
Implementation of the Lucas-Kanade Image Registration Algorithm on a GPU for
3D Computational Platform Stabilisation

Bernardt Duvenhage∗, JP Delport† and Jason de Villiers‡

Council for Scientific and Industrial Research

Figure 1: Wide-Angle View of the Durban Coastline - Stitched and Stabilised

Abstract

Image registration forms the basis of many computer vision tasks.
The Lucas-Kanade image registration algorithm is known to ef-
ficiently solve the sub-problem of rigid image registration. It is
therefore often used in image stabilisation applications. This pa-
per presents the details of a real-time implementation of the Lucas-
Kanade image registration algorithm on a Graphics Processing Unit
(GPU) using the OpenGL Shading Language (GLSL). The imple-
mentation is driven by a real world requirement to computationally
stabilise the undulatory motion of an ocean-based wide area surveil-
lance system.

CR Categories: I.4.3 [Computing Methodologies]: IMAGE PRO-
CESSING AND COMPUTER VISION—Enhancement;

Keywords: Lucas-Kanade, Image Stabilisation, Graphics Process-
ing Unit

1 Introduction

This paper investigates an implementation of the Lucas-Kanade
image registration algorithm on a parallel Graphics Processing
Unit (GPU). The implementation requirement stems from the need
to computationally stabilise the undulatory motion of a real-time
ocean-based wide area surveillance system. The background to the
problem is introduced followed by the scope of the work and the
structure of the paper.

∗e-mail: bduvenhage@csir.co.za
†e-mail: jpdelport@csir.co.za
‡e-mail: jdvilliers@csir.co.za

1.1 Background

The need to do real-time image registration arose from a real-
world requirement to do 3D computational platform stabilisation
in a Wide Area Surveillance Prototype (WASP). WASP is aimed at
providing an automated all-weather, 24 hour, omnidirectional so-
lution to fulfil the surveillance needs of the South African (SA)
Armed Forces, with the SA Navy being the primary client. An
array of cameras staring radially outward provides up to a full 360◦

surveillance capability. The system is capable of detecting and
tracking targets that are traditionally difficult for Radio Detection
And Ranging (RADAR) sensors to detect (such as small wooden
craft only a few hundred meters away). By using the latest low-
light cameras, or increasingly inexpensive infrared cameras, night
and adverse weather conditions can also be catered for. High res-
olution video streams from synchronised cameras are seamlessly
stitched into a single wide-angle image. This is then followed by
foreground/background separation, target detection, target tracking
and motion prediction, and threat assessment as appropriate. Im-
age registration is used to compute the transform that would warp
the wide-angle image to remove the undulatory motion of the plat-
form. Removing the effects of the platform motion in this way com-
putationally stabilises the surveillance system for effective fore-
ground/background separation and tracking.

The release of version 1.2 of the Open Graphics Library (OpenGL)
in March of 1998 provided an optional imaging subset of com-
mands to enable parallel convolutions on images, on the fly his-
togram computations and other image processing functions on
the graphics hardware of the time. Recent developments in
many/multi-core processors have resulted in the GPU and OpenGL
becoming more and more suited to general purpose image pro-
cessing tasks. Languages such as OpenGL’s Shading Language
(GLSL), the Compute Unified Device Architecture (CUDA) ex-
tensions to the C programming language and the Open Compute
Language (OpenCL) now allow general purpose programmability
of GPUs. This paper investigates the use of GPUs to accelerate the
image registration implementation.

Block based image registration methods are the simplest. These
compute correlation scores between the reference image and a set
of candidate displaced images. A correlation score is typically
calculated by taking the sum of absolute differences or sum of
squared differences between the candidate displaced image and
the reference image. Horn and Schunck [1981], and Lucas and



Kanada [1981] however presented optimised variational methods
to compute optical flow that may be used to do image registration.
The Lucas-Kanade (LK) algorithm is chosen for the current appli-
cation for its known accuracy, robustness and suitability to a parallel
implementation [Strzodka and Garbe 2004][Besnerais and Cham-
pagnat 2005][Marzat et al. 2009]. The LK algorithm of course op-
erates under a brightness constancy assumption of the captured im-
age stream, but this does not pose a problem at real-time frame rates
during normal daylight video sequences.

