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ABSTRACT

Differences in within-species phenology and strietdriven by
factors including topography, edaphic propertiesd alimatic
variables present important challenges for spediffsrentiation
with remote sensing in the Kruger National Parkut8oAfrica.
The objective of this study was to examine probafaletors
including intraspecies spectral variability and #pectral sample
size that could affect remote sensing of Savareedpecies across
a land-use gradient in the Kruger National parkghEeen species
were examinedAcacia gerradii, Acacia nigrescens, Combretum
apiculatum, Combretum collinum, Combretum hereroense,
Combretum imberbe, Combretum zeyheri, Dichrostachys cinerea,
Euclea sp (E. divinurum and E. natalensis, Gymnosporia sp (G.
buxifolia and G. senegalensis), Lonchocar pus capassa, Peltoforum
africanum, Piliostigma thonningii, Pterocarpus rotundifolia,
Sclerocarya birrea, Strychnos sp (S madagascariensis, S
usambarensis), Terminalia sericea and Ziziphus mucronata.
Discriminating species using the K-nearest neighb@u = 1)
classifier with spectral angle mapper (SAM) yieldadhigher
classification accuracy (48% overall accuracy) carad to 16%
for the classification involving the mean spectradach species as
the training spectral set. Within-species speataaiability and the
training sample size were identified as importawtdrs affecting
classification accuracy of the tree species. Wermeeend a non-
parametric classifier such as K-nearest neighbdassiier for
classifying and mapping tree species in a highlymglex
environment such as the savanna system of the Kilggonal
Park.

Index Terms—Savanna tree species; Spectral variability,
Multiple endmember approach; Spectral angle mapper

1. INTRODUCTION

The ability to map vegetation to the species levef wide interest
in Ecology. Species-level maps of vegetation hawvgoitant
applications in resource inventories, biodiversissessment, and
fire hazard assessment. Species mapping with res@ising is
based on the assumption that each species hagjaeuspectral
signature. Spectral signatures of vegetation vaigomling to

biochemical content, physical structure of plassiies and canopy
architecture.

Several mapping methods are applied in remotersghsiquantify
species or vegetation community distribution at tbeal to
regional scale. The most commonly used methodsudecl
maximum likelihood, spectral mixture analysis (SNH) and
spectral angle mapper (SAM)[2]. The applicatiorsome of these
methods including SAM and SMA has become populdh e
advent of hyperspectral remote sensing (imagingtep&copy).
SAM determines the degree of similarity between spectra by
treating the spectra as vectors in a space witlerkonality equal
to the number of bands[2]. Each vector has a cet&igth and
direction. The length of the vector represents Hirigss of the
target while the direction represents the spedwature of the
target. Variations in illumination mainly affect ages in vector
length, while spectral variability between diffetespectra affects
the angle between their corresponding vectors[2AMSis
appropriate for species-level monitoring at theioegl scale as it
is not sensitive to differences in illumination albedo[3, 4]. This
is often a problem associated with airborne imag8iA on the
other hand is a subpixel classifier that determittes relative
abundance of materials that are depicted in meltspl or
hyperspectral imagery based on the materials' ect
characteristics. The reflectance at each pixel h&f tmage is
assumed to be a linear combination of the refleetanf each
material (or endmember) present within the pixel.

Spectral Angle Mapper (SAM) is a physically-baseueciral
classification that uses an n-D angle to matchlpiie reference
spectra. The conventional SAM classifier as appiiedne of the
most common image processing softwares, ENVI, coegpthe
angle between the endmember spectrum vector arid spactral
vector in n-D space. Smaller angles represent closéches to the
reference spectrum. Spectra further away than thecifeed
maximum angle threshold in radians are not claskifid single
reference spectrum assumed to be the unique igeftach target
is used for the classification. If region of intste (ROI) are
selected to represent the spectral set for eadss,cthe mean
spectrum is computed for all the spectra in the B@l used as the
reference endmember. This means that spectralbilgiavithin
each class, denoted as the intra-class variabiitpot preserved.



Some studies have gone through a stepwise approgpdirst
classifying possible classes for each species éefmrging them
into one class[3, 5].

Within-species (intraspecies) structural and chemia@riability

create important challenges in mapping savannasipeeies. For
example, the savanna landscape across the KrugemblaPark
(KNP), South Africa and, neighbouring private gareserves and
communal lands present varying vegetation
characteristics albeit with similar species compasi The high
intraspecies variability in the KNP region is calisy differences
in edaphic conditions (e.g. presence of gabbro grahitic

substrates within relatively short distances), fedin herbivory,

bushfire and human activities. These factors dduémice the
vegetation structure (e.g. green leaf area index) l@ochemical
composition (e.g. differing chlorophyll and nutrieroncentrations
resulting from phenological differences).

The objective of this study was to examine probafaletors
including intraspecies spectral variability and #pectral sample
size that could affect remote sensing of Savareedpecies across
a land-use gradient in the Kruger National parke Weve explored
two classification approaches with spectral angigper: (i) using
a spectral library composed of one spectrum (endme€mper
species and (i) a multiple endmember approach eationally
called K-nearest neighbour classifier.
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2.2. Airborneimagery

Airborne hyperspectral data were acquired in Ma@&@ith the
Carnegie Airborne Observatory (CAO) system for eigimd use
sites across the study area (Figure 1). The CACerspectral
system acquired the spectral information in the-3884 nm range
at a spatial resolution of 1m. The data were atiesgally and
geometrically corrected by the CAO. The speciesipniap was
overlaid on the imagery and the spectral profileflected via
region of interest tool in the ENVI software.

