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ABSTRACT   

Guided wave propagation has been proposed as a means to monitor the axial loads in continuously welded railway rails 
although no practical system has been developed.  In this paper, the influence of axial load on the guided wave 
propagation characteristics was analyzed using the semi-analytical finite element method, extended to include axial 
loads.  Forty modes of propagation were analyzed up to a maximum frequency of 100 kHz.  The sensitivity of the modes 
to axial load or changes in elastic modulus was formulated analytically and computed.  In practice, by using separation 
of signals in time it would only be possible to separate the mode with the greatest group velocity over a reasonable 
distance.  It was found that the influence of axial load on the wavelength of such a mode should be measureable.  
However, the influence of changes in the elastic modulus due to temperature is expected to be an order of magnitude 
larger.  In order to develop a practical measurement technique it would be necessary to eliminate or compensate for this 
and other influences. 
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1. INTRODUCTION  
Modern railway track consists of rail sections of approximately 25m, which are welded together to produce lengths of 
hundreds of meters.  This continuously welded rail (CWR) has, in general, no expansion joints and the axial stress in the 
rail depends on temperature.  During installation the rail is pre-tensioned with a tensile load set according to the 
temperature at the time.  The level of tension in the rail can change over time as the track settles after use.  A tension 
larger than desired will accelerate aging of the rail while a too low tension can lead to compression at high temperatures 
with the possibility of buckling and train derailment.  Therefore a technique for measuring the absolute tension in the rail 
is required.  Various measurement techniques are described in [1] but there remains a need for a technique that is easy to 
implement and that does not interfere with the operation of the railway.  It is well known that the resonant frequencies of 
strings and beams are influenced by the tension or axial load and measurement of wave propagation characteristics have 
been proposed as a technique for determining the axial load in rail. Damljanović and Weaver [2, 3] investigated the use 
of low frequency (200Hz) flexural waves.  In this method a scanning laser vibrometer was used to measure the 
displacements of points along the rail and a technique was used to extract the wavenumber of the flexural mode at 200 
Hz.  Changes in the wavenumber then reflect changes in the axial load.  This method requires that the rail be released 
from the sleepers for a considerable length.  Chen and Wilcox [4] investigated the use of higher frequency guided waves 
for measuring loads in rods.  Simulation results clearly demonstrated that the phase velocity and group velocity are 
sensitive to changes in load.  Although these techniques have been proposed they are not being used in practice as there 
are still some challenges.   

While it is possible to analyze the dispersion characteristics in rails using three-dimensional finite element models [1] 
this is tedious and very difficult at higher frequencies.  An alternative is to use the semi-analytical finite element method, 
which was recently extended to include axial loads [5].  This allows rapid analysis even at high frequencies.        

In this paper we analyze the guided wave propagation in rail subject to axial loads over a large frequency range.  We 
discuss the requirements for a measurement technique based on guided waves and use the numerical results to 
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investigate if such techniques are possible.  The sensitivities of the wavenumber to axial loads and to changes in elastic 
constants are compared. 

2. PRACTICAL MEASUREMENT METHODS 
To exploit guided waves for load measurement it is necessary to make reliable and accurate measurements of either 
phase or group velocity on real structures.  Practically this involves launching a wave packet of a guided wave mode that 
is sensitive to load at one station and detecting that mode at a second station some distance (the gauge length) away. The 
objective is to isolate the directly transmitted signal of interest both from all other signals which may include other 
modes and also from reflections from the end of the structure. The challenge in most practical applications is to obtain an 
acceptable level of sensitivity to load on the shortest possible structure. Higher sensitivity requires a lower operating 
frequency but a lower operating frequency means a spatially and temporally longer wave packet which is harder to 
separate from other signals. A number of approaches for separating signals are possible: 

1) Separation of all signals in the time-domain 

2) Use of modally selective transduction system to suppress signals from unwanted modes 

3) Use of directionally selective transduction system to suppress signals generated or received from unwanted 
directions. 

In practice it is necessary to detect very small changes in the phase or group velocity.  While modally and directionally 
selective transduction systems will reduce the presence of unwanted signals they cannot be expected to completely 
eliminate these signals.  Changes in the amplitudes of these signals could be expected to hide the effects of axial load.  In 
this paper we therefore limit our attention to the option of using separation in the time domain.  If a single mode can be 
separated in time then it has been shown in [4] that the phase velocity within the wave packet is sensitive to axial load as 
shown in figure 1. 

 
Figure 1. Influence of axial load on (top) phase velocity by consideration of the signal and (bottom) group velocity by 

consideration of the signal envelope (from [4]). 

During the development of a measurement system it is necessary to quantify the sensitivity to the parameter to be 
measured, in this case the axial load.  It is then necessary to quantify the sensitivity to other parameters to ensure that the 
system will be able to detect the desired change in the presence of other inputs.  Optimization of the measurement 
involves increasing the sensitivity to the desired parameter relative to the undesired parameters.  Some practical inputs 
that such a measurement system must be insensitive to include: 

 Changes in elastic constants with time and temperature 

 Changes in the support conditions 

 Changes in the rail due to re-profiling by grinding. 