The Lucas-Kanade image registration algorithm has previ-
ously been implemented on the GPU [Strzodka and Garbe
2004][Besnerais and Champagnat 2005]. Marzat, et al. [2009] also
very recently did a GPU implementation using CUDA. The current
paper however details the implementation of the LK algorithm in
an existing performance critical surveillance system to do real-time
3D computational platform stabilisation. The performance result
achieved by a pure GPU algorithm like that of Marzat, et al. is im-
proved upon by implementing all algorithm steps for both the GPU
and CPU. This is useful because not all the algorithm steps can be
parallelised and the CPU is a more powerful sequential processor
than the GPU. Therefore, when a system is deployed, the optimal
CPU to GPU load balance may be selected for maximum perfor-
mance of the stabilisation within the larger surveillance system.

Two regions of interest (see the greyed blocks in Figure 1) are regis-
tered in the high resolution wide angle image to allow very accurate
registration under translation and rotation or to do 3D platform sta-
bilisation as discussed in Section 4. To save on hardware resources
an LK implementation is built that can register two input streams si-
multaneously. GLSL is used for the implementation because most
of the existing surveillance system algorithms are implemented in
GLSL. CUDA or OpenCL can however also be used if preferred.

1.2 Structure

As mentioned, this paper investigates the feasibility of a rigid image
registration algorithm and parallel implementation that:

• Can flexibly balance the load between the CPU and GPU to
optimally make use of the available resources, and

• would be efficient enough to enable 3D computational plat-
form stabilisation in real-time.

Execution at 20 frames per second (fps) is considered real-time,
but the algorithm will finally operate as part of a larger pipeline of
processing steps.

The Lucas-Kanade image registration algorithm is discussed briefly
in Section 2, followed by the details of the proposed GPU imple-
mentation in Section 3. The implications of applying the Lucas-
Kanade implementation to do real-time 3D computational platform
stabilisation, and the performance results in doing so, is given in
Section 4 and Section 5 respectively. Some concluding remarks
followed by recommendations for future research is finally given in
Section 6.

2 The Lucas-Kanade Image Registration Al-
gorithm

Image registration is the process of finding the transformation re-
quired on an input image to align it with some reference image.
Further, rigid image registration implies that the transformation at-
tempted does not warp the input image as shown in Figure 2. Reg-
istering from the left to the centre image is a rigid image trans-
formation, but from the left to the rightmost image is a non-rigid
transformation.

ROI ROI ROI

Rigid 
Transformation

Non-Rigid 
Transformation

Unregistered 
Input Image

Figure 2: Rigid vs. Non-Rigid Image Registration

To introduce the Lucas-Kanade algorithm a brute force image regis-
tration algorithm is discussed first. The optimisations implemented
by the Lucas-Kanade algorithm are then introduced.

Figure 3: Image Registration

The Region of Interest (ROI) shown in Figure 3 refers to the area of
the input image that the registration calculations are applied to. A
search box around the ROI implements the maximum registration
translation (up, down, left and right) considered when calculating
the registration transformation. The registration vector (or h-vector)
is the transformation that registers an input image to its reference
image. One h-vector, and therefore one ROI, is required to register
an image under translation.

Two spatially separated h-vectors, and therefore two spatially sepa-
rated ROIs, are used to register an image under translation and very
accurately under rotation. The two ROIs and their respective h-
vectors set up a 2 dimensional referenced axis system within which
rigid registration under translation and rotation is possible as shown
in Figure 4. Two ROIs are also required for 3D platform stabilisa-
tion discussed in Section 4.

A brute force image registration algorithm attempts to minimise a



ROI Left ROI Right

ROI Left

ROI Right

ROI Left
ROI Right

Figure 4: Registration Under Rotation From Two Translations

difference metric, usually the sum of squared differences or sum
of absolute differences, within the ROI window. This is the simple
block based method mentioned in the introduction. The registration
is accomplished by computing the difference metric between the
reference and input image for all candidate integer h-vectors within
the predefined search box. The image registration operation then
involves choosing the h-vector that minimises the difference metric.

