
do a smaller number of scene traversals than required for raytracing.

This paper assumes that a material Bi-Directional Scattering Dis-
tribution Function (BSDF) can be modelled as a linear combina-
tion of a specular component and a diffuse component. In a typi-
cal scene the light transport paths may then be differentiated based
on the sequence of diffuse (D) and specular (S) material interac-
tions that connects the light source (L) to the eye (E). Using Heck-
bert’s [1990] regular expression notation for light transport paths,
an LDE path is any path where energy from the source reaches
the eye via a single diffuse surface interaction. Similarly, an LSE
path is any path where energy from the source reaches the eye
via a single specular surface interaction. The energy transported
along each of these types of “direct illumination or single bounce”
transport paths has analytical solutions and can be simulated ef-
ficiently. Indirect illumination, on the other hand, refers to light
paths which include multiple surface interactions before reaching
the eye. Using Heckbert’s notation such a light path may be ex-
pressed as L(S|D)+E. However, the energy transported along each
L(S|D)+E path type does not, in general, have an analytical solu-
tion.

The simulation of the subset of LS+DE transport paths (also known
as caustics) is one aspect of this problem which has been solved
with much success. Examples of reflective and refractive caustics
are shown in Figure 2 and Figure 3 respectively. Recently, im-
plementations of high fidelity LS+DE transport models based on
variations of backward polygon beam tracing and also variations of
photon tracing have achieved interactive frame rates. Finding the
energy transported along the more general L(S|D)+E paths is how-
ever a hard problem to solve efficiently due to the slow convergence
of the rendering equation for diffuse interactions.

1.2 Scope of Work

The first bounce material model used in this paper is one of spec-
ular micro-facets with a negligible diffuse component. The micro-
facets’ gradients are assumed to be random with a Gaussian distri-
bution around the average surface normal as modelled by Torrance



and Sparrow [1967]. In the rest of this paper a specular material
with a large micro-facet variance such as polished car paint or sand-
blasted glass is referred to as a Glossy material (G interaction). An
S interaction is reserved to refer to an interaction from a specular
material such as a mirror that has a small micro-facet variance.

With a negligible first bounce diffuse scattering component, second
bounce indirect light transport paths now encompass the following
four path types:

• source-to-specular-to-specular-to-eye,

• source-to-specular-to-diffuse-to-eye (caustics),

• source-to-glossy-to-specular-to-eye, and

• source-to-glossy-to-diffuse-to-eye.

The Monte Carlo simulation of second bounce transport paths with
a diffuse or glossy first bounce suffers from a slow convergence
of the rendering equation. Therefore, of the above transport path
types, potential techniques for the interactive simulation of the last
type of paths (viz. LGDE) are explored further. The inherent ef-
ficiency of the backward polygon beam tracing technique in gath-
ering path coherency is the main motivation for investigating the
technique further. Existing backward beam tracing methods how-
ever only model LSDE transport paths.

This paper therefore explores the use of backward polygon beam
tracing to efficiently simulate dynamic L(S|G)DE transport paths.
In particular this paper:

• Analyses the shape of a first bounce glossy beam,

• describes a backward polygon beam tracing model of
L(S|G)DE transport paths, and

• presents a GPU implementation of glossy backward polygon
beam tracing.

Extending backward polygon beam tracing to include more gen-
eral light transport paths is a step towards efficiently implementing
second bounce global illumination.

1.3 Structure of Paper

Section 2 summarises the previous work done on backward poly-
gon beam tracing. The details and limitations of the existing LSDE
backward polygon beam tracing technique are then discussed in
more detail in Section 3. This is followed by the details of the pro-
posed glossy (LGDE) backward polygon beam tracing technique in
Section 4.

2 Previous work on Backward Beam Tracing

The set of works on interactive global illumination is vast. This pa-
per will only summarise a set of the most recently published papers
on the topic of backward polygon beam tracing.

