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ABSTRACT

Most current lens distortion models use only a few terms of Brown’s model, which assumes that the radial dis-
tortion is dependant only on the distance from the distortion centre, and an additive tangential distortion can be
used to correct lens de-centering. This paper shows that the characterization of lens distortion can be improved
by over 79% compared to prevailing methods. This is achieved by using modern numerical optimization tech-
niques such as the Leapfrog algorithm, and sensitivity-normalized parameter scaling to reliably and repeatably
determine more terms for Brown’s model. An additional novel feature introduced in this paper is to allow the
distortion to vary not only with polar distance but with the angle too. Two models for radially asymmetrical
distortion (i.e. distortion that is dependant on both polar angle and distance) are discussed, implemented and
contrasted to results obtained when no asymmetry is modelled. A sample of 32 cameras exhibiting extreme
barrel distortion (due to their 6.0mm focal lengths) is used to show that these new techniques can straighten
lines to within 7 hundredths of a pixel RMS over the entire image.
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1. INTRODUCTION

Most optical lenses induce some amount of distortion in the images they create, that is: the resultant images differ
from what one would obtain with an ideal pinhole camera. In addition to the obvious aesthetic degradation, this
has severe consequences for any measurements calculated from the image and for such applications as machine
vision, stitching,1 product defect detection, remote sensing and motion tracking. While it is possible to correct
all or some of the distortion optically, this increases the size, mass and price of the lenses considerably and,
therefore, the correction is frequently done in software.

For spherical element lenses, it has been common practice in the literature2,3 to model only the first few
radial distortion parameters of the Conrady/Brown model.4–6 The authors have previously shown7 that more
parameters can be reliably fitted and that doing so results in a superior characterization.

This paper shows that the Conrady/Brown model can be further extended to yield even better results.
Typically the radial distortion of a lens dominates the tangential/de-centering distortion components, yet the
model implies that any points on a circle centered about the distortion centre require the same radial adjustment.
In other words, the angular component of the polar coordinate is irrelevant. It is shown in the rest of the
paper that making the radial correction aspect of the Conrady/Brown model dependant on the polar angle can
significantly improve the characterization.

The rest of this paper is organised as follows: Section 2 describes the angular warpings used, and Sec. 3
details the hardware and software setups used to test the new angle-dependent characterisation models. Section
4 both provides and discusses the results and finally Sec. 5 places this work in context and summarizes the
findings.
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2. ANGULAR GAIN

In order to test the efficacy of incorporating an angular component for lens distortion, the Brown/Conrady model
was augmented to include a polar angle dependant gain for the radial components as shown in Eq. 1.

xu = xd + f(θ)(xd − xc)(K1r
2 +K2r

4 + . . .)+(
P1(r2 + 2(xd − xc)2) + 2P2(xd − xc)(yd − yc)

)
(1 + P3r

2 + . . .)

yu = yd + f(θ)(yd − yc)(K1r
2 +K2r

4 + . . .)+(
2P1(xd − xc)(yd − yc) + P2(r2 + 2(yd − yc)2)

)
(1 + P3r

2 + . . .)) (1)
where:

(xu, yu) = undistorted image point,
(xd, yd) = distorted image point,
(xc, yc) = centre of distortion,

Kn = Nth radial distortion coefficient,

Pn = Nth tangential distortion coefficient,

θ = tan−1

(
yd − yc

xd − xc

)
f(θ) = the radial gain,

r =
√

(xd − xc)2 + (yd − yc)2, and
. . . = an infinite series.

There are some requirements for the polar gain f(θ))in Eq. 1. Firstly, it has to be continuous over the range
[0, 2π], and that f(2π) = f(0) so there is not a discontinuity at the wrap around. Multiple functions of this
nature were derived and evaluated but only the ones that were found to be advantageous are discussed here. For
instance, gains of the form given by Eq. 2 were not found to be beneficial and are not discussed further.

f(θ) = c+ ((θ − α)− 0)× ((θ − α)− 2π)×Πn<m
n=0 ((θ − α)− Zn) (2)

where:
f(θ) = the radial gain,
α = the angular offset,
m = the number of zeroes,
n = the vertical offset, and
Zn = the Nth zero.