Although such a brute force algorithm achieves pixel level accu-
racy, it is not very efficient and does not offer real-time perfor-
mance on current hardware platforms. The first optimisation that
the Lucas-Kanade algorithm introduces is to use a multi-resolution
approach that finds the registration h-vector at a coarse detail level
and then hierarchically refines it. The second optimisation is to find
the best h-vector via a Newton-Raphson iterative optimisation in-
stead of searching over the entire h-vector domain.

2.1 The Multi-Resolution Optimisation

In a multi-resolution approach the image registration operation (the
h-vector search) is initially done on a low resolution version of the
input and reference images. The result is then iteratively refined at
consecutively higher resolution versions of the input and reference
images until the highest resolution has been processed.

Imagine that the multiple resolutions of each image forms an image
pyramid as shown in Figure 5. It is clear that the ROI in a lower
resolution image contains less pixels than in a higher resolution im-
age simply because there are less pixels in a low resolution image.
For a native resolution ROI of 512× 512 pixels and 6 levels in the
pyramid, the lowest resolution ROI is only 16 × 16 pixels. More

1x1

4x4

2x2

Figure 5: Multi-Resolution Image Pyramid

importantly, a low resolution search box of 3 × 3 pixels which re-
quires only 9 search operations is equivalent to a maximum transla-
tion registration of (25+24+23+22+21+20) = 63 pixels in the native
resolution camera image. That is a search domain of [-63, 63] pixels
which is a search box of 127×127 pixels. By using multi-resolution
search boxes one has a search space of 6 × 3 × 3 = 54 potential
h-vectors instead of a naive search space of 127 × 127 = 16129
potential h-vectors for the same effective search box. Additionally,
the difference metric calculations are typically quicker to calculate
at a lower resolution than at the higher resolution of the original
images.

Such a multi-resolution algorithm however still contains a per-
level-naive h-vector search. The h-vector search may be optimised
further as discussed next.

2.2 Finding the h-Vector via a Newton-Raphson Itera-
tion

Lucas and Kanade’s algorithm simplifies the search problem un-
der certain assumptions (discussed below) and then efficiently finds
a solution of the h-vector via a Newton-Raphson iteration. The
Lucas-Kanade algorithm implementation follows the intuitive 2D
formulation presented by Lucas and Kanade [1981].

Firstly, a Gaussian filter kernel with a standard deviation of one is
used to filter the input and reference images and to downsample the
images when constructing the input and reference image pyramids.
The per-pixel derivatives of the filtered images are also stored in a
second and similar set of image pyramids.

The basic algorithm proceeds under the assumptions that

• The intensity of the filtered image F (x, y) is linear near
(x, y) which implies the derivative, F ′ (x, y), is constant, and

• that there exists a small h-vector such that
F (x+ hx, y + hy) = G (x, y) where G is the refer-
ence image.



Under these assumptions hxy ≈ G(x,y)−F (x,y)
F ′(x,y)

. The linearity as-
sumption is enforced somewhat by the Gaussian filter kernel that is
applied to the input and reference images and used to down-sample
the images.

Note that an h-vector is calculated for each pixel in the image. Hav-
ing an h-vector per pixel gives the algorithm its other name which
is the Lucas-Kanade optical flow algorithm. Many computer vision
processes use the optical flow information directly. For the pur-
pose of rigid image registration the average h-vector over the ROI
is however required.

The average h-vector is calculated by the weighted sum of the pixel
h-vectors as derived from the minimisation of the sum of squared
differences metric between F and G. Then,

h ≈
∑

xy F ′(x,y)[G(x,y)−F (x,y)]∑
xy F ′(x,y)2

.

However, because the linearity of F (x, y) is only approximately
true the h-vector is only approximate. A Newton-Raphson iterative
solution is required to find the exact h-vector. Then,

hk+1 = hk +
∑

xy F ′(x+hk,x,y+hk,y)[G(x,y)−F(x+hk,x,y+hk,y)]∑
xy F ′(x+hk,x,y+hk,y)

2 .

In a multi-resolution approach h0 is initially set to zero, but the
lower resolution estimate is propagated to each higher resolution
level thereafter.

