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ABSTRACT

Satellite data volumes have seen a steady increase in recent years due to improvements in sensor technology and increases

in data acquisition frequency. The gridded MODIS data products, spanning a region of interest of approximately 10◦ by

10◦ for a single tile, are stored as images containing almost six million pixels, with data in multiple spectral bands for

each pixel. Time series analyses of a sequence of such images in order to perform automated change detection is a topic of

growing importance. Traditional storage formats store such a series of images as a sequence of individual files, with each

file internally storing the pixels in their spatial order. Consequently, the construction of a time series profile of a single pixel

requires reading from several hundred large files, resulting in substantial performance overheads that severely constrain

high-throughput analyses. We aim to minimize this performance limitation by restructuring the storage scheme for typical

satellite imagery as temporal sequences in order to reduce overheads and improve throughput. Models are developed to

compute the expected query time for both the time-sequential and the traditional image-based representations. These

models are used to demonstrate the benefits of using a time-sequential representation. Four data structures (using the

Hierarchical Data Format (HDF5), Network Common Data Format (netCDF) and a native file system approach) are

implemented and compared in a series of experimental read tests to determine which format is most appropriate for

implementation in the CSIR Cluster Computing Centre’s facilities.
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1 INTRODUCTION AND BACKGROUND

The need for efficient storage of sequences of satellite
raster data has been growing in the scientific com-
munity for a number of years. As imaging technology
improves, we are faced with an influx of huge amounts
of newly acquired data, with volumes growing almost
exponentially. The problem of storage is further com-
pounded by the need to rapidly access and process
subsets of the stored data. In the remote sensing
field, satellite images are generally acquired periodi-
cally over time and stored in large archives spanning
several terabytes in volume. The management of these
sequences of images can be divided into two groups:
database management systems (DBMS) and data files.

Storage of images in a DBMS involves time-
consuming import and conversion of raster images into
the database’s internal storage format. The internal
data model is generally a relational one where data
is viewed as a structured table. This format is not
suitable for the storage of large and complex multi-
dimensional discrete data such as image sequences.
Databases that provide support for large-scale image
data store pixels in tables or fixed size binary large ob-
jects (BLOBs). A BLOB is a sequence of unformatted
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bytes and, as a result, not well-suited for compati-
bility with the natives types in a DBMS. In spite of
these limitations, a database provides the structured
query language (SQL) that simplifies data selection
for complex queries. A common approach for manag-
ing a sequence of images stores the image names and
metadata in a database while the actual images are
stored externally on disk in its original format. Al-
though this method can efficiently process metadata
queries, it still leaves the retrieval of the bulk of the
data up to the user. Scientific applications with ex-
tensive storage requirements require the integration of
databases with related technologies in order to serve
scientists sufficiently [1, 2, 3].

Specialized database technologies for raster stor-
age have been proposed in several scientific papers.
Reiner et al. show that an image tiling scheme is the
most appropriate strategy for handling very large im-
age data in a database [4]. Images are split into sub-
images which are stored in the database. When an
area of interest is requested, only the sub-images that
contain the relevant pixel data are retrieved, result-
ing in substantial I/O bandwidth savings. Baumann
et al. combine image tiling, spatial indexing and data
compression into their raster database [5, 1]. Com-
pression improves disk input/output (I/O) bandwidth
efficiency by reducing the number of bytes that must
be written/read to/from disk. The concept of spatial
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indexing allows quick retrieval of the identifier and lo-
cation of a required tile. The CONCERT architecture
uses variable length sequences of constant page sizes
to store image tiles [6]. These page ranges allow a sin-
gle linear address space to be accessed directly. Data
buffering is controlled using memory mapping of disk
pages.

Large n-dimensional arrays are not intrinsically
supported by databases. Consequently, databases
do not support the efficient mapping of a multi-
dimensional array to 1-dimensional linear space.
Hence, file storage of large satellite imagery is an at-
tractive option for data management and retrieval.
These files can be the original image format or another
type, e.g., netCDF. Storage of satellite images in data
files means the data can be represented as huge multi-
dimensional arrays. Scientific applications and large
scale data processing benefit from a storage scheme of
this sort since the data is easily accessible. The over-
head incurred by using a database is avoided because
the file metadata becomes the “manager”. Several
data files can also cumulatively store terabytes of in-
formation which makes them popular in the scientific
community.