Backward polygon beam tracing is presented by Watt [1990], but
is related to both polygon beam tracing [Heckbert and Hanrahan
1984] and backward raytracing [Arvo 1986]. Heckbert and Han-
rahan traced polygon beams from the eye through the scene in-
stead of rays as in traditional forward raytracing. The advantage
of beam tracing is that the spatial coherence of the polygons in the
image may be exploited to do a smaller number of scene traversals
than required for raytracing. Heckbert and Hanrahan also suggested
tracing beams from the light source as Watt did with the backward
polygon beam tracing technique. Arvo [1986] re-iterated the value
of backwards raytracing; that is tracing rays from the light source
instead of from the camera as is done in more traditional forward

Figure 2: A cardioid caustic (40× 2 scattering triangles) rendered
in real-time with backward polygon beam tracing.

Figure 3: Caustics from a fluid’s surface (20 × 20 × 2 scatter-
ing triangles) rendered in real-time with backward polygon beam
tracing.

raytracing. Arvo used backward raytracing to render caustics which
could not efficiently be simulated using the high fidelity forward
raytracing and radiosity rendering techniques of the time. Similar
to what Heckbert and Hanrahan proposed and did, Watt used back-
ward polygon beam tracing to improve upon the rendering of caus-
tics by exploiting the spatial coherency of polygons, but from the
light’s point of view. Watt used the backward polygon beam tracing
technique to realistically render the caustics typically found below
the surface of a fluid such as on the bottom of a swimming pool. He
used projected caustic surface detail polygons, light volumes simi-
lar to Nishita et al. [1987] and a raytrace forward renderer to render
caustics and single scattering of the light beams in the participating
medium.

Nishita and Nakamae [1994] use a scan-line based renderer with
an accumulation buffer and illumination volumes to simulate caus-
tics without the need for an expensive raytrace pass. Their method
can produce caustics on curved surfaces and includes shadows by
making use of the z-buffer.

Chuang and Cheng [1995] can handle non-polygonal illuminated
surfaces by searching the light beams within which any intersec-
tion point resides. Their light beams are enclosed in a hierarchy of
bounding cones for more efficient point-in-beam detection.

Briere and Poulin [2000] use a light image to adaptively refine and
construct light beams from the light source. They are also able
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Figure 4: A fragment lit by a polygon scatterer source.

to handle single scatter participating media. The beam wavefront
is evaluated at the intersections of the edges of the beam with a
surface allowing smooth interpolation of flux density for surface
points within the beam. A hierarchical structure encloses the light
beams for efficient point in beam evaluation.

To further address the problem of efficiency, Iwasaki et al. [2002]
make use of graphics hardware to accelerate Nishita and Naka-
mae’s [1994] beam tracing method. They preserve the abilities
to render caustics on curved surfaces and to include shadows.
Iwasaki et al. [2003] propose an extension to the work by Iwasaki et
al. [2002] in which an object is expressed by a set of texture mapped
slices. The intensities of the caustics on an object is then calculated
by using the slices. They further implement reflection and refrac-
tion mapping of the caustic slices to render objects as seen in a
reflection or below a refractive fluid surface.

Backward polygon beam tracing has recently also been used by
Ernst et al. [2005] to simulate LSDE transport paths. They used
warped polygon beam volumes, interpolation of beam energies and
a GPU implementation to improve the quality and the execution
performance.

All of the above backward beam tracing methods model only LSDE
transport paths to specifically render caustics. More recent meth-
ods [Ihrke et al. 2007][Shah et al. 2007][Wyman 2008][Sun et al.
2008][Umenhoffer et al. 2008][Zhou et al. 2008][Spencer and Jones
2009][McGuire and Luebke 2009] for rendering LSDE caustics all
focus on GPU accelerated photon- and ray-tracing with impressive
results in terms of both quality and performance. The problem of
efficient simulation of L(G|D)DE transport paths is however still
unsolved due to the loss of coherency when sampling the larger
glossy and diffuse rendering equation domain.