3 The Lucas-Kanade Algorithm Implementa-
tion

An Image Processing Framework (IPF) has been created by the
CSIR’s Optronic Sensor Systems group to facilitate the rapid devel-
opment and deployment of image processing systems for the South
African Armed Forces. The relevant functionality of the IPF is dis-
cussed briefly, followed by the proposed GPU+CPU implementa-
tion of the Lucas-Kanade algorithm.

3.1 The Image Processing Framework

The primary goal of the IPF is to enable image processing experts
to focus on the development of algorithms and not on Input/Output
(I/O) as is discussed by Delport [2009]. The framework therefore
attempts to provide easy to use cross-platform data transfer from
cameras or video files to the CPU and GPU.

Image registration needs to be performed in real-time on a high
resolution, wide angle image for the wide area surveillance demon-
strator. The wide angle image is created by stitching video received
from multiple Gigabit Ethernet digital cameras. It is important
for both the stitching and registration algorithms that the images
from the cameras are synchronised and delivered for processing in
a timely manner. The framework delivers the required functionality
by being optimised for multithreaded high bandwidth acquisition.

Internally, the framework makes use of the open source FFmpeg
and OpenSceneGraph (OSG) libraries. FFmpeg is used for reading
and writing a wide variety of video files, while OSG is built on top
of OpenGL and allows for implementing image processing algo-
rithms in GLSL and CUDA. Having the processed image data in to
GPU also allows it to be displayed using OpenGL; linear filtering,
panning and zooming can therefore easily be performed.

Framework users can write image processing stages in either of the
following:

• C/C++ code that utilises OpenMP to execute on all the cores
of a multi-core CPU.

• GLSL or CUDA code that executes on the many-core GPU.

The processing stages can then be chained together into a process-
ing graph.

3.2 The Lucas-Kanade GPU Implementation

The basic building block of the process graph is shown in Figure 6.
The Lucas-Kanade root node of the graph controls the execution
order of the processing steps attached to it. The execution order is
usually from left to right.

Figure 6: Building Block of Process Graph for the Lucas-Kanade
Algorithm

The leftmost node in Figure 6, i.e. the ImagePyramid node, firstly
constructs a multi-resolution image pyramid. Each LK Iteration
node, shown stacked on top of each other, then does one Newton-
Raphson iteration. There are typically seven LK Iteration nodes
attached to do seven Newton-Raphson iterations. Indeed Marzat,
et al. [2009] have shown that the optical flow error levels off be-
yond six to seven iterations. Finally the stack of h-Vector reduction
nodes performs the weighted sums required to hierarchically reduce
the output from the LK Iteration to a single h-vector; the CPU does
this sequential operation in a single pass while each GPU h-vector
reduction pass only reduces the image resolution by a factor of two.
The number of GPU h-vector reduction passes—before handing the
final weighted sum over to the CPU—may be adjusted for best per-
formance on the target hardware. It should be noted that although
only one LK iteration stack and one reduction stack is shown that a
pair of LK iteration and reduction stacks is required for each level
in the image pyramid.

As mentioned, the LK Iteration step uses an image pyramid of the
current input image as well as an image pyramid of the reference
image. The reference image is updated initially and then once in
a while as required. To register the input image under rotation or
do 3D platform stabilisation a left and a right ROI image pyramid
is used for each of the input and reference images. Four image
pyramids are therefore required in total.

The process graph for the full Lucas-Kanade algorithm is shown
in Figure 7. The (A) and (B) sub-graphs respectively represent the
input and reference image pyramids. The osgSwitch nodes allow
the input and reference pyramids to be updated individually. If, for
example, switch A is closed and B is open then only the input image
pyramid would be updated while the reference image and pyramid
is maintained. Remember that only one pair of LK iteration and
reduction stacks are shown per branch, but that such a pair is in fact
added for each level in the pyramid.

For performance reasons the entire process graph is constructed at
initialisation and not modified during run-time. This however has
the drawback that the GPU implementation just described was lim-
ited to a ROI size of 256x256 under Linux. This was due to a



Figure 7: Full Process Graph for the Lucas-Kanade Algorithm

OpenGL driver issue that limited to 200 the number of cameras
and therefore the number of processing passes that could simulta-
neously be in a single process graph. Such a small ROI limits the
search box size and therefore the h-vector to a maximum of 31 pix-
els under translation. Such a limited registration distance prevents
registration of camera motion larger than 31 pixels per frame.

