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ABSTRACT 
 
Differences in within-species phenology and structure driven by 
factors including topography, edaphic properties, and climatic 
variables present important challenges for species differentiation 
with remote sensing in the Kruger National Park, South Africa. 
The objective of this study was to examine probable factors 
including intraspecies spectral variability and the spectral sample 
size that could affect remote sensing of Savanna tree species across 
a land-use gradient in the Kruger National park.  Eighteen species 
were examined: Acacia gerradii, Acacia nigrescens, Combretum 
apiculatum, Combretum collinum, Combretum hereroense, 
Combretum imberbe, Combretum zeyheri, Dichrostachys cinerea, 
Euclea sp (E. divinurum and E. natalensis, Gymnosporia sp (G. 
buxifolia and G. senegalensis), Lonchocarpus capassa, Peltoforum 
africanum, Piliostigma thonningii, Pterocarpus rotundifolia, 
Sclerocarya birrea, Strychnos sp (S. madagascariensis, S. 
usambarensis), Terminalia sericea and Ziziphus mucronata. 
Discriminating species using the K-nearest neighbour (K = 1) 
classifier with spectral angle mapper (SAM) yielded a higher 
classification accuracy (48% overall accuracy) compared to 16% 
for the classification involving the mean spectra for each species as 
the training spectral set. Within-species spectral variability and the 
training sample size were identified as important factors affecting 
classification accuracy of the tree species. We recommend a non-
parametric classifier such as K-nearest neighbour classifier for 
classifying and mapping tree species in a highly complex 
environment such as the savanna system of the Kruger National 
Park.  
 

Index Terms— Savanna tree species; Spectral variability; 
Multiple endmember approach; Spectral angle mapper 
 

1. INTRODUCTION 
 
The ability to map vegetation to the species level is of wide interest 
in Ecology. Species-level maps of vegetation have important 
applications in resource inventories, biodiversity assessment, and 
fire hazard assessment. Species mapping with remote sensing is 
based on the assumption that each species has a unique spectral 
signature. Spectral signatures of vegetation vary according to 

biochemical content, physical structure of plant tissues and canopy 
architecture. 
 
Several mapping methods are applied in remote sensing to quantify 
species or vegetation community distribution at the local to 
regional scale. The most commonly used methods include 
maximum likelihood, spectral mixture analysis (SMA)[1] and 
spectral angle mapper (SAM)[2]. The application of some of these 
methods including SAM and SMA has become popular with the 
advent of hyperspectral remote sensing (imaging spectroscopy). 
SAM determines the degree of similarity between two spectra by 
treating the spectra as vectors in a space with dimensionality equal 
to the number of bands[2]. Each vector has a certain length and 
direction. The length of the vector represents brightness of the 
target while the direction represents the spectral feature of the 
target. Variations in illumination mainly affect changes in vector 
length, while spectral variability between different spectra affects 
the angle between their corresponding vectors[2]. SAM is 
appropriate for species-level monitoring at the regional scale as it 
is not sensitive to differences in illumination or albedo[3, 4]. This 
is often a problem associated with airborne imagery. SMA on the 
other hand is a subpixel classifier that determines the relative 
abundance of materials that are depicted in multispectral or 
hyperspectral imagery based on the materials' spectral 
characteristics. The reflectance at each pixel of the image is 
assumed to be a linear combination of the reflectance of each 
material (or endmember) present within the pixel. 
 
Spectral Angle Mapper (SAM) is a physically-based spectral 
classification that uses an n-D angle to match pixels to reference 
spectra. The conventional SAM classifier as applied in one of the 
most common image processing softwares, ENVI, compares the 
angle between the endmember spectrum vector and each spectral 
vector in n-D space. Smaller angles represent closer matches to the 
reference spectrum. Spectra further away than the specified 
maximum angle threshold in radians are not classified. A single 
reference spectrum assumed to be the unique identity of each target 
is used for the classification. If region of interests (ROI) are 
selected to represent the spectral set for each class, the mean 
spectrum is computed for all the spectra in the ROI and used as the 
reference endmember. This means that spectral variability within 
each class, denoted as the intra-class variability, is not preserved. 



Some studies have gone through a stepwise approach by first 
classifying possible classes for each species before merging them 
into one class[3, 5].  
 