General purpose data formats for large scale stor-
age, such as HDF5 and netCDF, are designed to be
platform independent, self-describing and support the
storage of large multidimensional arrays [7, 8]. They
share some similarities with a database system in the
sense that they have a schema for metadata and data
manipulation strategies. In previous studies, the par-
allel implementations of HDF5 and netCDF have been
compared in a series of experiments. Li et al. compare
parallel netCDF and HDF5, concluding that paral-
lel netCDF achieves higher parallel performance than
HDF5 [9]. In contrast, other researchers show that
the two file formats are, in fact, comparable in perfor-
mance [10].

Several experiments have been conducted in the
domain of large array storage and the optimization of
the use of I/O bandwidth. The effect of array chunk-
ing on I/O performance within the context of the HDF
file format has been reported by Velamparapil [11]. He
shows cases where data chunking improves or degrades
I/O performance. Sarawagi and Stonebraker present
several techniques for efficiently organizing multidi-
mensional arrays in POSTGRES [12]. These methods
include partitioning of arrays and array duplication
for different query patterns. Array duplication, with
different data layout schemes, provides a general way
to address most query types without impacting nega-
tively on I/O performance, but inevitably leads to in-
creased storage requirements. Seamons and Winslett
also implement array chunking, clustering of data and
clustering of different data types on disk for efficient
I/O of arrays [13]. During clustering of data, arrays
that are used together are placed in close proximity to
each other on disk; clustering of data types works simi-
larly. An implementation of a scientific data manager
is presented by Choudhary et al. [14]. This system
uses a database to store metadata — search patterns,

access history and file offsets — and files to store the
data.

2 PROPOSED TIME-SEQUENTIAL DATA
STRUCTURE

Sequences of images stored in discrete files on disk in
their original 2D ordering (called the “image stack”
representation in the sequel) are not efficient for time
series analysis due to the I/O overhead incurred when
constructing a 1D profile through time. Hence, a
specialized per-pixel, time sequential data model and
data storage method must be implemented for im-
proved I/O efficiency. The time series data will be
stored in a large single data file.

To clarify the differences between the image stack
and the time-sequential representations, a pair of
equations will be presented to calculate the index of
an arbitrary element within both of these represen-
tations. Let n denote the number of images in the
sequence, or, equivalently, the number of time steps
in the time series. Let w and h denote the width and
height (in pixels) of the original 2D images. For con-
venience, define the total number of pixel locations,
m, as m = w × h.

Let I(x, y, t) represent the index where the value
at location (x, y) and time t can be located within a
given representation. The image stack representation
calculates the position of this element as

Iis(x, y, t) , (wy + x) + wht. (1)

The index of an element in the time-sequential repre-
sentation is computed using

Its(x, y, t) , (wy + x)n + t. (2)

The term (wy + x) serializes a 2D (x, y) spatial coor-
dinate into a single contiguous index, called the pixel
index in the sequel. Since this term is common to
both Equations 1 and 2, it is convenient to refer to
the value at index I(x, y, t) as Vwy+x,t. Examples of
the two representations are illustrated in Figure 1. In
short, the time-sequential representation stores all the
values belonging to a single spatial location as a con-
tiguous block, while the image stack representation
stores one time step of a sequence of spatial neigh-
bours (one row of pixels) as a contiguous block.

A consequence of this representation is that 2-
dimensional queries (e.g., extracting a rectangular re-
gion on a map) will be decomposed into a set of row
queries, where each query will specify a subset of the
span of pixels corresponding to that row. This implies
that intra-row contiguity of the data may be advanta-
geous, since low-level read ahead and caching can be
exploited.

A recent development on the mass storage mar-
ket is the introduction of consumer-grade Solid State
Drives (SSDs), which are potentially poised to replace
mechanical hard drives in the near future. One of
the most attractive features of these devices is they
have very low, constant access times. This feature,
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Figure 1: Illustrative example of the differences in the

ordering of the elements between the time-sequential and

image stack representations

combined with their higher average throughput fig-
ures, may cause us to reexamine they way in which
we structure our data.

These SSDs are typically built using banks of
NAND-based flash memory, which unfortunately im-
plies that data must be read in blocks, rather than
using a pure random access addressing scheme. These
blocks, called pages, are typically 512 [15], 2048 or
4096 bytes in size, thus resembling the disk blocks of a
mechanical hard drive. This implies that an SSD disk
functions just like a mechanical hard drive in that the
smallest amount of data that can be retrieved with a
single read is 512 (or even more) bytes.