2.1 Elliptical angular gain

The implicit acceptance of radial symmetry in the Conrady/Brown model implies that the lens elements are
perfectly formed and have a uniform refractive index and the that imager is both perfectly orthogonal to the
optical axis and perfectly planar. Whilst these criteria can indeed never strictly be met. The assumption of
radial symmetry is particularly untrue for cheaper, mass-produced lenses. In particular, non-orthogonal image
planes would lead to elliptical distortion as seen in Fig. 1.

The formula for the radius of an ellipse with horizontal major axis and focii equidistant from the origin is



Figure 1. Elliptical projecting resulting from a non-orthogonal conic slice

given by Eq. 3.

r(θ) =
√
a2cos2(θ) + b2sin2(θ) (3)

where:
r = radius of the ellipse,
a = major (horizontal) axis of ellipse,
b = minor (vertical) axis of ellipse, and
θ = polar angle

Generalizing the major axis to be at any angle relative to the horizontal axis, and normalizing the major axis to
be of unit length, as well as providing an overall gain yields the elliptical gain algorithm used in this work and
given by Eq. 4.

f(θ) = a
√
cos2(θ − α) + b2sin2(θ − α) (4)

where:
θ = the polar angle,
a = the gain of the ellipse,
b = normalized minor axis of ellipse (∈ (0, 1]), and
α = clockwise angle of major axis from horizontal.

2.2 Sinusoidal angular gain
Perhaps surprisingly, the simple fixed frequency sinusoid not only meets the criteria but performed well, in
addition to being smooth on the interval. Equation 5 provides the generalized form used in this work.

f(θ) = asin(θ − α) + b (5)



where:
θ = the polar angle,
a = the gain,
b = the vertical offset, and
α = the angular offset.

3. EXPERIMENTAL SETUP

In order to verify the improved performance of the polar augmented distortion models, real world data was
collected, and a metric to determine the level of distortion formulated. As this is the logical extension to the
authors’ previous work,7 both the physical setup and the data set up are the same as those that were previously
published. They are restated here for the purposes of completeness.

3.1 Cameras

A population of 32 cameras each with a nominal focal length of 6mm and 76◦ by 56◦ field of view (FOV) frustum
(which corresponds to the outlines in Fig. 2) were used. The cameras had square pixels and orthogonal horizontal
and vertical axes. The distortion induced by the cameras required a correction of more than 73 pixels, or 8.7%
of the diagonal FOV in the upper right corner of Fi. 2(b). Two lens designs were considered, with 8 samples of
Design A and 24 samples of Design B evaluated.

(a) Four distorted views of the reference jig (b) Distorted and undistorted view of the reference
jig

Figure 2. Optical reference jig

3.2 Optical reference jig

The cameras each captured the centroids of an optical reference jig which has 504 circular marks arranged in
6 concentric squares. Each camera captured 4 different views of the jig such that the entire field of view was
covered, as illustrated in Fig. 2(a).



3.3 Distortion measure

Brown proposed the plumb-line method in 19716 and it has been used almost universally since. Essentially, given
points along a supposed-to-be-straight line, Brown fitted the least- squares straight line through the points, the
error (for that line) being the sum of the perpendicular distances from the line. A slight adaptation to the above
was used in this work, whereby the perpendicular distance between the point and the line is still used, but the
line is expressed in the more tractable form of a unit direction vector and a point on the line. The following
equation shows the distortion metric used, which is the Root Mean Square (RMS) perpendicular distance of all
the points from their corresponding lines. Note that as the jig consisted of concentric squares constructed with
equidistant references, the number of references per line is not constant. In this work N was 96 (four views of
six squares having the usual four sides each) and

∑n<N
n=0 Mn > 2016 as the corner references are used for two

lines each.

distortion =

√√√√ 1∑n<N
n=0 Mn

n<N∑
n=0

m<Mn∑
m=0

(
(‖p̄n

p − p̄n
l ‖2)2 − ((p̄n

p − p̄n
l ) � d̄n)2

)
(6)

where
N = the number of straight lines in the data captured,
Mn = the number of points along the nth line,
d̄n = unit direction vector of the line,
p̄n

l = the point on the line, and
p̄n

p = the point in question.