3 Backward Polygon Beam Tracing

This section gives more details on the traditional backward poly-
gon beam tracing technique that models and simulates only LSDE
transport paths. An implementation approach similar to Chuang
and Cheng [1995] is followed in which each diffuse receiver sur-
face is shaded by searching for the light beams within which its
fragments’ world positions reside. The advantage of Chuang and
Cheng’s method in being able to illuminate any type of diffuse re-
ceiver, whether it be curved or flat, is preserved.

In this paper the scattered polygon beams are however not handled
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Figure 5: The flux plane and flux triangle AFBFCF .

as a swept polygon, but rather uniquely scattered vectors with con-
nectivity information which results in an implicit warped volume.
Propagating the beam as a triplet of associated vectors instead of a
simple swept polygon shape with planar sides allows the smooth
surface represented by the mesh normals and the resulting light
beams to be appropriately decoupled from the triangular surface
mesh.

3.1 Modelling LSDE Transport Paths

To model light-to-specular transport paths a polygon beam is traced
to each specular scattering surface. Such a surface may be specular
reflective or it may be specular transmissive with a specified refrac-
tion index. The scattered light beam is modelled by individually
scattering the three vertex edges of the incoming beam as shown
for a reflected beam in Figure 4. A shadow beam is modelled as
three shadow vectors. Each triplet of vectors is associated with a
beam flux that is conserved within the beam.

During the final forward rendering pass each diffuse surface frag-
ment is evaluated for whether or not it is in any scattered beams
and therefore lit by specularly scattered light. Whether or not a
fragment is in a beam is tested by first intersecting the three scat-
tered vectors with a virtual flux plane that is perpendicular to the
average wavefront normal and includes the fragment. The three
intersection points are then connected into a specular flux triangle
(triangleAFBFCF in Figure 5) and the fragment-in-beam test may
be reduced to whether or not the fragment (F) is within the flux tri-
angle. The beam’s cross sectional area (area AFBFCF ) is used to
calculate the in-beam flux density (the cross sectional Watt/m2)
and finally the resulting irradiance at the fragment’s position.

This technique can be used to model reflective and refractive caus-
tics as previously shown in Figure 2 and Figure 3 respectively. In
these scenes the cylindrical reflector is composed of a mesh of 80
specular scattering triangles and the water surface is composed of a
mesh of 800 specular scattering triangles.

Simple local visibility is included by only scattering from the front
side of a polygon. First order shadows—shadows directly due to
the light source—may be included in a number of ways such as



Figure 6: A side view cross-section of the Monte-Carlo photon den-
sity results with the extracted iso-surfaces. Left: Small micro-facet
variance. Right: Large micro-facet variance.

shadow-buffering discussed by Ernst et al. [2005]. In this paper
however first order shadows are efficiently generated by tracing a
negative shadow beam in addition to the scattered polygon beams.
Collins [1995] and others have used negative splatting and nega-
tive photons before, but it would seem that this technique of using
negative energies has not previously been used with backward poly-
gon beam tracing. Figure 2 shows the inclusion of such first order
shadows.

A simple GPU implementation of the technique was done to render
the example scenes. Each specular reflector is implemented as a tri-
angle mesh surface with shared vertices, shared vertex normals and
vertex colours as appropriate. A GLSL fragment shader is executed
for all diffuse surfaces. The shader executes the fragment in light
beam test for all scattered and shadow beams.

3.2 Analysis and Limitations

The traditional backward polygon beam tracing model of light
transport has some limitations. The biggest limitation is that back-
ward polygon beam tracing does not model scattering from glossy
and diffuse polygons.

Another limitation is that second order shadows (scattered beams
being blocked by polygons) are not included in the light transport
model. Including such effects would require expensive clipping or
sub-division of the scatterer geometry.

4 Formulating Glossy Backward Polygon
Beam Tracing

Traditional backward polygon beam tracing models the light trans-
port paths as radiated from a point light source, then scattered by a
specular polygonal surface and finally scattered (second bounce) by
a Lambertian (diffuse) surface before reaching the eye. This section
investigates the shape of the light volume or beam that is required to
successfully model first bounce glossy interactions using backward
polygon beam tracing. The renderer that was built to render the
caustics shown in the previous section is extended to render glossy
interactions.