To save on algorithm passes, the left and right ROI pyramids may
however be executed simultaneously (within one pass) instead of
doing them serially one after the other. Only two sub-graphs are
therefore attached to the Lucas-Kanade root: One for the left and
right input ROI pyramids and a second for the left and right ref-
erence ROI pyramids. The h-vector reduction pass therefore also
operates on two images simultaneously.

A further saving on the number of camera passes is achieved by
sharing the per pyramid level h-vector reduction pass between the
input and reference sub-graphs. The modified process graph of the
full algorithm is shown in Figure 8. Again the (A) and (B) sub-
graphs are for the input and reference images respectively. The
composite algorithm that registers two ROIs simultaneously is re-
ferred to as a bi-Lucas-Kanade algorithm in the rest of the paper.
Note that the image pyramid building pass and the LK Iteration
pass use different image sources in (A) and (B). These passes are
therefore not currently shared between the input (A) and reference
(B) sub-graphs. Remember that only one pair of LK iteration and

Figure 8: Optimised Process Graph for the full Lucas-Kanade Al-
gorithm

reduction stacks are shown per branch, but that such a process pair
is in fact added for each level in the pyramid.

3.3 The Reference CPU Implementation

The process graph abstraction provided by the IPF allows an al-
gorithm pass (such as the Newton-Raphson iteration) to be imple-
mented either on the CPU or on the GPU. If both a CPU and a
GPU implementation of an algorithm pass exists then it allows one
to flexibly balance the work load between the GPU and CPU. The
CPU load, the GPU load and the communication bandwidth be-
tween the CPU and GPU 1 is optimised by running parts of the
algorithm on the CPU and parts on the GPU. Such load balancing
is often required for best performance on the target hardware and
within the larger set of image processing steps in the system.

All algorithm passes of the Lucas-Kanade algorithm were imple-
mented both on the CPU and the GPU. The CPU algorithm passes
were in fact implemented first to serve as a validation and perfor-
mance reference.

4 Computational Platform Stabilisation

The aim of this paper is to show how real-time computational plat-
form stabilisation may be done by making use of an accelerated
implementation of an image registration technique. To perform the
computational platform stabilisation the image registration results
are used to estimate the 3D pose of the surveillance platform rela-
tive to either the previous frame or, via integration, some earth-fixed
or initial orientation state. Specifically the Euler rotation matrix
which aligns the rotated axis system (X ′, Y ′ and Z′) in Figure 9
to the chosen reference axis system (X , Y , and Z) is desired. This
matrix can then be fed back to the mechanical systems to perform
the stabilisation or be used to warp the wide angle image to imple-
ment computational (i.e. virtual) platform stabilisation.

The mathematical notation used in this section is as follows: A
3-dimensional vector, Vabc, is a vector from point b in the direc-
tion of point a expressed in terms of its projection onto orthogonal

1The 4 GB/s PCI Express bus bandwidth between the GPU and CPU
is rather limited when compared to the 20+ GB/s bandwidth from CPU to
system RAM and 220+ GB/s bandwidth from GPU to device RAM.



X

Y

Z

X'

Y'

Z'

Figure 9: Rotated Axes

coordinate system c. Vabc is used when the magnitude of the vec-
tor is unknown or unimportant. Tabc represents the translation or
displacement of point a relative to point b. Uabc is a unit vector
pointing in the direction of point b to point a. Rab is a 3x3 Euler
rotation matrix expressing the rotation of orthogonal axis system a
relative to (and in terms of its projections on) orthogonal axis sys-
tem b. Individual elements of 3 dimensional vectors are referred to
as x, y, or z whereas the elements of the two dimensional vectors
are referred to as horizontal (h) and vertical (v) to avoid confusion.

This paper assumes that the image has been spherically
stitched [de Villiers 2009], although this only affects the pixel to
vector (1) transformation. It is however still necessary to deter-
mine the distortion parameters [de Villiers et al. 2008] and focal
length [de Villiers 2009] if using a single camera, so that proper
conversion from pixel space to the undistorted image plane can be
done.