3.4 Skewness measure

It was seen in preliminary measurements that variable angular gains could induce a trapezoidal effect on what
should have been rectangular corrected images. The metric used to quantify this effect is given by Eq. 7. It
compares the variable angular gain corrections with the constant angular gain (i.e.f(θ) = 1), while this will
indeed highlight differences between the two it does not necessarily mean that a small skewness of one or two
degrees is bad although a larger value would be a cause for concern. Figure 3 depicts a typical example of
trapezoidal skewness.

skewness = maxi

[
cos−1

(
p̄i,end − p̄i,start

‖p̄i,end − p̄i,start‖
�
q̄i,end − q̄i,start

‖q̄i,end − q̄i,start‖

)]
(7)

where
i = the number ∈ [1, 96] of the line being considered,

p̄i,end = the last existing undistorted point in the variable radial gain line,
p̄i,start = the last first distorted point in the variable radial gain line,
q̄i,end = the last existing undistorted point in the constant radial gain line, and
q̄i,start = the first existing undistorted point in the constant radial gain line.

3.5 Numerical Techniques Overview

Equation 6 provides a means to quantify how much distortion a lens induces. Lower values are better, and this
section describes the methods used to minimize the metric.

The Leapfrog Algorithm8 is used in this work, since it was previously shown to provide superior characteri-
zations and is known to be robust to noise and intractable problems9 . It uses only gradient information to find
the minimum and is thus a first order optimization technique. The algorithm simulates a particle which appears
at rest at the provided starting point and is subjected to accelerations induced by the gradient of the function
being minimized. It is worth noting that the acceleration induces a velocity (and therefore momentum) which



(a) No skewness evident (b) Skewness evident

Figure 3. Illustration of trapezoidal skewness

allows the particle to go over ‘humps’ and thus finds not the nearest local minimum, but the nearest ‘low local’
minimum.8

It is also important to scale the variables so that the gradient is equally sensitive to a step in any direction.9

For instance the K3 coefficient of Brown’s model5 has to have a lower scale than the K2 coefficient, since it works
with the 6th power of the distance from the distortion centre compared to the 4th power which K2 scales. This
allows the true minimum to be found more easily.

In this paper a numerical method was deemed to have converged if the norm of the gradient was less than√
n10−6 (where n is the number of parameters in the function being minimized) or the step size was less than

10−8. The former criterion is a function of n so that as the number of parameters increases, the required
average magnitude of each element in the gradient vector remains constant. A centered gradient calculation was
employed; this requires 2n function calls instead of the n+1 function calls of the more common forward gradient
method. However, it provides an approximation of 5f at the point concerned instead of a collection of partial
derivatives each offset by half the gradient step in their respective dimensions.

4. RESULTS AND ANALYSIS

Table 1 and Table 2 provide the results for the characterizations of the two different lenses considered in this
work. The distortion results listed are the average distortion metrics, as per Eq. 6, expressed in pixels and the
skewness calculated as per Eq. 7 expressed in degrees. The uncompensated distortion for lenses of Type A is
1.768 pixels RMS. Type A lenses were designed to have optically less distortion than Type B lenses whose average
uncompensated distortion is 4.302 pixels RMS. Table 3 express the improvement in the distortion characterization
achieved by the angular gain models compared to a nuity angular gain.

