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ABSTRACT

In this paper, a comparison is made through evaluating the within-
and between-class species variability for the original, the first deriva-
tive and second derivative spectra. For each, the experiment was
conducted (i) over the entire electromagnetic spectrum (EMS), (ii)
the visible (VIS) region, (iii) the near infrared (NIR) region, (iv)
the short wave infrared (SWIR) region, (v) using band selection, for
example, best 10, 20, 30 and 65 bands selected, through linear step-
wise discriminant analysis (vi) using sequential selection of bands,
for example, every 5th, 9th, 15th, 19th or 25th band selected and
(vii) spectral degradation of the spectral bands by averaging the re-
flectance values for every 5th, 9th, 15th, 19th or 25th band. We con-
cluded that for this data set, there are important bands from the orig-
inal spectra, the first and second derivative spectra and from various
regions of the EMS (VIS, NIR, SWIR) that is important for species
separability. Furthermore, there did not seem to be any decrease in
species separability, for this data set, by degrading the spectral bands
through averaging the reflectance. This implies that hyperspectral
(high spectral) measurements did not prove useful in species separa-
bility compared to lower spectral resolution data.

Index Terms— Species separability, within-class variability,
between-class variability, spectrally similar, classification, spectral
unmixing, band selection, spectral resolution

1. INTRODUCTION

Spectral signatures for samples of the same species of vegetation
could have high within-class species variability [1] and when com-
paring spectrally similar species this issue of high within-class
species variability enhances the problem of obtaining high accu-
racy in image classification and/or spectral unmixing [2]. Hence
techniques that are presently used for image classification and/or
spectral unmixing often cannot be directly used for vegetation stud-
ies to distinguish spectrally similar species [3]. Most researchers
in the past have ignored this or have used the mean spectrum for
the class for which image classification and/or spectral unmixing
techniques are based on the mean spectra. This results in (i) a loss
of valuable information as a result from individual samples and
(ii) undistinguishable mean spectra for spectrally similar vegetation
species.

The two main types of variability, which is necessary for any
image classification and/or spectral unmixing technique are (i) the
variability within a species class, and (ii) the similarity between the
species classes [4]. When the variability within a species class is

small compared to the variability between the species classes, this
results in relatively good accuracy in the results for image classifi-
cation and/or spectral unmixing. However, when the species spectra
is similar, the within-species variability can be large compared to
the between-species class variability, which is more prominent in
vegetation studies, and thus producing poor results for image classi-
fication and/or spectral unmixing techniques.

This research studies the variability within a species class and
the variability between the species classes of seven spectrally simi-
lar tree species and presents ways in which the within-species class
variability can be reduced compared to the between-species class
variability.

2. DATA DESCRIPTION

The Analytical Spectral Device (ASD) spectrometer (FieldSpec3 Pro
FR) was used to record hyperspectral measurements of leaf samples
taken from several different savannah trees in the Kruger National
Park in South Africa, in an attempt to assess tree species diversity
in the park. The hyperspectral data consist of 2151 spectral bands
at a spectral resolution of 1 nm for seven common plant tree species
in the area. The seven tree species include Lonchocarpus capassa,
Combretum apiculatum, Combretum heroense, Combretum zeyher-
rea, Gymnospora buxifolia, Gymnospora senegalensis, and Termi-
nalia sericia. Each tree species has 10 measurements recorded (see
Figure 1 for Combretum apriculatum and Figure 2 for Terminalia
sericia) with the exception of Gymnospora Buxifolia, which has only
seven. The total data set therefore had 67 observations for the species
measurements. The mean and the variance of the spectral reflectance
for each of the seven species is shown in Figures 3 and 4. From Fig-
ure 3, the similarity between the seven species can clearly be seen,
whereas Figures 1, 2, and 4 indicates the high within-species vari-
ability.

3. METHOD AND RESULTS

Let yk
i denotes the d-dimensional feature vector (d represents the

number of bands) selected from the ith sample of the kth class, ck,
with nk samples in the kth class. Furthermore, let µk (k = 1, . . . , c)
be the mean vector of kth class and µ be the total mean vector in this
d-dimensional feature space. The within-class, Sw, and between-
class, Sb, variances can be calculated in this feature space as follows:
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Fig. 1. Reflectance spectra of the 10 samples for Combretum apric-
ulatum.
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Fig. 2. Reflectance spectra of the 10 samples for Terminalia sericia.
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The ratio of the between-class variability to the within-class vari-
ability, commonly known as Fisher’s criterion ratio, is a measure for
class separation, with high values indicating greater class separation.
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Fig. 3. Mean spectral reflectance for all seven species. Also, band
selection using stepwise discriminant analysis. For SDA the results
for the best 10, 20, 30 and 65 selected bands are shown.
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Fig. 4. Variance of the spectral reflectance for all seven species.