In the axis system used in this paper, the origin is located at the
focal/convergence point of the lens or centre of the spherical stitch.
The X-axis is coincident with the optical axis and is positive in the
direction the camera is looking. The Y -axis is positive towards the
left of the image, and the Z-axis positive upwards. Positive yaw is
clockwise rotation when looking in the positive Z direction, posi-
tive pitch is anticlockwise when looking in the positive Y direction,
and positive roll is clockwise when looking in the positive X direc-
tion. Figure 10 displays the axis definitions, in Figure 10(a) the Z
axis comes out the page, and in Figure 10(b) the Y axis comes out
the page.

To determine the required Euler rotation to align two successive
spherically stitched images, only the coordinates of two image
points are required in each frame assuming that the camera parame-
ters remain constant and the points are static relative to each other in
the scene being viewed. The first step is to convert the two tracked
coordinates for frame n and frame n+1 into four vectors using (1).

U =

cos((Cv − Pv)/Rv) ∗ cos((Ch − Ph)/Rh)
cos((Cv − Pv)/Rv) ∗ sin((Ch − Ph)/Rh)

sin((Cv − Pv)/Rv)


(1)

where:
(Ch, Cv) = coords of the centre of the stitch
(Ph, Pv) = pixel position
(Rh, Rv) = angular resolution of stitch in pixels/rad,

U = the unit vector corresponding to the pixel P .

It is possible to create a local orthogonal vector space from 3 points

X Axis

Y Axis

Spherical Stitch
Surface

0° Yaw

+ -

(a) XY Plane Cross Section

X Axis

Z Axis

0°
 P

itc
h +

-

Spherical Stitch
Surface

Ocean Surface

(b) XZ Plane Cross Section

Figure 10: Spherical Axis System Definition

as shown by (2). The first point is deemed the origin of the vector
space, and the X axis is the unit vector pointing from the first to the
second point. The third point definess the XY plane and is used to
calculate Z axis, which then is used to calculate the Y axis.

X =
B −A

‖ B −A ‖ (2)

Y ′ =
C −A

‖ C −A ‖
Z = X ⊗ Y ′

Y = Z ⊗X

R =

Xx Yx Zx

Xy Yy Zy

Xz Yz Zz


(3)

where:
A = first input 3D point,
B = second input 3D point,
C = third input 3D point,

Y ′ = temp vector in XY plane,
⊗ = vector cross product,
X = X Axis vector of local coord system,
Y = Y Axis vector of local coord system,
Z = Z Axis vector of local coord system, and
R = Euler rotation of local coord system

relative to the axis system in which
the points were expressed.



To calculate the Euler transformation using the two tracked points,
a local coordinate system is created using the vectors created from
the two tracked points and the spherical stitch’s reference, here as-
sumed normalised to (0, 0, 0). Using these two matrices the rota-
tion from frame n to frame n+1 can be calculated but the result is
expressed in the local coordinate system of frame n and must first
be converted back to the stitch’s reference frame before it is useful.

R′ = RT
n ×Rn+1 (4)

R∆ = Rn ×R′ ×RT
n

where:
Rn = rotation matrix created from (2), using

(0,0,0) as vec A, and the the two tracked
points’ vectors in frame n for B and C

Rn+1 = rotation matrix created from (2), using
(0,0,0) as vec A, and the the two tracked
points’ vectors in frame n for B and C

R′ = Euler rotation from frame n to frame n+ 1,
expressed in Rn’s axis system, and

R∆ = Euler rotation from frame n to frame n+ 1,
expressed in the stitch’s axis system.

The bi-Lucas-Kanade image registration implementation described
in the previous sections may therefore be used to register an image
from a single camera under translation and rotation or it may be
used as described above to do real-time 3D computational platform
stabilisation.

5 Results

A test pattern was created to analyse the bi-Lucas-Kanade algo-
rithm implementations during development. The checkerboard test
pattern is shown in Figure 11. Notice that the checkerboard pat-
terns have been registered against a page-aligned checkerboard. To
ensure a unique registration solution, the checkerboard elements of
course have to be larger than the largest pixel motion expected per
frame.