Within-species (intraspecies) structural and chemical variability 
create important challenges in mapping savanna tree species. For 
example, the savanna landscape across the Kruger National Park 
(KNP), South Africa and, neighbouring private game reserves and 
communal lands present varying vegetation structural 
characteristics albeit with similar species composition. The high 
intraspecies variability in the KNP region is caused by differences 
in edaphic conditions (e.g. presence of gabbro and granitic 
substrates within relatively short distances), rainfall, herbivory, 
bushfire and human activities. These factors do influence the 
vegetation structure (e.g. green leaf area index) and biochemical 
composition (e.g. differing chlorophyll and nutrient concentrations 
resulting from phenological differences).  
 
The objective of this study was to examine probable factors 
including intraspecies spectral variability and the spectral sample 
size that could affect remote sensing of Savanna tree species across 
a land-use gradient in the Kruger National park.  We have explored 
two classification approaches with spectral angle mapper: (i) using 
a spectral library composed of one spectrum (endmember) per 
species and (ii) a multiple endmember approach conventionally 
called K-nearest neighbour classifier.  

  

 
Figure 1. Study area showing CAO image scenes 
 
 

2. METHODS AND MATERIAL 
 
2.1. Study area 
 
The study area is located in the “lowveld” savanna biome in the 
North-East of South Africa (Figure 1). Eight sites were chosen for 
the study including two sites in the KNP, two sites in private game 
reserves and four sites in communal lands. The species data used in 
this study consist of tree species generally more than 2 m tall 
identified and geo-registered using a Leica differential global 
positioning system (GPS). Eighteen dominant species are 
examined in the study. These include Acacia gerradii, Acacia 

nigrescens, Combretum apiculatum, Combretum collinum, 
Combretum hereroense, Combretum imberbe, Combretum zeyheri, 
Dichrostachys cinerea, Euclea sp (E. divinurum and E. natalensis, 
Gymnosporia sp (G. buxifolia and G. senegalensis), Lonchocarpus 
capassa, Peltoforum africanum, Piliostigma thonningii, 
Pterocarpus rotundifolia, Sclerocarya birrea, Strchynos sp (S. 
madagascariensis, S. usambarensis), Terminalia sericea and 
Ziziphus mucronata.  
 
2.2. Airborne imagery  
Airborne hyperspectral data were acquired in May 2008 with the 
Carnegie Airborne Observatory (CAO) system for eight land use 
sites across the study area (Figure 1). The CAO hyperspectral 
system acquired the spectral information in the 384-1054 nm range 
at a spatial resolution of 1m. The data were atmospherically and 
geometrically corrected by the CAO. The species point map was 
overlaid on the imagery and the spectral profiles collected via 
region of interest tool in the ENVI software.  
 
Table 1. Classification accuracy for 18 savanna species using (A) mean 
spectrum for each species training set as reference endmember and (B) all 
training spectra for each species as reference endmembers.  A. 
gerradii(AG), A. nigrescens(AN), C.  apiculatum(CA), C. collinum(CC), C. 
hereroense(CH), C. imberbe(CI), C. zeyheri(CZ), D. cinerea(DC), Euclea 
sp(ED),  Gymnosporia sp(GY), L. capassa(LC), P. africanum(PA), P. 
thonningii(PT), P. rotundifolia(PR), S. birrea(SB), Strychnos sp(SY), T. 
sericea(TS) and Z. mucronata(ZM). 
A