Will a time-sequential data representation still be
a good choice when an SSD is used instead of a me-
chanical hard drive? To answer this question, the po-
tential impact of SSDs on data representation formats
will be investigated in Section 3.

3 MODELING EXPECTED QUERY TIMES

Table 1 provides the definitions of the symbols used in
equations below. Using these definitions, the approxi-
mate query time for the image stack representation is
given by

Dis =
(⌈

wSt

nSb

⌉
· TbQh

2

)
n + Trn +(⌈

QwSt

nSb

⌉
· TbQh

2

)
n (3)

This equation holds provided that the operating sys-
tem read-ahead buffer is larger than two scan lines of

Table 1: Definition of symbols

Symbol Description

Qw The spatial width of a query, in pixels.
Qh The spatial height of a query, in pixels.
Tr The average time required to access a

given location in a file, including the
time required to fill the operating sys-
tem read-ahead buffer, in milliseconds.

Tb The average time required to read a file
system block of size Sb, in milliseconds.

Sb The size of a file system block, in bytes.
St The length of a single time-series, in

bytes.
Sra The size of the operating system read-

ahead buffer, in bytes.

the image, i.e., 2wSt/n < Sra. The Linux operating
system kernel uses a default value of Sra = 128kB, so
it is not uncommon for the read-ahead buffer to be
able to hold multiple scan lines.

Equation 3 is best understood by studying its
components separately. Each time step of the time
series is stored in a separate “image”, thus the stor-
age device must seek to the starting position of the
query block within this image once for every time step.
This yields the Trn component, which contributes one
seek plus one read-ahead buffer fill operation for each
step. The rest of the scan lines in this “image” block
will be read in pattern where the operating system
will alternately enable and disable the read-ahead af-
ter each seek operation [16, p427]. This implies that
half of the lines in the query block will cause the op-
erating system to fill the read-ahead buffer by reading
wSt/n bytes. On every other scan line the operating
system would have disabled read-ahead, thus reading
only QwSt/n bytes, rounded up to the nearest disk
block. Note that the operating system read-ahead en-
sures that at least one scan line is always buffered,
which implies that the query time is almost indepen-
dent of the width of the query.

The expected query time for the time-sequential
representation is modelled as

Dts = Tr ·Qh+ (4){
0 if QwSt ≤ Sra(

QwSt−Sra

Sb

)
· Tb ·Qh if QwSt > Sra

The first part of this equation can be derived in a
straightforward manner: if the equivalent of a scan
line of the query is smaller than the operating system
read-ahead buffer, then no additional reads have to
be performed, and the query time is simply equal to
Tr · Qh. The second part of the equation just adds
to this the time it would take to read any additional
blocks outside of the region already covered by the
read-ahead buffer.

The time required to perform a query using the
image stack representation can be expressed relative
to that of the same query performed using the time-
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sequential representation by forming the ratio

Drelative =
Dis

Dts
(5)

4 STORAGE FORMATS

A number of file formats are available for multidimen-
sional data storage. We consider HDF5, netCDF and
a native file system approach for the implementation
of the time-sequential data structure representation.

4.1 HDF5

HDF5 is a well-known data format for optimized and
portable storage of multidimensional data. The HDF5
data model has two primary types of objects: data sets
and groups. Data sets are arrays of multiple dimen-
sions where a cell is a simple or compound HDF5 data
type. Groups allow for the creation of data depen-
dencies which can be represented as a directed graph
with a stipulated entry point. Most data models (e.g.,
TIFF and netCDF) can be represented by the HDF5
data model. Its software drivers are designed to store,
retrieve and manage complex data in heterogeneous
environments that are constantly evolving. At the ap-
plication level, an HDF5 file is treated as a single file,
but the library allows an implementation to combine
multiple files from the file system transparently. Typ-
ically, metadata and raw data are stored in separate
files; this makes it possible for each file to reside on
different file systems.

The HDF5 data format has several key features
that are advantageous for large scale data storage.
The data file size and the number of objects stored
can be unlimited. This is useful for storing a long
sequence of large satellite images. An important as-
pect of data exchange is portability across different
architectures. This is achieved by storing data type
characteristics (size, bit order and architecture) in the
file. The HDF5 data model also contains a compre-
hensive set of data types. As a result, external stor-
age of raw data and the creation of new data types is
well supported. The complexity of a user-defined data
type does not have any limitations. This makes the
data model highly generalized. Data sets may also be
extended along any dimension.