Figure 11: Registered/Stabilised Checkerboard Patterns

Note that because the number of Newton-Raphson iterations are
fixed to seven that the time complexity of the Lucas-Kanade al-

gorithm and the performance results of the implementation is in-
dependent of the image sequence used. The performance results
were generated on a PC with an Intel Core 2 Quad 2.83GHz CPU
(only one core was used to generate results) and an NVidia GeForce
GTX285 GPU. The computational load between the CPU and the
GPU may be balanced in 3 ways:

• The image pyramid construction may be done on the GPU or
CPU,

• the Lucas-Kanade iterations may be done on the GPU or CPU
irrespective of where the image pyramids are constructed, and

• the number of h-vector reduction passes (partial sums) done
on the GPU may be varied from zero to many if the Lucas-
Kanade iterations are done on the GPU.

Table 1 indicates the performance of the Lucas-Kanade algorithm
running in isolation. The stitched wide angle image stream has
a resolution of, for example 4096 × 1000 pixels, but the bi-
registration is done on two 256 × 256 or 512 × 512 ROIs. The

CPU vs. GPU Load 256×256×2
ROI

512×512×2
ROI

CPU Only 10 fps 2.6 fps
GPU Pyramid Construction 39 fps 10 fps
GPU Pyramid+LK Iterations 46 fps 15 fps
1 GPU h-vector reduction 50 fps 30 fps
2 GPU h-vector reductions 44 fps 30 fps
3 GPU h-vector reductions 38 fps -

Table 1: CPU vs. GPU Performance Results

limitation on the number of process graph cameras (and therefore
on the number of algorithm passes) described earlier prevents more
than 2 GPU h-vector reduction passes for ROIs of 512× 512× 2.

Figure 12: Maritime Stabilisation Results

The GPU+CPU implementation achieves a maximum measured
performance of 512 × 512 × 2 × 30fps = 15728640 pixels per
second. From the table it is clear that the best CPU to GPU load
balance is when the pyramid construction, the LK iterations and
one h-vector reduction pass is done on the GPU. Figure 12 shows
two images from the stabilisation sequence that generated the above
results. As shown in the table, the ROI size has an impact on the
implementation’s performance.



When the same set of experiments are run on a Macbook Pro 13”
laptop containing an NVidia Geforce 9400M GPU and a 2.26GHz
Core 2 Duo CPU one finds a maximum frame rate of around 8 fps
and 5 fps for ROIs of 256× 256 and 512× 512. For this platform
however the maximum frame rate is only achieved when all the
algorithm steps are ran on the GPU.

For the stabilised platform, the input image is the latest image from
the camera and the reference image is the previous image from the
camera. For this use case, seven Newton-Raphson iterations are
enough for an average registration accuracy of 0.024 pixels per
frame. When the LK iterations are done on the CPU an average
registration accuracy of 8× 10−8 pixels per frame is achieved.

With their recent CUDA implementation Marzat, et al. [2009]
achieves a frame rate of 15 fps at an image and ROI size of
640 × 480 pixels. This result was measured on an NVidia Tesla
C870 GPU with about half as many processor cores as the GeForce
GTX285 GPU. Marzat, et al. however estimate that their execu-
tion times would half with double the number of processors i.e.
9216000 pixels per second (640 × 480 × 30fps) on the Geforce
GTX hardware.

6 Conclusion

6.1 Discussion

The GPU implementation of the Lukas-Kanade algorithm is more
efficient than a GPU multi-res brute force algorithm would be if
the Newton-Raphson iterations converge in less than 5 × 5 = 25
iterations. This does seem to be the case with 7 Newton-Raphson
iterations typically being required. Additionally the Lucas-Kanade
algorithm already gives sub-pixel accuracy while the brute force
approach does not.

The GPU implementation of the Lucas-Kanade algorithm achieved
real-time performance for ROIs of 256×256 and 512×512 pixels.
Both the pyramid construction and the LK iteration passes seem to
be more suited to the GPU implementation than the CPU imple-
mentation. One GPU h-vector reduction increases the performance
significantly. Additional GPU h-vector reduction passes however
decrease the performance or provide little benefit due to the added
overhead of more render passes.

It has therefore been shown that using both the CPU and GPU could
enhance the implementation’s performance over that of a pure GPU
based implementation. The performance of this implementation
also compares very well to the performance of the recent CUDA
implementation by Marzat, et al. [2009].