4.1 Analysing LGDE Transport Paths

The shape of a glossy beam may be analysed via a simple Monte-
Carlo photon tracing simulation. Figure 6 shows a side view cross
section of the resulting photon density plots for a relatively smooth
surface (left) and a rough surface (right). Photons are emitted from

a point source in the top left corner of the image and reflected off a
polygon surface at the bottom. The polygon is about half the width
of the image and only the reflected photon density is shown. The
black to white gradient in the plot indicates an increasing photon
density towards the reflecting surface. The extracted contour lines
are shown to clearly visualise the shape of the photon density iso-
surfaces.

Although accurate, a photon tracing simulation is computationally
expensive as many photons are often required for the results to con-
verge. It is however possible to build a glossy beam model to ef-
ficiently approximate the photon tracing results as discussed next
and in Section 4.2.

Figure 4 shows a triangle scatterer illuminating a fragment F on the
ground plane. P is a point on the polygon scatterer. The irradiance
E on a fragment within a specular beam (from a specular scatterer)
may be expressed as:

E =
Φs

A⊥
cos θ. (1)

Φs is the specular beam flux (i.e. the flux that is contained and
conserved within the specular beam). Φs is equal to the radiant in-
tensity Ilight of the point light multiplied by the solid angle Ωlight

of the triangle scatterer as measured from the light. That is:

Φs = IlightΩlight.

A⊥ is the flux triangle’s area (areaAFBFCF in Figure 5). The flux
triangle lies on a flux plane that includes the fragment position, but
is orthogonal to the average wavefront normal. θ is the incoming
radiance angle measured from the fragment’s normal.

For LSDE transport paths the energy density at F is the result of
an energy contribution from a single specular scattering direction.
Generalising the fragment irradiance to fragment positions within
and outside of the specular beam may therefore be expressed as:

E =
Φs

A⊥
cos θ

∫
Ω

δ(φ)dφ. (2)

The domain Ω is the domain of φ angles over the scatterer and δ()
is the Dirac delta function. Equation 2 very simply states that the
fragment irradiance is given by E = Φ

A⊥
cos θ (which is Equa-

tion 1) when φ = 0 is included in the integration domain Ω. In
other words, the fragment is illuminated when an LSDE transport
path can be found that connects the fragment to the light source via
the triangle scatterer. Otherwise E = 0 and the fragment is not
illuminated. Figure 7 visually shows how, in two dimensions, the
specular beam irradiance that is received at the fragment’s position
may be expressed as an integral over a Dirac delta function.

When the fragment is instead illuminated by a glossy scatterer
(LGDE transport paths) the energy density can only be expressed
as the result of integrating the glossy scattered contributions from
all points on the polygon scatterer. The Dirac delta probability dis-
tribution is therefore replaced by a glossy probability distribution
ρ(φ):

E =
Φs

A⊥
cos θ

∫
Ω

ρ(φ)dφ. (3)

Note that the specular beam flux Φs is still used and that the specu-
lar scatter direction is still the mean of the probability distribution.
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Figure 7: A 2D side view of a fragment lit by a specular polygon
source.

However, in this case there is no longer just one specular transport
path that illuminates a specific fragment. A fragment’s illumina-
tion is now due to the weighted integral over many LGDE transport
paths and the way in which the glossy paths are weighed are of
importance. Figure 8 visually shows how, in two dimensions, the
glossy beam irradiance that is received at the fragment’s position
may be expressed as an integral over a glossy distribution function.

One can of coarse also express E as:

E =
Φs

A⊥
cos θ

∫
Ω

ρ(φ(ω))φ′(ω)dω, (4)

where Ω is the hemispherical (solid angle) integration domain.

Note however that the integral part of Equation 3 (viz.
∫
Ω

ρ(φ)dφ) is

simply an expression for the volume over the 2D integration domain
Ω and under the scatter distribution ρ(φ). The calculation of the
volume may be replaced by a piecewise approximation:

∫
Ω

ρ(φ)dφ =
n∑

i=1

ρi

∫
Ωi

dφ

=

n∑
i=1

ρiΩi,

where ρi is the average ρ over Ωi and Ω1 + Ω2 + ...+ Ωn = Ω.
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Figure 8: A 2D side view of a fragment lit by a glossy polygon
source.