Spatial selection of uniform and non-uniform ar-
ray subsets is supported using set operations defined
in the I/O library. Data types can also be subsetted,
e.g., selecting an integer from a compound type. Sev-
eral performance enhancement options are provided
in the HDF5 data model. Two important options are
data compression and chunking. Chunking is analo-
gous to tiling an image or array. HDF5 requires that
all chunks in a data set must have the same fixed size.
Chunking can also be used to solve the problems as-
sociated with random access to compressed data sets,
since each chunk is compressed independently of all
other chunks.

The following HDF5 structure is proposed:

1. A single root group is created, i.e., the default
root node.

2. Global variables are stored in the root group men-
tioned above. The most basic global variables are
the image width and height. Other fields may also
be stored, such as the image projection informa-
tion.

3. Each image band, acquired over time, is repre-
sented as a 2-dimensional array data set that is
a child of the root node. Hence, storing n bands
will imply the creation of an HDF5 file with n
data sets. Given a single 2-dimensional array
data set, a column corresponds to a spatial snap-
shot in time. A row represents the evolution of
a pixel through time. The row index is simply
the pixel index defined earlier. In this storage
scheme, band data is separated so that additional
bands, if required, can be added to the file at a
later stage. Each array data set is implemented as
extensible (unlimited size) with chunking enabled
by default.

The above storage structure improves compression in
some cases since pixel values are spatially correlated
within each band. Data may also be stored using a
compound data type. In this case, all the band data
at a pixel location for one time step is grouped into
a single data element that has multiple fields. An
advantage of this configuration is that only a single
data set needs to be created and, thus, only a single
read is required for a time series rather than n reads
for n data sets.

Chunking can improve performance by reducing
the number of individual read operations that have
to be performed, but the following factors have to be
considered:
• When a region of interest is queried, all chunks

containing the pixel data will be retrieved off disk.
Thus, a large performance penalty is incurred
whenever a comparatively small ratio of queried
pixel falls on a chunk.

• Creation of new chunks, e.g., when extending an
array, allocates storage for the entire chunk irre-
spective of whether it is completely populated or
not.

• A large number of chunks will incur some over-
head with respect to metadata volume, e.g., the
size of the B-tree used for indexing chunks.

4.2 netCDF

netCDF is a self-describing platform independent data
format for exchanging scientific data. We consider
only netCDF3 in this paper.

NetCDF encompasses multidimensional data in
regularly spaced grids. The file has two parts — a
header and array (variable) data. The header stores
information dealing with dimensions, attributes, etc.,
while the array data section contains the payload.
Some limitations inherent to the netCDF format are:
• sizes larger than 2 GB (or 4 GB) are occasionally

problematic to implement.
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• only one dimension may be extensible.
• not suitable for hundreds or thousands of vari-

ables.
• multiple variables (arrays) can share an unlimited

dimension but they must grow together.
• does not have a hierarchical group based organi-

zation.
• has a limited number of data types.

These constraints allow for a contiguous layout with
very little overhead.

Variable size arrays are supported by introducing
record variables that share the same unlimited dimen-
sion. The other less significant (and fixed) dimensions
define the shape for one record of the variable. In our
case, a variable is a sequence of images for a single
band and the record is a single image band captured
at a point in time. To allow the variable to grow in
the unlimited direction, the fixed size records are in-
terleaved along the unlimited dimension.

We use the netCDF 64-bit offset format for man-
aging files sizes that are greater than 4 GB. When
implementing a data cube using netCDF, the unlim-
ited dimension must be the first dimension declared in
the variable definition. In the case of managing time
series image data, the unlimited dimension is time. As
a result, it means that an entire image will be stored
in a row. Selecting a column will produce a time series
signal for a particular pixel. Unfortunately, such a lay-
out will produce a representation that is very similar
to the image stack representation introduced in Sec-
tion 2, and as such is expected to be inefficient for this
type of query. This problem is resolved by creating a
fixed time dimension while declaring the number of
pixels as an unlimited dimension. On disk, row data
(a time series) is then interleaved. A spatial query, as
in HDF5, will be decomposed into a set of row queries.
The netCDF file is structured in the same way as the
default HDF5 — we created n variables (array or data
sets) for the n bands that we wish to store.