6.2 Future Work

Manually positioning the ROIs over parts of the image that con-
tain a stable backdrop with spatial detail is currently operationally
unavoidable. Pre-selecting an area in the image that will always
contain a stable backdrop would not be possible. It is therefore
proposed to also investigate feature based stabilisation. A possi-
ble algorithm could be based on the Kanade-Lucas-Tomasi (KLT)-
tracker [Tomasi and Kanade 2009]. Feature based stabilisation po-
tentially has the advantage of being able to dynamically auto-select
the parts of the image that contain a stable backdrop.

It would also be interesting to look at other stabilisation methods.
For example, an inertial measurement unit (IMU) has already been
added to the WASP. It would be interesting to use the IMU to do
a first order stabilisation while the LK stabilisation does the higher
order corrections which would require only a relatively small search
space.

Acknowledgements

The authors would like to thank The Armaments Corporation of
South Africa (Armscor) for funding this work.

References

BESNERAIS, G. L., AND CHAMPAGNAT, F. 2005. Dense optical
flow by iterative local window registration. In In IEEE Interna-
tional Conference on Image Processing 2005, I – 137–40.

DE VILLIERS, J. P., LEUSCHNER, F. W., AND GELDENHUYS, R.
2008. Centi-pixel accurate real-time inverse distortion correc-
tion. In Proceedings of the 2008 International Symposium on
Optomechatronic Technologies, vol. 7266 of ISOT2008, 1–8.

DE VILLIERS, J. P. 2009. Real-time photogrammetric stitching of
high resolution video on COTS hardware. In Proceedings of the
2009 International Symposium on Optomechatronic Technolo-
gies, vol. 9 of ISOT2009, 46–51.

DELPORT, J. P. 2009. Optronics image processing framework
position paper. Tech. rep., CSIR. Position Paper.

FLETCHER, R., AND REEVES, C. M. 1964. Function minimiza-
tion by conjugate gradients. Computer Journal 7, 140–054.

HORNE, B. K. P., AND SCHUNCK, B. G. 1981. Determining
optical flow. Artificial Intelligence 17, 185–203.

JEEBODH, P., AND DUVENHAGE, B. 2008. Super resolution.
Tech. Rep. 6700-OPTO-38601-01, CSIR. Restricted document.

KAHN, F., CHAPMAN, M., AND LI, J. 2005. Camera calibration
for a robust omni-directional photogrammetry system. In Pro-
ceedings of the 5th International Symposium on Mobile Mapping
Technology, MMT07, 1–8.

LUCAS, B., AND KANADE, T. 1981. An iterative image regis-
tration technique with application to stereo vision. International
Journal on Computer Vision and Image Processing, 674–679.

LUCCHESE, L., AND MIRA, S. K. 2002. Using saddle points for
subpixel feature detection in camera calibration targets. In Pro-
ceedings of the Asia-Pacific Conference on Circuits and Systems,
vol. 2, 191–195.

MA, W., 2007. Riding shotgun with google street views
revolutionary camera. http://www.popularmechanics.com/-
technology/industry/4232286.html?page=2.

MARZAT, J., DUMORTIER, Y., AND DUCROT, A. 2009. Real-
time dense and accurate parallel optical flow using CUDA. In
Proceedings of The 17th International Conference in Central Eu-
rope on Computer Graphics, Visualization and Computer Vision,
WSCG2009, 105–111.

OWENS, J. D., HOUSTON, M., LUEBKE, D., GREEN, S., STONE,
J. E., AND PHILIPS, J. 2008. Gpu computing. Proceedings of
the IEEE 96, 5, 879–899.

SNYMAN, J. A. 1983. An improved version of the origi-
nal leap-frog dynamic method for unconstrained minimization:
LFOP1(b). Applied Mathematics and Modelling 7, 216–218.

STRZODKA, R., AND GARBE, C. 2004. Real-time motion estima-
tion and visualization on graphics cards. In Proceedings IEEE
Visualization 2004, 545–552.

TOMASI, C., AND KANADE, T. 2009. Detection and tracking of
point features. Tech. Rep. CMU-CS-91-132, Carnegie Mellon
University.