AG AN CA CC CH CI CZ DC ED GY LC PA PT PR SB SY TS ZM sum User accuracy(%)
AG 7 5 2 2 0 4 0 0 3 1 2 2 1 0 0 1 4 4 38 18.4
AN 0 1 1 0 1 1 0 1 1 0 2 0 0 0 0 0 0 1 9 11.1
CA 1 1 0 0 1 1 3 2 2 1 0 1 0 0 6 0 0 1 20 0.0
CC 11 3 0 12 0 3 0 4 3 2 6 2 5 0 8 1 2 3 65 18.5
CH 0 0 1 0 1 0 0 0 0 0 0 0 0 0 4 0 0 0 6 16.7
CI 2 3 1 0 1 3 0 1 1 0 1 0 0 0 6 0 0 0 19 15.8
CZ 0 0 1 0 0 3 15 0 0 0 0 1 0 1 12 1 4 0 38 39.5
DC 0 1 2 1 1 1 0 0 4 0 0 0 0 3 1 0 0 0 14 0.0
ED 4 1 0 2 0 1 1 3 6 0 3 0 0 0 8 5 1 2 37 16.2
GY 1 9 1 3 2 8 5 5 3 13 4 3 0 0 20 0 22 2 101 12.9
LC 1 0 0 3 2 2 5 2 0 0 1 0 0 0 1 1 9 0 27 3.7
PA 1 3 1 1 0 0 0 1 2 0 0 0 0 1 0 0 0 0 10 0.0
PT 0 0 0 18 0 0 0 0 13 2 2 2 11 0 12 1 3 0 64 17.2
PR 1 1 3 0 0 0 0 2 0 4 0 1 0 14 0 0 2 0 28 50.0
SB 0 2 0 1 1 0 1 0 2 3 2 0 0 0 1 0 2 1 16 6.3
SY 3 3 1 2 1 0 0 2 0 0 1 0 1 0 2 1 3 0 20 5.0
TS 0 0 0 0 0 1 0 0 1 0 0 0 0 0 2 0 0 0 4 0.0
ZM 1 4 0 1 1 0 0 1 2 1 0 0 0 0 3 1 1 1 17 5.9
sum 33 37 14 46 12 28 30 24 43 27 24 12 18 19 86 12 53 15 533

Producer
accuracy(%) 21.2 2.7 0.0 26.1 8.3 10.7 50.0 0.0 14.0 48.1 4.2 0.0 61.1 73.7 1.2 8.3 0.0 6.7
Overall
accuracy(%) 16  
B

AG AN CA CC CH CI CZ DC ED GY LC PA PT PR SB SY TS ZM sum User accuracy(%)
AG 12 4 1 2 1 2 0 1 0 1 0 0 0 4 2 1 1 0 32 37.5
AN 3 18 1 0 1 2 0 0 2 2 0 2 0 0 3 0 1 0 35 51.4
CA 1 0 4 0 1 0 2 0 1 0 0 0 0 0 0 0 0 0 9 44.4
CC 1 0 0 26 1 2 0 3 5 1 2 3 3 0 3 0 0 2 52 50.0
CH 0 1 0 1 2 0 1 1 0 0 0 0 0 0 1 0 2 0 9 22.2
CI 1 1 1 3 2 10 0 0 2 0 1 1 0 0 2 0 1 1 26 38.5
CZ 0 0 2 0 0 0 20 1 0 0 0 2 0 0 10 0 2 0 37 54.1
DC 5 1 0 1 0 3 0 6 3 0 0 0 0 0 1 3 3 0 26 23.1
ED 3 2 0 2 1 2 0 4 23 0 2 0 0 0 3 0 0 1 43 53.5
GY 0 2 0 0 0 0 0 1 1 14 0 0 0 0 1 0 0 1 20 70.0
LC 0 1 0 1 0 2 0 1 2 0 8 0 3 0 6 1 0 0 25 32.0
PA 1 0 0 0 0 1 1 0 0 1 0 3 0 0 0 0 0 0 7 42.9
PT 4 0 0 3 0 0 0 0 0 1 2 0 8 0 2 0 0 1 21 38.1
PR 0 1 0 0 0 0 0 0 0 1 0 0 0 12 0 0 0 2 16 75.0
SB 0 3 2 4 1 2 2 4 2 2 5 0 2 1 45 1 4 1 81 55.6
SY 1 2 0 2 2 1 0 0 0 0 1 1 2 0 2 3 0 0 17 17.6
TS 0 1 3 1 0 1 4 1 2 4 2 0 0 2 2 3 39 1 66 59.1
ZM 1 0 0 0 0 0 0 1 0 0 1 0 0 0 3 0 0 5 11 45.5
sum 33 37 14 46 12 28 30 24 43 27 24 12 18 19 86 12 53 15 533

Producer 36.4 48.6 28.6 56.5 16.7 35.7 66.7 25.0 53.5 51.9 33.3 25.0 44.4 63.2 52.3 25.0 73.6 33.3
accuracy(%)
Overall 48
accuracy(%)  