5 FILE SYSTEM DATA STRUCTURE

File systems offer a reasonably good model for storing
data in the time-sequential model proposed in Sec-
tion 2. Firstly, file systems have efficient mechanisms
for locating a specific file. Given a file name, the file
system will perform a look-up, usually in an efficient
data structure such as a B-tree, to identify the first
block of the file on disk. Secondly, file systems are
naturally able to store data elements that may grow
in size over time. This greatly simplifies the process
of appending new data to the existing structure.

The file system data structure is implemented by
storing each time series in a separate file. The file
name is derived directly from the pixel index number,
e.g., the sequence Vk,0 . . . Vk,n−1 could be stored in a
file called ‘k’. One possible downside to this imple-
mentation is the large number of files that are cre-
ated when the data structure contains many pixels.
The 2400× 2400-pixel data set used in Section 7 con-
tains approximately 5.8 million pixels, which there-

fore requires 5.8 million individual files in this repre-
sentation. Most file systems can not efficiently store
this many files in a single directory, so a 3-level di-
rectory structure was selected to limit the number of
sub-directories or files per directory to a maximum of
500.

The internal representation of each file is similar to
the one used by the compound HDF5 data structure.
Each time step is represented as a tuple containing all
the bands; these tuples are stored sequentially inside
the file.

This file system data structure trades off stor-
age space efficiency for simplicity of implementation.
Firstly, each pixel-file must consume at least one file
system block, which may vary from 512 bytes to sev-
eral kilobytes. If, for example, the length of the data
associated with a single time series is 2512 bytes, it
will consume 2560 bytes, 3072 bytes, or 4096 bytes
using 512, 1024 or 2048 byte file system blocks, respec-
tively. The unused space in each disk block is called
slack space, and may result in substantial inefficiency.

The three-level directory structure also introduces
an additional penalty. Each sub-directory is nominally
stored as a special file on the file system, so to traverse
a 3-level directory structure requires that at least four
separate metadata blocks must be read. This increases
the amount of I/O bandwidth spent to retrieve a sin-
gle time series, lowering overall I/O efficiency. Since
the metadata blocks are likely to be distributed over
the disk, it also introduces additional seek delays. De-
spite all these drawbacks, the file system-based data
structure is elegant in its reuse of existing implemen-
tations to solve some of the problems associated with
a per-pixel representation that allows for new data to
be appended at the end of the time series.

6 FILE SETUP

Default settings were used to configure the various file
formats. These parameters are described in more de-
tail in the HDF5 and netCDF reference manuals. The
native file system contains binary data in multiple flat
files and does not have any adjustable parameters.
The data structures are all implemented on top of the
Zettabyte File System (ZFS), and were accessed over
a Gigabit Ethernet network using the NFS version 3
protocol.

7 MODEL VERIFICATION AND EMPIRICAL
STUDY

Experiments were conducted on the opteron cluster in
the C4 facility of the Council for Scientific and Indus-
trial Research (CSIR). This particular cluster is com-
posed of 46 compute nodes, with each node hosting 4
GB of RAM and four 2.6 GHz AMD Opteron cores.
The nodes are connected via a non-blocking Hewlett
Packard Procurve 2848 switch.

The image sequence consisted of 314 MOD09A1
data product images with dimensions 2400×2400 at
500m resolution. The data structures were populated
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Table 2: Average query time (seconds) for the image stack

representation storage format

Spatial Model Experimental
subset Prediction Measurement

1×1 2.144 2.006±0.035
3×3 2.262 2.124±0.037

100×100 8.229 8.400±0.293
50×200 5.265 5.570±0.069
200×50 14.149 14.353±0.298

Table 3: Average query time (seconds) for the time-

sequential representation storage format

Spatial Model Experimental
subset Prediction Measurement

1×1 0.016 0.008 ±0.005
3×3 0.048 0.021 ±0.011

100×100 1.829 1.861 ±0.047
50×200 1.145 1.158 ±0.032
200×50 3.216 3.250 ±0.060

with image bands 0, 7 and 12, corresponding to sur-
face reflectance (16 bits per sample), date flags (16
bits per sample) and quality flags (32 bits per sam-
ple) respectively. By analysing the 2D image rep-
resentation and general types of spatial queries for
the MODIS images, a set of 5 spatial access patterns
were defined for experimental analysis. This resulted
in block sizes of 1×1, 3×3, 100×100, 50×200, and
200×50 pixels. Given a single spatial extent as de-
scribed above, the entire time series is retrieved from
a data structure (314 time steps) for the given block
of (x, y) coordinates. The effects of file caching are
avoided by reading data only once from each position
in a data structure for an experiment. We achieve this
requirement by partitioning the data structure into 64
non-overlapping regions (corresponding to blocks of
300×300 pixels in image coordinates); queries within
each of these blocks are also guaranteed to be non-
overlapping. Each test run produces 64 timing results
for each of the 5 block sizes specified above.