In this paper we determine conditions for mode separation in time, study the sensitivity of wavenumber to axial load and 
temperature related changes in elastic constants. 
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3. SAFE WITH AXIAL LOADS 
Chen and Wilcox [1] pointed out that there are three ways in which finite element modelling can be applied to analyse 
the influence of axial load on waveguides with complex cross-section.  Firstly, time domain simulation performed on a 
three-dimensional model of a length of waveguide may be performed.  This is computationally expensive and it is 
difficult to extract the dispersion data for individual modes of interest.  Secondly, a three-dimensional model of a 
relatively short length of waveguide, with one end restrained in the axial direction, may be used.  The axial load is 
applied by prescribing an axial displacement to the second end of the model and the global stiffness matrix is 
recomputed before an eigensolution provides natural frequencies and mode shapes of the deformed length of waveguide.  
The mode shapes are inspected (manually) to determine what fraction of a wavelength and which mode of propagation 
they correspond to. A few points on the phase velocity curves may then be plotted.  The length of the model is then 
changed and the process is repeated to obtain more points on the phase velocity curves.  While this is very tedious Chen 
and Wilcox demonstrated that it can be applied to a rail, at low frequencies, where there are only a few modes of 
propagation which are sensitive to axial loads.  The third option is to use semi-analytical finite elements, which are 
specially formulated for modelling the wave propagation in waveguides of arbitrary but constant cross-section.  This 
method is very efficient as only a two-dimensional mesh of the cross-section of the infinitely long waveguide is required.  
Semi-analytical finite elements are being used by a number of research groups to investigate various wave propagation 
problems [6-10].  The method was recently extended to include the presence of an axial load and it was shown that the 
modifications required to a code are trivial [5].  The numerical efficiency of this approach and the fact that the results can 
be used directly, without significant post-processing by the user, make this approach very attractive for analysing the 
influence of axial load on the dispersion characteristics of a waveguide.     

 

Gavrić [6] formulated semi – analytical finite elements for modelling the wave propagation in elastic waveguides, with 
arbitrary but constant cross-section, and applied the method to analyse the wave propagation in rails.  These two-
dimensional elements included a complex exponential function perpendicular to the meshing plane, which represents the 
wave motion along the waveguide.  Similar elements have since been presented by other researchers [7-10] and yield a 
symmetric eigenvalue problem: 

  [ ] MuuKKK 2
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where M is the mass matrix, u is the displacement vector, ω is frequency, K = κ2K2 + κK1 + K0 is the stiffness matrix and 
κ is the wavenumber. The mass matrix is derived from the kinetic energy and the stiffness matrix is derived from the 
strain energy.  The application of an initial load results in additional terms in the strain energy which therefore lead to 
additions to the stiffness matrix.  It was shown in [5] that the additional term is proportional to the mass matrix and that 
the eigenvalue problem, including the initial axial stress, σ0, is, 
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Dispersion characteristics, of propagating modes, may be obtained by solving this eigenvalue problem for a range of 
different wavenumbers and collecting the real frequencies that are produced.  At each wavenumber considered a set of 
frequencies are obtained and dispersion curves can be extracted based on orthogonality between mode shapes at slightly 
different wavenumbers [11].   

The group velocities can be computed using the analytical expression in (3), which was presented by Hayashi et al. [7] 
for their element formulation, 
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where, ψ is a matrix of eigenvectors.  

The starting point for this analytical expression for group velocity is to differentiate the solution to the eigenvalue 
problem with respect to ω: 
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leading to an expression which can be rearranged to obtain vg = dω/dκ as the subject. If instead the eigenvalue solution is 
differentiated with respect to stress, the sensitivity of the wavenumber to axial stress at constant frequency can be 
obtained directly, 
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In a similar way, the sensitivity of the wavenumber to changes in elastic modulus can be obtained and is found to have a 
similar form,  

 ( ) ( ) g
T

T

T

T

vEKK
M

EKK

KKMK

EE
1

22
1

2
1

12

2

12

0102
2

ω
ψκψ

ψψω
ψκψ

ψκσ
ρ

κψ
κ

−=
+

−=
+

⎥
⎦

⎤
⎢
⎣

⎡
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−=
∂
∂

. (5) 

 

4. ANALYSIS OF MEASUREMENT OF AXIAL LOADS IN RAILS  
4.1 SAFE analysis of the influence of axial loads 

A 22kg/m steel rail profile (with Young's modulus, E = 200x109 Pa, Poisson's ratio, υ = 0.3 and density ρ = 7700 kg m-3) 
was analyzed using linear quadrilateral elements and the mesh shown in figure 2.  Wavenumber and group velocity 
curves are shown in figures 3 and 4 for no axial load and for an axial load of 200 MPa corresponding to an axial strain of 
0.001.  The curves are plotted for frequencies up to 100 kHz and a zoomed in view of the low frequency region is 
provided.  It is clear that even this large load has only a small influence on the dispersion curves.  The sensitivity of the 

wavenumber to axial load (
σ
κ

∂
∂

) and the relative sensitivity (
σ
κ

κ ∂
∂1

) are shown in figure 5.  The two low frequency 

flexural waves show the greatest sensitivity but there is considerable relative sensitivity of higher order modes at high 
frequencies.  It should be noted that the sensitivities were only plotted for group velocities greater than 100m/s.  
Equation 4 shows that the group velocity appears in the denominator of the sensitivity expression.  The modes cut-on at 
zero group velocity and therefore infinite sensitivity.  Some modes have decreasing group velocity (negative) at first and 
then the group velocity increases and passes through zero again.  These regions were avoided by only plotting larger 
group velocities. 
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Figure 2. Finite element mesh used in analyses. 