 
2.3. Data analysis 
 
The spectral data for each species were randomly split into the 
training and test data in a 1:4 ratio. Subsequently, two types of 
reference endmember spectra were used to evaluate the effect of 
within-species spectral variability on the discrimination accuracy 
of the tree species; (i) the mean spectrum of the training data set 
for each species and (ii) all training spectra for each species in a 
multiple-endmember approach (K-nearest neighbour classifier). In 
the basic nearest neighbours classifier, each training spectrum is 
used as a reference spectrum and the unknown (test) spectrum is 
assigned to the class of the closest (i.e. spectrally most similar) 
reference spectrum. SAM was calculated between spectral pairs for 
the whole spectral range (384-1054 nm). A target spectrum was 
classified as species x based on the minimum SAM criterion 
between a reference spectrum of species x and the target spectrum. 
The overall, users and producers classification accuracies were 
subsequently, determined from the confusion matrices between the 
observed and predicted data. 
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Figure 2. The effect of intraspecies dissimilarity based on 
intraspectral spectral angle measure (SAM) on the producer’s 
accuracy for A. classification involving the mean spectra as 
reference endmembers and B. all training spectra per species as 
reference endmembers 
 

3. RESULTS  
 

The K-nearest neighbour (k = 1) classification provided a higher 
overall classification accuracy (48%) when compared to the 
classification involving the mean spectra of the training samples as 

reference endmembers (overall accuracy = 16%) (Table 1).  Seven 
of the eighteen species showed producer’s accuracies of ≥ 50% for 
the K-nearest neighbour classifier compared to three species for the 
classification involving the mean spectra as reference endmembers. 
Also, a higher number of species (8) showed user’s accuracies of ≥ 
50% for the K-nearest neighbour classifier compared to the 
conventional SAM classifier (3 species).  
 
The intraspecies SAM showed a negative but non-significant 
correlation (r = -0.35, p = 0.15) with the producer’s accuracy for 
the classification involving the mean of the training spectra as 
reference endmembers (Figure 2). A significant negative 
correlation (r = -0.58, p = 0.01) was however observed in the 
above relationship when the analysis was conducted without 
including one outlier. A highly non-significant relationship (r = 
0.18, p = 0.47) was observed between the producer’s accuracy and 
intraspecies SAM for the classification involving K-nearest 
neighbour classifier (i.e. the multiple endmember approach).  
 
The sample size of the training data showed a higher influence on 
the classification accuracy when compared to the intraspecies 
spectral variability or dissimilarity (Figure 3). A significant 
positive correlation (r = 0.58, p = 0.01) was observed between the 
producer accuracy and the training data size for the classification 
involving the K-nearest neighbour classifier. No such influence 
was observed for the classification based on the mean spectra of 
the training sets as reference endmembers.  
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Figure 3. The effect of training data size on the producer’s 
classification accuracy for A. classification involving the mean 
spectra as reference endmembers and B. all training spectra per 
species as training endmembers 



 
4. DISCUSSION AND CONCLUSIONS 

 
This study highlights two important factors that affect 
discrimination of savanna tree species, namely, intraspecies 
spectral variability and the training data sample size. The latter 
being an important factor for the K-nearest neighbour classifier. 
K= 1 nearest neighbours classifier was adopted in this study, which 
minimises computational cost, but the classification accuracy may 
improve with higher K values, particularly for classifications 
involving large training samples. The complexity of the Kruger 
National Park system requires the use of large training samples for 
each species. The increasing accuracy of classification with 
increasing training data size could imply that the classification of 
the species could be limited to the dominant species. The criteria to 
determine the dominant species have to be established.  
 
We recommend the utilisation of the multiple endmembers SAM 
approach as opposed to the traditional SAM classifier involving 
single spectrum endmember per species for mapping of Kruger 
National Park species and emphasis that the training endmembers 
should be truly representative of the different distributions in the 
population.  Higher K values for the nearest neighbour classifier 
with SAM may be required but the value of K must be as low as 
possible to minimise the computing space requirement to store the 
complete set of training data and a high computational cost for the 
evaluation of new targets. Lastly, the spectral data for this study 
was limited to the visible-near infrared. The utilisation of the full 
spectral range from the visible to the shortwave infrared needs to 
be assessed.  
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