7.1 Comparison of spatial and time-sequential
representation

The models presented in Section 3 were verified in an
actual implementation, after which the models were
used to analyse the expected impact of SSDs on rep-
resentation preferences.

7.1.1 Model verification

To evaluate Equations 3–5, concrete values have to
be selected for the various parameters. Choosing
these parameters to coincide with MOD09A1 data sets
yields values of w = 2400, h = 2400, n = 314 and
St = 2512. The hardware used in this experiment
was determined to have a sustained transfer rate of
approximately 52 MB/s. The file system was config-
ured with a block size of Sb = 4096, thereby yielding

Figure 2: A plot of Drelative (Equation 5) over a range of

query sizes.

Tb = 0.0754. To evaluate Equation 3 the value of
Tr is set to 6.64 ms, which was obtained by measur-
ing actual file seek operations with a spacing derived
from Equation 1. Similarly, the value of Tr in Equa-
tion 2 was measured to be 16.085 ms by using the
seek spacing dictated by Equation 2. These values
differ because the effective seek time of a mechanical
hard drive depends on the physical distance that the
drive head must travel.

Tables 2 and 3 demonstrate that the models pre-
sented in Equations 3 and 4 are able to predict the
expected query times reasonably well. The columns
labelled “experimental measurement” represent the
mean query times measured on a direct implemen-
tation of the two representations. These values were
averaged over the 64 trial queries in different spatial
regions of the structure. The operating system read
cache was flushed between each of the 64 queries to
ensure statistical independence of the values.

Having established that the models are able to
predict the expected query times with a reasonable
degree of accuracy, we can now simulate the expected
query times of a solid state drive. Assume that our
ideal SSD has a transfer rate of 200 MB/s, yielding
Tb ≈ 0.0195. Furthermore, we can estimate the value
of Tr to be Tr ≈ SraTb/Sb = 0.625ms. This is based
on the assumption that there is no delay in accessing
any particular location on the SSD, and that the op-
erating system read-ahead buffer is the same size for
both mechanical hard drives and SSDs. Figure 2 illus-
trates the resulting values of Equation 5 for both the
mechanical hard drive, and the ideal solid state drive.
Note that the query height was set equal to the query
width at each point on the graph. From the graph
it clear that the image stack representation is slower
than the time-sequential representation for all queries,
but that the difference is more pronounced for smaller
query sizes. The most surprising observation is that
the difference between the two representations is more
pronounced on the SSD than on the mechanical hard
drive.
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Table 4: Average query time (seconds) for image stack and

time-sequential representation storage formats

Spatial Per-pixel Image
subset representation stack

1×1 0.048±0.061 19.870±0.044
3×3 0.066±0.035 19.729±0.033

100×100 3.679±0.841 29.740±0.373
50×200 2.249±0.396 26.320±0.490
200×50 4.597±0.488 135.644±5.069

7.1.2 Experimental results

In the preceding section the performance of an ideal
direct implementation of the image stack representa-
tion was analysed. In practice, the image stack is typi-
cally implemented using individual files for each of the
time steps — here we investigate the real-world perfor-
mance of this representation using 314 MOD09A1 im-
ages. To facilitate later comparisons, the same queries
were executed on an HDF5 time-sequential data struc-
ture. The results presented in Table 1 clearly show the
advantage of the time-sequential representation. Note
that even in the worst case, the time-sequential rep-
resentation is faster than the traditional image-based
structure by a factor of 8 on the 100×100 query. This
figure is almost double that of the value obtained in
the more direct implementation of the image stack in
Section 7.1.1; the additional delay observed here is
caused by the overhead of opening all the image files
repeatedly, amongst other factors.