 
Figure 3. Computed wavenumber – frequency curves with 200 MPa axial load (solid lines) and without axial load 

(dotted lines). 

 
Figure 4. Computed group velocity – frequency curves with 200 MPa axial load (solid lines) and without axial load 

(dotted lines). 
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Figure 5. Computed absolute (left) and relative (right) wavenumber sensitivity to axial stress. 

 

4.2 Implications for axial load measurement 

The group velocity curves reveal that at even fairly low frequencies there are numerous propagating modes with a range 
of velocities and that many of these exhibit significant dispersion (group velocity is frequency dependent).  If we 
consider a gauge length of 10m it is unlikely that any mode other than the fastest one could be separated from the rest in 
time.  If we adopt the strategy of separating the modes in time we then want to quantify the change that can be expected 
in the first arrival.  If we consider a gauge length of 10m we can compute the number of wavelengths (n) over this 
distance (L) with and without the axial load and the change in the number of wavelengths that occurs.  This change in the 
number of wavelengths would appear as a phase shift in the received signal and this is what would provide the measure 
of the axial load. 
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This sensitivity is plotted in figure 6 as the size of the marker on the group velocity curves.  It is observed again that the 
sensitivity is large at small group velocities as explained earlier and that the sensitivity is large for the low frequency 
flexural modes.  The second plot only shows the markers for group velocities greater than 3500m/s as we intend to use a 
mode with large group velocity.  It is seen that the sensitivity increases with frequency because although the change in 
wavenumber is small, the number of wavelengths in the gauge length increases with frequency.  If we consider the mode 
with the greatest group velocity at 80 kHz we find that an axial stress of 200 MPa causes a change in wavenumber of -
0.049 rad/m which would produce a change in the number of wavelengths over 10m of -0.078 or a phase shift of 
approximately 28º.  It is expected that such a phase shift could be measured with reasonable resolution in practice.   
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Figure 6. Computed wavenumber shift superimposed on group velocity curves. The size of the circular markers 

indicates the absolute wavenumber sensitivity at each point. In the right hand graph, only points where the group 
velocity exceeds 3500 ms-1 are plotted in this way. 

4.3 Analysis of the influence of temperature 

A change in temperature will cause a change in the axial load due to the thermal expansion being constrained.  The 
elastic modulus of the rail will also change with temperature.  Both of these mechanisms will cause a change in the 
wavenumber.  This section provides an estimate of the relative sensitivity to these two mechanisms. 

 
Influence of temperature on wavenumber via thermal stress 
We assume that the thermal expansion is constrained and results in thermal stress, which can be quantified if we know 
the thermal expansion coefficient and the Young’s modulus. 
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We can therefore compute the sensitivity of the wavenumber to changes in stress caused by temperature changes. 

 
gv

E
TT

1
2

)()( 2

ωρ
ακσ

σ
σκσκ

=
∂
∂

∂
∂

=
∂

∂
 (8) 

Influence of temperature on wavenumber via elastic modulus 
If we assume that the Young’s modulus varies linearly with temperature we can estimate the sensitivity of wavenumber 
to changes in elasticity due to temperature. 
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Comparison of the two effects 
As the two sensitivities have the same form it is simple to compare them. 
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We see that the two sensitivities are proportional to each other and note that the phase velocity ( κω ) should be similar 

to the longitudinal wave velocity ( ρE ) when we consider large group velocities (in the previous example this ratio 
was 1.05).  Therefore, 
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In order to estimate the ratio of sensitivities to temperature and axial load we assume the following material properties; E 
= 200x109 Pa, α = 12x10-6 / ºC; γ = -0.0002 E [12], which yields a value of approximately 17. 

Therefore the wavelength is an order of magnitude more sensitive to elastic modulus changes than axial stress due to 
temperature changes.  

5. CONCLUSIONS AND RECOMMENDATIONS 
The SAFE method was used to analyze the influence of axial load on the wave propagation in a rail up to 100 kHz.  It is 
believed that only modes with the highest group velocity could be separated in time over a reasonable distance.  It 
appears to be theoretically possible to measure the phase shift caused by axial load changes although the sensitivity to 
changes in elastic modulus due to temperature changes is likely to be an order of magnitude larger.  A strategy would 
have to be devised to eliminate or compensate for this and other practical influences, which have not been quantified.  If 
this can be achieved, it would then be necessary to develop a technique to estimate the absolute axial load rather than 
only the change in axial load.   
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