The tables show that both angular gain functions improve the distortion characterization. This is particularly
true for the simple first order models where improvements of up to 75% were obtained using sinusoidal gain,
although this was at the expense of a higher induced trapezoidal skewness compared to the elliptical gain. For
the five models which contained at least a second order radial component, the improvement varied from 3% to
15% with both variable angular gain models exhibiting acceptable skewnesses. The differing results for the low
order models between the two lens types show that no single lens distortion model can be universally applied,
but rather, critical thinking and analysis are required so that the desired level of distortion characterization is
achieved. Regarding distortion models with one radial term and no tangential terms, Tsai2 famously stated that
”any more elaborate modeling not only would not help but would cause numerical instability.” Compared to
this, an improvement of over 79% has been demonstrated.



Table 1. Results for Lens Type A

Distortion Model Angular Gain
Model Radial Tangential Optimal Constant Elliptical Sinusoidal

Number Terms Terms Center Found Dist. Dist. Skewness Dist. Skewness
1 1 0 N 0.2130 0.1059 0.294◦ 0.0801 5.840◦

2 1 0 Y 0.1312 0.1033 0.310◦ 0.0787 5.874◦

3 2 0 Y 0.0597 0.0578 0.206◦ 0.0565 0.356◦

4 3 2 N 0.0703 0.0580 0.203◦ 0.0592 0.351◦

5 3 2 Y 0.0595 0.0572 0.210◦ 0.0544 0.360◦

6 3 3 Y 0.0595 0.0569 0.273◦ 0.0541 0.360◦

7 5 0 N 0.0703 0.0580 0.210◦ 0.0592 0.351◦

Table 2. Results for Lens Type B

Distortion Model Angular Gain
Model Radial Tangential Optimal Constant Elliptical Sinusoidal

Number Terms Terms Center Found Dist. Dist. Skewness Dist. Skewness
1 1 0 N 0.3038 0.3014 0.203◦ 0.0774 9.500◦

2 1 0 Y 0.2487 0.1860 0.207◦ 0.0723 9.499◦

3 2 0 Y 0.0750 0.0664 0.223◦ 0.0727 0.996◦

4 3 2 N 0.0715 0.0655 0.230◦ 0.0628 0.889◦

5 3 2 Y 0.0673 0.0646 0.214◦ 0.0625 0.829◦

6 3 3 Y 0.0670 0.0639 0.230◦ 0.0622 0.871◦

7 5 0 N 0.0714 0.0654 0.220◦ 0.0623 0.885◦

Table 3. Percentage improvements using variable angular gains

Distortion Model Angular Gain
Model Radial Tangential Optimal Elliptical Sinusoidal

Number Terms Terms Center Found Type A Type B Type A Type B
1 1 0 N 50.2% 0.9% 62.2% 75.7%
2 1 0 Y 21.4% 25.3% 39.3% 71.0%
3 2 0 Y 3.2% 11.2% 5.4% 3.1%
4 3 2 N 15.4% 8.3% 14.4% 12.0%
5 3 2 Y 3.9% 3.9% 8.8% 7.0%
6 3 3 Y 4.4% 4.6% 9.4% 7.2%
7 5 0 N 15.4% 8.3% 14.5% 12.6%



5. CONCLUSION

This paper addresses the issue of the implicit radial symmetry for the radial components of the predominant
Conrady/Brown model. It showed that extending the model with an angular gain decreased the residual distor-
tion of low-order models by up to 75%. The most complicated models, which only recently were reliably and
successfully applied, also benefits by a 4% to 10% improvement.

Elliptical distortion, which models the non-orthogonality of the image plane, was seen to always enhance the
distortion characterization without inducing unwanted trapezoidal distortion. Sinusoidal distortion was seen to
provide improved distortion characterization beyond even what the elliptical radial achieved, at least in terms
of output line straightness. However this technique may require some care when applied to low order models.

A new tool has been created which can provide extremely accurate distortion characterization. This allows
high-end photogrammetric applications to improve their accuracy even if they already use complex models.
Similarly, low-end cameras and lenses (such as those found on mobile phones) whose production may not be as
carefully controlled, can benefit by using the elliptical variable angular gain and make use of the ever increasing
processing power commonly available on such devices.
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