7.2 Comparison of time-sequential data
structures

In Section 7.1.2 it was established that a time-
sequential representation offers a performance advan-
tage over an image stack representation for the types
of queries considered. Having decided on a time-
sequential representation, it turns out that there are
many different ways in which this representation can
be realised. This section will investigate the relative
performance of the following four time-sequential im-
plementations :

1. An HDF5 implementation using separate data
sets for each image band, with a chunk size of
1× 314, denoted H5;

2. An HDF5 implementation using a compound
data type to group the band data, also with a
chunk size if 1× 314, denoted H5C;

3. A netCDF implementation, denoted NC, and
4. A native file system implementation, as described

in Section 5, denoted FS.
The underlying storage device may have an impact on
the relative performance of these implementations, so
four storage configurations were investigated. A net-
work attached storage device implementing the ZFS
file system on a number of hard drives in a RAID1

configuration was selected for this experiment. Two
RAID-1 configurations were tested: striping over two

1Redundant Array of Inexpensive Disks

Table 5: Raw sequential I/O throughput of the various

partitions

Partition type Throughput (MB/s)

S2 uncompressed 56.78±0.88
S2 compressed 69.06±2.49
S3 uncompressed 83.32±0.96
S3 compressed 81.39±0.30

drives (S2), and striping over 3 drives (S3). In addi-
tion to these two RAID configurations, the ZFS on-
the-fly compression option was included as another
experimental parameter. To mitigate the effects of
the physical location of a file on a particular drive, a
second replication of each partition was created. The
number of configurations in this experiment is there-
fore 4 file formats × 2 RAID striping options × 2 ZFS
compression options × 2 replications, for a total of 32
tests.

A simple bandwidth test was performed on each of
the four partitions. From Table 5 is can be seen that
striping over three drives leads to better performance
than striping over two drives, as could be expected.
The specific file that was used to perform the band-
width tests on (the 15 GB H5 file) appears to have
been rather compressible, which is reflected in the net
increase in throughput seen on the S2 compressed par-
tition.

To simplify the presentation of the results of the
query experiments performed on the four different
formats, the spatial queries were grouped into small
(1× 1, 3× 3) queries and large (100× 100, 50× 200,
200×50) queries. The query times were all normalised
to represent the mean time to retrieve a single time
series, which allowed the query times to be combined
within each of the two groups. The results of the small
query experiment are presented in Table 6.

The ranking in Table 6 offers few surprises, ex-
cept perhaps that the FS format performed better
than the H5 format. It would appear that the sep-
arate data sets used in the H5 format introduces more
overhead than that incurred by the file system. These
small queries are not very efficient: the fastest repre-
sentation, NC, produced output corresponding to only
0.215 MB/s of the available bandwidth on the S3 com-
pressed partition.

The results for the large query experiments are
presented in Table 7. On these larger queries it be-
comes clear that the FS structure suffers from the con-
siderable overhead of opening a file for retrieving each
time series. Both the NC and H5C formats performed
very well, with the NC format taking a small lead. The
effective throughput figures are much more promising
than those obtained on the small queries, with the
NC format producing output at a rate of 11.97 MB/s,
which corresponds to 14.7% of the maximum sequen-
tial throughput of the storage device.
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Table 6: Mean query time (microseconds per time series) for small queries

Data structure type
Partition FS H5 H5C NC

S2 uncompressed 25067 ± 6000 38249 ± 1855 15770 ± 585 14409 ± 1160
S2 compressed 18365 ± 1794 26283 ± 1013 14802 ± 461 14547 ± 1050
S3 uncompressed 20010 ± 1743 29808 ± 1082 13953 ± 741 12771 ± 819
S3 compressed 19767 ± 3050 24015 ± 484 13901 ± 360 11128 ± 1046

Table 7: Mean query time (microseconds per time series) for large queries

Data structure type
Partition FS H5 H5C NC

S2 uncompressed 1650.4 ± 47.6 405.0 ± 21.3 246.6 ± 25.8 239.1 ± 2.9
S2 compressed 1436.4 ± 177 324.0 ± 19.5 248.8 ± 24.4 221.4 ± 2.6
S3 uncompressed 1251.9 ± 9.9 387.2 ± 18.7 232.4 ± 23.4 225.1 ± 2.0
S3 compressed 1246.5 ± 11.9 291.5 ± 20.3 218.9 ± 23.9 200.3 ± 2.2

8 CONCLUSION

We have shown that a time-sequential representation
is superior to an image stack representation for stor-
ing satellite image time series data. This result was
demonstrated by deriving suitable models of the ex-
pected query times for these two representations, and
then confirming the model predictions with a set of ex-
periments. The models were also used to investigate
the expected impact that solid state drives will have
on the choice of storage format. This comparison has
shown that SSDs do not appear to behave differently
from mechanical hard drives: time-sequential repre-
sentations are still better than image stack represen-
tations, mostly because the image stack representation
is bandwidth limited, rather than seek-time limited.