This leads to:

E =
Φs

A⊥
cos θ

∫
Ω

ρ(φ)dφ

≈ Φs

A⊥
cos θ

n∑
i=1

ρiΩi. (5)

The calculation of the domain Ω is quite important and discussed
further in Section 4.2. When the integration domain includes φ = 0
and the standard deviation is much larger than the standard devia-
tion of ρ one finds that

∫
Ω

ρ(φ)dφ ≈
∫
Ω

δ(φ)dφ = 1. Therefore, as

expected, (1) = (2) ≈ (3) when the fragment is within a specular
or relatively low variance glossy beam.

4.2 Modelling LGDE Transport Paths

The goal of this section is to describe an analytical predictive LGDE
light transport model within the experimental frame of specular
micro-facet materials. In other words, the model describes an ap-
proximate analytical solution to the lighting integral for all configu-
rations of a surface fragment1 illuminated by a specular micro-facet
polygon scatterer as shown previously in Figure 4.

For the specular micro-facet material model the scatter distribution
ρ(φ) is a normalised 2D Gaussian distribution. The normalised

1Note that this paper assumes the following definition of a fragment:
A fragment is the part of a larger surface that is behind (and projects to)
an associated pixel on the image plane. The dimensions of a fragment are
usually assumed to be relatively small when compared to the dimensions of
the scene.
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2D Gaussian function represents the probability distribution of the
scattered light and the average of the distribution is the specular
(smooth surface) scatter direction. It is assumed for the moment
that the distribution is spherically symmetric with a specified vari-
ance.

This proposed LGDE light transport model applies Equation 5 to
express the lighting integral (to gather the fragment irradiance from
a glossy beam) as a function of the volume under the Gaussian
probability function ρ(φ). The 2D integration domain Ω under the
Gaussian function is approximated as discussed below to allow an
efficient estimate of the volume under the probability distribution.
The lighting integral (to gather the fragment irradiance) is then fi-
nally approximated as a function of the volume over Ω and under
the 2D Gaussian probability distribution.

The following two important aspects of the light transport model
are described in more detail:

• Section 4.2.1: Finding an approximate mapping from the
world space domain of the polygon scatterer to a 2D trian-
gular domain in Ω.

• Section 4.2.2: Approximating the volume over the triangular
domain and under the 2D Gaussian probability distribution.

The resulting volume is in effect the probability that the fragment
will receive the same irradiance that a fragment inside a specular
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O O
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D

Figure 10: The lighting integral may be approximated as a func-
tion of the volume under a normalised 2D Gaussian function over a
triangular domain ABC (also shown in Figure 9). Left: The frag-
ment, located at O, is within the specular flux triangle. Right: The
fragment, located at O, is outside the specular flux triangle.

beam would receive. The final irradiance received at the fragment’s
position is equal to the volume, multiplied by the specular beam ir-
radiance on the flux plane and projected to the fragment with cos θ.

4.2.1 Mapping from World Space to a 2D Triangular Domain

Figure 9 shows the flux triangle AFBFCF and the scatterer tri-
angle vertices AW , BW and CW . The scatter angles φa, φb and
φc between the lines AWF , BWF and CWF and their associated
specular scatter directions AWAF , BWCF and CWCF (see angle
φa and φb in Figure 8) may be directly calculated.

The goal is to now create a 2D scatter angle domain Ω as discussed
in Section 4.1. Points A, B and C are chosen on the edge of the
domain and placed at angular distances φa, φb and φc from the
centre (φ = 0) to represent the scatterer vertices in the angular
domain. Since the angles φa, φb and φc were measured from the
fragment position, φ = 0 represents the fragment position in the
angular domain.