Table 1.Classification accuracy for 18 savanna speciesgu@i) mean
spectrum for each species training set as referendmember and (B) all
training spectra for each species as reference emders. A.
gerradii(AG), A. nigrescens(AN), C. apiculatum(CA), C. collinum(CC), C.
hereroense(CH), C. imberbe(Cl), C. zeyheri(CZ), D. cinerea(DC), Euclea
sp(ED), Gymnosporia sp(GY), L. capassa(LC), P. africanum(PA), P.
thonningii(PT), P. rotundifolia(PR), S. birrea(SB), Srychnos sp(SY), T.
sericea(TS) and Z. mucronata(ZM).
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Figure 1. Study area showing CAO image scenes

2. METHODS AND MATERIAL
2.1. Study area

The study area is located in the “lowveld” savahimme in the
North-East of South Africa (Figure 1). Eight sitesre chosen for
the study including two sites in the KNP, two siteprivate game
reserves and four sites in communal lands. Theiepdata used in
this study consist of tree species generally mbent2 m tall
identified and geo-registered using a Leica diffiéie¢ global
positioning system (GPS). Eighteen dominant species
examined in the study. These includeacia gerradii, Acacia
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2.3. Data analysis

The spectral data for each species were randontiy isfp the
training and test data in a 1:4 ratio. Subsequemilp types of
reference endmember spectra were used to evahmteffect of
within-species spectral variability on the discmaiion accuracy
of the tree species; (i) the mean spectrum of thi@ing data set
for each species and (i) all training spectradach species in a
multiple-endmember approach (K-nearest neighbaassdfier). In
the basic nearest neighbours classifier, eachitigispectrum is
used as a reference spectrum and the unknown $gstirum is
assigned to the class of the closest (i.e. spBctnadst similar)
reference spectrum. SAM was calculated betweertrspgairs for
the whole spectral range (384-1054 nm). A targetcspm was
classified as specieg based on the minimum SAM criterion
between a reference spectrum of spexiard the target spectrum.
The overall, users and producers classificationurmies were
subsequently, determined from the confusion matritween the
observed and predicted data.
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Figure 2. The effect of intraspecies dissimilaribased on
intraspectral spectral angle measure (SAM) on thedyxer's
accuracy for A. classification involving the meapestra as
reference endmembers and B. all training spectraspecies as
reference endmembers

3.RESULTS
The K-nearest neighbour (k = 1) classification ed a higher

overall classification accuracy (48%) when compated the
classification involving the mean spectra of tterting samples as

reference endmembers (overall accuracy = 16%) €Tapl Seven
of the eighteen species showed producer’s accgratie50% for
the K-nearest neighbour classifier compared tcetlspecies for the
classification involving the mean spectra as refeeeendmembers.
Also, a higher number of species (8) showed usacsiracies of
50% for the K-nearest neighbour classifier compatedthe
conventional SAM classifier (3 species).

The intraspecies SAM showed a negative but nonifiignt
correlation (r = -0.35p = 0.15) with the producer’s accuracy for
the classification involving the mean of the tramispectra as
reference endmembers (Figure 2). A significant tiega
correlation (r = -0.58p = 0.01) was however observed in the
above relationship when the analysis was conduetétout
including one outlier. A highly non-significant ationship (r =
0.18,p = 0.47) was observed between the producer’s acgared
intraspecies SAM for the classification involving-ri€arest
neighbour classifier (i.e. the multiple endmemiygsraach).

The sample size of the training data showed a higiflelence on
the classification accuracy when compared to theaspecies
spectral variability or dissimilarity (Figure 3). Aignificant
positive correlation (r = 0.58 = 0.01) was observed between the
producer accuracy and the training data size ferclassification
involving the K-nearest neighbour classifier. Nactsunfluence
was observed for the classification based on thannspectra of
the training sets as reference endmembers.
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Figure 3. The effect of training data size on th®dpcer’s
classification accuracy for A. classification inviolg the mean

spectra as reference endmembers and B. all traspegtra per
species as training endmembers



4. DISCUSSION AND CONCLUSIONS

(4]
This study highlights two important factors that feat
discrimination of savanna tree species, namelyraspecies
spectral variability and the training data samgle.sThe latter
being an important factor for the K-nearest neighbodassifier.  [5]
K= 1 nearest neighbours classifier was adoptetigstudy, which
minimises computational cost, but the classificata@curacy may
improve with higher K values, particularly for ctéfgcations
involving large training samples. The complexity tbe Kruger
National Park system requires the use of largeitrgisamples for
each species. The increasing accuracy of classificawith [6]
increasing training data size could imply that ghessification of
the species could be limited to the dominant sgedike criteria to
determine the dominant species have to be estellish

We recommend the utilisation of the multiple endrbers SAM

approach as opposed to the traditional SAM classifivolving

single spectrum endmember per species for mappinigruger

National Park species and emphasis that the t@ieimdmembers
should be truly representative of the differentriisitions in the
population. Higher K values for the nearest ne@frbclassifier
with SAM may be required but the value of K mustadselow as
possible to minimise the computing space requireértestore the
complete set of training data and a high computaticost for the
evaluation of new targets. Lastly, the spectrahdat this study
was limited to the visible-near infrared. The gtliion of the full

spectral range from the visible to the shortwaveaned needs to
be assessed.
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