Amongst four possible options for storing a time-
sequential representation, it was shown that the both
the HDF5 format using a compound data type and the
netCDF format are good choices. Based on these re-
sults, and the perceived bias towards the HDF format
in the remote sensing community, it would be prudent
to recommend the compound HDF5 representation.

Improved performance was observed on partitions
that enabled the on-the-fly compression algorithms
offered by ZFS. This improvement is likely due to
the high degree of redundancy in the quality flag
band of the MOD09A1 data. Future work will fo-
cus on strategies incorporating suitable compression
algorithms into the HDF5 representation.

REFERENCES

[1] P. Baumann, E. Diedrich, C. Glock, M. Lauten-
schlager and F. Toussaint. “Large-scale multidimen-
sional coverage databases”. In 26th GITA Annual
Conference. 2003.

[2] J. Skiffington and K. McKelvey. “Raster in the
database”. In GEOconnexion International Maga-
zine, pp. 22–23. 2007.

[3] J. Gray, D. Liu, M. Nieto-Santisteban, A. Szalay,
D. DeWitt and G. Heber. “Scientific data man-

agement in the coming decade”. SIGMOD Record,
vol. 34, no. 3, pp. 34–41, 2005.

[4] B. Reiner, K. Hahn, G. Hofling and P. Baumann.
“Hierarchical Storage Support and Management for
Large-Scale Multidimensional Array Database Man-
agement Systems”. In Database and Expert Sys-
tems Applications : 13th International Conference,
pp. 689–700. 2002.

[5] P. Baumann, P. Furtado, R. Ritsch and N. Wid-
mann. “The RasDaMan approach to multidimen-
sional database management”. In Proceedings of the
SAC’97, pp. 166–173. 1997.

[6] L. Relly, H.-J. Schek, O. Henricsson and S. Nebiker.
“Physical database design for raster images in CON-
CERT”. In Advances in spatial databases, vol. 1262,
pp. 259–279. Springer Berlin/ Heidelberg, 1997.

[7] R. Rew and G. Davis. “The Unidata netCDF: Soft-
ware for scientific data access”. In Sixth International
Conference on Interactive Information and Processing
Systems for Meteorology, Oceanography and Hydrol-
ogy, pp. 33–40. 1990.

[8] C. Tan, J. Blais and D. Provins. High Performance
Computing Systems and Applications, chap. Large im-
agery data structuring using hierarchical data for-
mat for parallel computing and visualization. The
Kluwer International Series in Engineering and Com-
puter Science. Kluwer Academic Publishers, 2000.

[9] J. Li, W.-K. Liao, A. Choudary, R. Ross, R. Thakur,
R. Latham, A. Siegel, B. Gallagher and M. Zingale.
“Parallel netCDF: A high-performance scientific I/O
interface”. In Supercomputing 2003. 2003.

[10] “Parallel I/O performance study with HDF5, a
scientific data package”. The HDF Group,
http://hdf.ncsa.uiuc.edu/HDF5/.

[11] G. Velamparapil. Data management techniques to
handle large data arrays in HDF. Master’s thesis,
Graduate College of the University of Illinois, 1998.

[12] Sarawagi and Stonebraker. “Efficient Organization
of Large Multidimensional Arrays”. In ICDE: 10th
International Conference on Data Engineering. IEEE
Computer Society Technical Committee on Data En-
gineering, 1994.



Research Article — SACJ, SACJ43, 2009 9

[13] K. Seamons and M. Winslett. “An efficient abstract
interface for multidimensional array I/O”. In Super-
computing 1994, pp. 650–659. IEEE, 1994.

[14] A. Choudhary, M. Kandemir, J. No, G. Memik,
X. Shen, W. Liao, H. Nagesh, S. More, V. Tay-
lor, R. Thakur et al. “Data management for large-
scale scientific computations in high performance dis-
tributed systems”. Cluster Computing, vol. 3, no. 1,
pp. 45–60, 2000.

[15] J. Kim, J. Kim, S. Noh, S. Min and Y. Cho. “A space-
efficient flash translation layer for CompactFlash sys-
tems”. Consumer Electronics, IEEE Transactions on,
vol. 48, no. 2, pp. 366–375, 2002.

[16] A. Tanenbaum. Modern Operating Systems. Prentice
Hall, second edn., 1992.