Once the angular distances to the vertices A, B and C are known
then only their relative directions are required to calculate their po-
sitions using direction · length. The directional position of the ver-
tices around the centre of Ω, viz. O, are however the same as the
directional positions of AF , BF and CF around F as shown in
Figure 9. The mean of the Gaussian distribution is only inside Ω
when the fragment is within the specular flux triangle and outside
otherwise.

To construct the A, B and C vertices on the edge of Ω, the nor-
malised direction vectors (la = AF−F

‖AF−F‖ , lb = BF−F
‖BF−F‖ and

lc = CF−F
‖CF−F‖ ) from the fragment position to each of the vertices in

the flux plane are first calculated. The vertex A is finally expressed
as A = φa · la. Similarly vertex B may be expressed as B = φb · lb
and vertex C as C = φc · lc. Triangle ABC therefore lies on a
plane parallel to the flux plane, but now in a frame of reference that
has the fragment position at its centre O. The distances AO, BO
and CO are angles and equal to φa, φb and φc respectively.

The assumption is made that the domain Ω may be approximated
by the triangular domain ABC as shown in Figure 10

4.2.2 Approximating the Volume under a 2D Gaussian

The volume over the triangular domain under a 2D Gaussian distri-
bution does not have an analytical solution. The Gaussian surface



1. First, find the fragment’s probability value PO at the centre of the
distribution:

PO = 1
2πσ2

2. Then, find the volume PE :

PE = 0.5∗‖AOB ·PAOB+BOC ·PBOC+COA ·PCOA‖.
PAOB is the average of the probability values at A, O (centre) and B.

AOB = φa · la × φb · lb as discussed in Section 4.2.2.

3. Finally, the irradianceE is calculated as:

E = Φs
A⊥

cos θ min(PE , 1.0) [see Equation 3].

θ is the incoming irradiance angle, and Φs and A⊥ are the CPU cal-
culated beam flux and flux triangle area as discussed above.

Figure 11: Calculation of the volume PE and the irradiance E
when the fragment is within the flux triangle.

may however be approximated by a polygon mesh and the volume
under a polygon is simply the area of its 2D domain times the aver-
age probability (see Equation 5). The volume under the 2D Gaus-
sian function is currently approximated by tessellating the surface
over the triangular domain ABC as shown in Figure 10.

To prevent visual anomalies for a single triangle scatterer an impor-
tant consideration for the volume calculation is that there should
be no discontinuities between the volumes calculated for fragment
positions within and outside of the flux triangle. To prevent vi-
sual anomalies for a plate of polygon scatterers a second important
consideration for the volume calculation is to approximate the scat-
ter distribution as close as possible. Note that this statement holds
regardless of the distribution, but a Gaussian distribution approxi-
mates the specular micro-facet reality.

When the fragment is within the specular flux triangle then the tri-
angular domain includes the peak of the Gaussian distribution as
shown on the left in Figure 10. In this case three polygons are used
to approximate the Gaussian surface.

When the fragment is outside of the specular flux triangle then the
triangular domain does not include the peak of the Gaussian distri-
bution. The edge closest to the peak may however contain a local
maximum as shown on the right in Figure 10. In this case two poly-
gons are used to approximate the Gaussian surface. The edge that
is intersected at the point D by one of the φa · la, φb · lb or φc · lc
vectors is split there to more closely match the Gaussian surface
profile.

The area of each triangular domain is calculated by using the cross
product rule. For example, when the fragment is within the flux
triangle then

Area ABO = 0.5 ∗ ‖(φa · la)× (φb · lb)‖.

When the fragment is outside the flux triangle then

Area ABD = 0.5 ∗ ‖(a · la)× (b · lb) + (b · lb)× (d · ld)‖.

The volume under all the polygons are finally calculated and the re-
sult clamped to unity. The tessellated surface however only approx-
imates the 2D Gaussian function. A better approximation could
lead to a more accurate volume calculation and results that approx-
imate reality more closely.