In the past several, researchers have considered using the first
and second derivatives of the spectra to improve the image classi-
fication and/or spectral unmixing results [5, 6, 7] without actually
reflecting the within- and between-class species variability. A com-



parison is made through evaluating the within-class species variabil-
ity and the between-class species variability for the original, the first
derivative and second derivative spectra. For each, the experiment
was conducted (i) over the entire electromagnetic spectrum (EMS)
(0.350–2.500 µm), (ii) the visible (VIS) (0.400–0.740 µm) region,
(iii) the near infrared (NIR) (0.741–1.300 µm) region, (iv) the short
wave infrared (SWIR) (1.301–2.500 µm) region, (v) using band se-
lection, for example, best 10, 20, 30 and 65 bands selected, through
linear stepwise discriminant analysis (SDA), for which the selected
bands are shown in Figure 3 (vi) using sequential selection of bands,
for example, every 5th, 9th, 15th, 19th or 25th band selected and
(vii) spectral degradation of the spectral bands by averaging the re-
flectance values for every 5th, 9th, 15th, 19th or 25th band. Each of
the above was considered so as to reduce the high correlations be-
tween species, since it is already well known that high correlations
produces an unstable inverse matrix and results in a decrease in the
accuracy for image classification and/or spectral unmixing [8, 5, 9].
The results for the above can be seen in Tables 1 and 2.

Bands Within-class Between-class Ratio
variability variability

All
Original 5.574 5.030 0.902
1st derivative 9.007× 10−3 4.000× 10−3 0.444
2nd derivative 1.522× 10−2 3.582× 10−2 0.235

VIS
Original 0.316 0.291 0.920
1st derivative 2.220× 10−4 1.160× 10−4 0.523
2nd derivative 1.787× 10−4 2.797× 10−5 0.157

NIR
Original 2.090 0.481 0.230
1st derivative 1.163× 10−4 4.254× 10−4 0.366
2nd derivative 2.557× 10−4 7.420× 10−5 0.290

SWIR
Original 3.162 4.241 1.341
1st derivative 3.594× 10−4 1.568× 10−4 0.436
2nd derivative 7.013× 10−4 8.371× 10−5 0.119

SDA10
Original 0.013 0.021 1.600
1st derivative 6.621× 10−8 1.445× 10−7 2.183
2nd derivative 4.763× 10−11 1.273× 10−10 2.672

SDA20
Original 0.026 0.038 1.463
1st derivative 1.339× 10−6 8.253× 10−7 0.616
2nd derivative 2.061× 10−7 3.661× 10−8 0.178

SDA30
Original 0.037 0.055 1.473
1st derivative 4.520× 10−6 3.194× 10−7 0.707
2nd derivative 2.061× 10−7 6.138× 10−8 0.247

SDA65
Original 0.095 0.135 1.428
1st derivative 7.298× 10−6 4.482× 10−6 0.614
2nd derivative 3.271× 10−6 3.130× 10−7 0.096

Table 1. Within- and between-class variability for the original, 1st
and 2nd derivative for various regions of the EMS or selection of
bands.

Bands Within-class Between-class Ratio
variability variability

Every 5th spectrum
Original 1.114 1.006 0.902
1st derivative 6.060× 10−5 5.062× 10−5 0.835
2nd derivative 1.135× 10−6 5.649× 10−7 0.498

Every 9th spectrum
Original 0.619 0.559 0.903
1st derivative 3.002× 10−5 2.636× 10−5 0.878
2nd derivative 1.755× 10−7 1.327× 10−7 0.756

Every 15th spectrum
Original 0.371 0.335 0.902
1st derivative 1.658× 10−5 1.480× 10−5 0.893
2nd derivative 6.056× 10−8 5.305× 10−8 0.876

Every 19th spectrum
Original 0.293 0.264 0.902
1st derivative 1.232× 10−5 1.113× 10−5 0.904
2nd derivative 3.592× 10−8 3.265× 10−8 0.909

Every 25th spectrum
Original 0.223 0.201 0.902
1st derivative 8.837× 10−6 7.753× 10−6 0.877
2nd derivative 2.038× 10−8 1.702× 10−8 0.835

Every 5th averaged
Original 1.114 1.005 0.902
1st derivative 5.514× 10−5 4.819× 10−5 0.874
2nd derivative 5.582× 10−7 3.339× 10−7 0.598

Every 9th averaged
Original 0.619 0.559 0.902
1st derivative 2.799× 10−5 2.511× 10−5 0.897
2nd derivative 1.260× 10−7 1.089× 10−7 0.864

Every 15th averaged
Original 0.371 0.334 0.901
1st derivative 1.504× 10−5 1.356× 10−5 0.902
2nd derivative 4.713× 10−8 4.219× 10−8 0.895

Every 19th averaged
Original 0.293 0.264 0.902
1st derivative 1.090× 10−5 9.880× 10−6 0.906
2nd derivative 2.737× 10−8 2.478× 10−8 0.905

Every 25th averaged
Original 0.222 0.201 0.902
1st derivative 7.383× 10−6 6.591× 10−6 0.893
2nd derivative 1.399× 10−8 1.193× 10−8 0.853

Table 2. Within- and between-class variability for the original, 1st
and 2nd derivative for selected bands and comparison to spectrally
degraded bands.

4. DISCUSSION AND CONCLUSIONS

From the results in Tables 1 and 2, it can be seen that the within-class
species variability is often higher than the between-class species
variability, thus making Fisher’s criterion ratio less than one. This
implies that the accuracy for image classification and/or spectral un-
mixing will be low. From these tables, the derivative spectra for this
data set will often be even more problematic in terms of species sepa-
rability compared to the original spectra and furthermore, the within-
and between- class species variability are smaller in magnitude for
the derivatives as compared to the original spectra. This could af-
fect the reliability of the estimates, in terms of rounding, when using
derivative spectra because of the extremely small values.



From Table 1, the VIS and SWIR regions of the EMS have
higher species separability compared to using all spectral bands, at
least for the original spectra. For NIR region, the first derivative
has the highest species separability, while the original spectra has
the lowest species separability. When the selected bands from linear
stepwise discriminant analysis were used, the between-class species
variability is higher than the within-class species variability for the
original spectra, thus making Fisher’s criterion ratio greater than one.
Except for when the best 10 bands were selected, the derivative spec-
tra have lower species separability compared to the original spectra.
It is interesting that for the 10 best bands selected from linear step-
wise discriminant analysis, the second derivative had higher species
separability, while the original spectra had the lowest species sep-
arability. Eight of the 10 best bands were selected from the SWIR
region, while the remaining two are from the VIS region (see Fig-
ure 3). This contradicts the results in [10, 11, 12] where the authors
identified the VIS (0.400–0.700 µm) region to be most appropriate
to discriminate between soil and vegetation, but is in agreement with
[13] where the authors identified SWIR2 (2.050–2.500 µm) region
to be most appropriate to discriminate between soil and vegetation.

From Table 2, there does not seem to be any difference in terms
of species separability for the original spectra when all bands was
used, or using selected bands, namely, every 5th, 9th, 15th, 19th or
25th band selected or when the bands were spectral degraded by av-
eraging the reflectance values for every 5th, 9th, 15th, 19th or 25th
band. However, when the derivative spectra were used, the species
separability increased up to when every 19th band was selected. The
species separability then deceased when every 25th band was se-
lected using derivative spectra.

In general, we can conclude that for this data set, there are
important bands from the original spectra, the first and second
derivative spectra and from various regions of the EMS (VIS, NIR,
SWIR) that is important for species separability. Hence, we recom-
mend further research and improvement to selecting spectral bands
from a broader combined set of the original, first and second deriva-
tive spectra. Having selected the most discriminating set of spectral
bands, these can be used to further increase the between-class
species variability compared to the within-class species variabil-
ity, thereby increasing the accuracy for image classification and/or
spectral unmixing. Furthermore, for this data set, there does not
seem to be any decrease in species separability by degrading the
spectral bands through averaging the reflectance. This implies that
hyperspectral (high spectral) measurements did not prove useful in
species separability compared to lower spectral resolution data.
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