4.3 The GPU Implementation

The GPU implementation of the LGDE backward polygon beam
tracer is an extension of the LSDE GPU implementation mentioned

1. Firstly, given the flux triangle vertices AF , BF and CF in the flux
plane and the flux triangle normal NF , the flux triangle edge normals
N0,N1,N2 are calculated as follows:

N0 = (BF − AF )×NF ,

N1 = (CF − BF )×NF ,

N2 = (AF − CF )×NF .

2. Given the fragment position F, if ((F − CF ) · (N1) < 0.0) and
((F − CF ) · (N2) < 0.0) then the split pointD (see Figure 10) is
on edge AB. Similar tests are done to see if D doesn’t instead fall on
edgesBC or CA.

3. If the split point is on an edge: Then, the intersection vertex D on the
flux plane, viz. DF , is used to parameterise the triangle edge with a
scalar, s. The parameter is then used to calculate the vertex DW on
the scatterer triangle and the specular scatter direction SD fromDW .
SD , DW and DT are used to find PD and φd · ld. Once PD and
φd · ld are known then ifD splits edgeAB:

PE = 0.5 ∗ ‖COA+ AOD‖ · PCAD +

0.5 ∗ ‖BOC +DOB‖ · PCAD

A similar PE calculation is performed when D splits edge BC or
CA instead.

4. If there is not a split point (when A, B or C is closer to the fragment
than a split point D would be):
PE = 0.5 ∗ ‖AOB + BOC + COA‖ · PABC is simply given
by the volume over the triangular domain ABC.

5. Finally, the irradianceE is calculated as:

E = Φs
A⊥

cos θ min(PE , 1.0) [see Equation 3].

θ is the incoming irradiance angle, and Φs and A⊥ are the CPU cal-
culated beam flux and flux triangle area as discussed above.

Figure 12: Calculation of the volume PE and the irradiance E
when the fragment is outside of the flux triangle.

in Section 3. The specular polygon beams are generated on the
CPU. The CPU code traces rays from the light source through the
vertices of each scatterer to generate the reflected, refracted and
shadow rays. The scattered and shadow rays are then grouped into
polygon beams. OpenMP is used to parallelise the beam construc-
tion over the available CPU cores.

Once constructed the polygon beams are packed into an OpenGL
texture for upload to the GPU. Each beam currently consumes 8
RGBA texels to store all of its attributes. The beam attributes re-
quired by the shader are:

• The specular red, green and blue beam flux (Φs = Ilight ·
Ωlight calculated by the CPU) and the generator’s micro-facet
variance,

• the generator plane’s normal and offset,

• the three polygon vertices, and

• the three scattered or shadow vectors.

For each fragment, the GPU shader then linearly iterates over all the
polygon beams. The linear traversal should however in future be
replaced with a hierarchical traversal similar to the cone hierarchy
traversal used by Chuang and Cheng [1995]. This would allow the
early culling of groups of beams which do not contribute to the
current fragment.

For each beam the flux plane and flux triangle is calculated and
used to test whether the fragment is inside or outside the specular



beam. Once a beam’s flux triangle is found and the in-beam test has
happened the irradiance that the beam contributes to the fragment’s
surface may be calculated. When the fragment is within the flux
triangle then the shader calculates the volume PE and the irradiance
E as shown in Figure 11. However, when the fragment is outside of
the flux triangle then the shader calculates the volume PE and the
irradiance E as shown in Figure 12.

4.4 Results

Figure 13 contain results of modelling transmissive glossy interac-
tions. It shows a stained glass window lit from behind with varying
roughness of the glass. The variance of the micro-facet distribution
is increased to the right as if sandblasting the window with a courser
and courser grain. Note that the energy of the glossy beams have
been elevated for clarity.

Figure 13: Transmitted glossy beams from glass with small to large
micro-facet variance.

Figure 14 shows how glossy reflecting surfaces may also be approx-
imated by the micro-facet material model. The left figure shows a
very large micro-facet variance which results in an extremely fuzzy
(glossy) reflection from the pattern. The right figure shows an even
larger micro-facet variance which results in a surface with reflection
properties that approach that of a diffuse surface.

Figure 14: Reflected glossy beams from a stained glass window
with very large micro-facet variance.

The simulation performance on a Macbook Pro 13” notebook with
a 2.26 GHz Intel Core 2 Duo CPU and an NVIDIA Geforce 9400M
GPU is around 6 frames per second for the scene shown in Fig-
ure 13 at a resolution of 640x480 pixels. The scene shown in Fig-
ure 14 achieves a performance of around 1 frame per second at the
same resolution. The current performance bottleneck appears to be
the shader execution time which is due to the linear scene traver-
sal. Table 1 gives more results for the second scene which shows
the near linear dependence of performance on the number of GPU
cores.

Table 1: Performance Results for the scene shown in Figure 14

GPU # Cores Performance
9400M 16 1.8 FPS
9600GT 64 10 FPS
GTS 250 128 20 FPS
GTX285 240 39 FPS

4.5 Analysis and Limitations

The L(S|G)DE model is physically based and uses an established
specular micro-facets material model, but includes the following
approximations to allow a simpler model and an efficient imple-
mentation:

• The scatter distribution is currently assumed to be radially
symmetric.

• The beam flux density is assumed to be constant over any
beam cross section which is orthogonal to the average wave-
front normal.

• The integration domain Ω is approximated by a triangular do-
main ABC.

• The 2D Gaussian function is approximated by a low number
of polygons that are adaptively tessellated over the triangular
domain ABC.

Removing or improving any of the above approximations would
improve the fidelity of the glossy backward polygon beam model to
better approximate reality.

The current implementation uses a linear beam traversal. The im-
plementation’s performance is therefore linearly related to the num-
ber of scattering polygons and not really scalable to large scenes.

Currently the light field is only implicitly specified by the glossy
light volume. The light volumes do therefore not encode enough
information to deduce the light field’s angular distribution. This
information is however required to model second order shadows
from glossy scatterers and many-bounce interactions.

A further limitation is that surface details are only accurately rep-
resented by the light volumes if the surface geometry matches the
scale of the surface details. Including high frequency surface de-
tail therefore requires a micro-polygon surface tessellation step to
set up the light volumes, although the micro-polygons need not be
rendered.

5 Conclusion

5.1 Discussion

A very large number of photons or rays are typically required to
render LGDE transport paths with techniques such as ray tracing
and photon mapping. It is therefore traditionally very difficult to
render these transport paths at interactive frame rates.

Backward polygon beam tracing has successfully been extended to
model L(S|G)DE transport paths. The efficiency of backward beam
tracing in gathering path coherency was also exploited to render
these transport paths at interactive frame rates on entry-level hard-
ware. Extending backward polygon beam tracing to include glossy
light transport paths is a step towards efficiently implementing sec-
ond bounce global illumination.



The remaining limitations of L(S|G)DE backward polygon beam
tracing are:

• The listed approximations that limit the model fidelity.

• The O(n) performance of the current linear beam traversal im-
plementation.

• Many bounce glossy interaction cannot yet be modelled.

• Second order shadows are not yet included in the light trans-
port model.

• Including high frequency surface detail requires a micro-
polygon surface tessellation step to set up the light volumes.

5.2 Future Work

A rigorous account of energy, to qualify the LGDE transport model
as physically based and approximating reality, is still outstanding.
Once this is done the implementation should be verified against the
qualified model and finally operationally validated against reality.
The listed approximations in building the model may then be im-
proved as required.

Adding a non-zero diffuse component to the material model and us-
ing a more accurate micro-facet distribution as discussed by Cook
and Torrance [1982] should also be investigated in future to im-
prove the fidelity of the glossy beam tracing model. The inclusion
of many bounce glossy transport paths and second order shadows
(polygons obstructing the light volumes) should also be investi-
gated.

A beam hierarchy similar to the cone hierarchy used by Chuang
and Cheng [1995] is required for efficient traversal of the beam set
when many hundreds of beams are used in larger scenes. OpenMP
is currently used to generate the beams concurrently on the multiple
processor cores of the host CPU. The use of CUDA and OpenCL is
however being considered to accelerate the beam construction and
potentially the forward rendering pass.
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