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ABSTRACT 
 

The ability of various ecosystems to perform vital functions such 
as biodiversity production, and water, energy and nutrient cycling 
depends on the ecosystem state, i.e. health. Ecosystem state 
assessment has been a topic of intense research, but has reached a 
point at which accurate large scale (e.g. regional to global scale) 
modelling and monitoring are hindered by limitations in 
conventional assessment methods such as direct field sampling, 
modelling from environmental drivers such as temperature, 
precipitation and available nutrients, and modelling from remote 
sensing data. The Ecosystem-Earth Observation (Eco-EO) research 
group at the Council for Scientific and Industrial Research (CSIR), 
South Africa has highlighted the need in remote sensing research 
for an integrated sensing approach at the systems level. This 
perspective is based on the assumption that a modelling approach 
that exploits the strength of the various techniques (in situ 
environmental variables, direct field observation and remote 
sensing data) could potentially improve the assessment of 
ecosystem state at various geographic scales. In this light, the Eco-
EO research group has embarked on an agro-system state 
assessment project since 2007 as a first step towards the 
implementation of the integrated modelling approach for various 
ecosystems. The agro-system consists of a monoculture forest 
plantation of Eucalyptus grandis situated in KwaZulu-Natal, South 
Africa. This paper presents preliminary results from the KwaZulu-
Natal E. grandis experimental study. 
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1. INTRODUCTION 
 
Ecosystem functions including biodiversity production, and water, 
energy and nutrient cycling are essential to human civilisation[1]. 
The ability of various ecosystems to perform the above functions 
depends on the ecosystem state, i.e. health[2]. Therefore, effective 
monitoring of ecosystem state including the structure, species 
composition, canopy biochemistry and productivity is crucial to 
ensuring the well-being of various ecosystems. Ecosystem state 
assessment has been a topic of intense research, but has reached a 
point at which accurate large scale (e.g. regional to global scale) 
modelling and monitoring are hindered by limitations in 
conventional assessment techniques such as direct field sampling, 

modelling from environmental drivers such as temperature, 
precipitation and available nutrients, and modelling from remote 
sensing data (Figure 1).  
 

 
Figure 1. Conceptual framework 
 
First, direct field techniques for quantifying ecosystem state are 
difficult, extremely labour intensive, and costly in terms of time 
and money. Furthermore, they cannot usually be extended over 
regional scales of vegetation because of logistics and huge number 
of sample variations[3]. Second, it has long been established that 
environmental variables including climatic, edaphic and 
topographic factors determine ecosystem state at various scales[4, 
5]. These environmental variables have either been used 
empirically to estimate and map ecosystem state or as input 
variables in ecosystem process models[6]. Ecosystem process 
models applied in a spatially distributed mode can assimilate and 
integrate a diverse assemblage of environmental data[6]. However, 
the draw back of this approach is that some ecological phenomena 
are stochastic and cannot be predicted by environmental variables 
alone e.g. fire, grazing, other anthropogenic factors. Lastly, remote 
sensing, using current or anticipated technology, is widely viewed 
as a non-subjective method for large-scale monitoring of 
ecosystem state and processes. Remote sensing has been used 
extensively to quantify vegetation biophysical and biochemical 
properties[3]. However, reported estimation accuracies are low for 
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ecosystems characterised by subtle differences in biophysical and 
biochemical variables[3].  
 
The Ecosystem-Earth Observation (Eco-EO) research group at the 
Council for Scientific and Industrial Research (CSIR) has 
highlighted the need in remote sensing research for an integrated 
sensing approach at the systems level. This perspective is based on 
the assumption that a modelling approach that exploits the strength 
of the various techniques (in situ environmental variables, direct 
field observation and remote sensing data) could potentially 
improve the assessment of ecosystem state at various geographic 
scales.   Figure 1 illustrates the general concept of system-level 
integrated modelling. Integration can occur at two level; data and 
modelling techniques. For example, (i) empirical models can be 
derived from integrating remote sensing and environmental data 
(e.g.[7]) (ii) using direct field observations as the main data and 
remote sensing or environmental variables as co-variables, 
ecosystem state can be estimated by geostatistical modelling 
(e.g.[8]), (iii) remote sensing metrics can be used as input 
parameters in process models of plant growth e.g. [6], (iii) 
environmental and field data can be used to define radiative 
transfer models for canopy reflectance ( e.g. [9]).  
 
The Eco-EO research group has embarked on an agro-system state 
assessment project since 2007 as a first step towards the 
implementation of the integrated modelling approach for various 
ecosystems. The agro-system consists of a monoculture forest 
plantation of Eucalyptus grandis situated in KwaZulu-Natal, South 
Africa. This experimental site is classified according to three site 
qualities namely good, medium, and poor based on soil quality, as 
defined by total available water (TAW) in the soil profile. The 
latter is largely dependent on soil properties such as effective 
rooting depth and soil type, in conjunction with rainfall and 
temperature classes[10]. The objectives were to:  
 

- assess the relationship between E. grandis site quality 
and canopy reflectance,  

- develop integrated models involving remote sensing, site 
quality and topographic variables for estimating 
ecosystem state, 

- parameterise radiative transfer models (leaf and canopy 
reflectance models) for estimating E. grandis ecosystem 
state variables  

- and lastly, develop integrated models involving forest 
growth model and remote sensing data to predict forest 
productivity.  

 
Here we present a synopsis of some of the results for the first 
three objectives.  

 
2. MATERIALS AND METHODS 

 
2.1. Study site 
 
The study area is located in the Richmond area of the KwaZulu-
Natal Midlands of South Africa (29o 49' S, 30o 17' E) and consists 
of 8 year old E. grandis plantations (Figure 2). Plantation forestry 
is a major land use in the study area due to suitable climate and 
soils. The terrain generally consists of undulating plains, which are 
incised with steep river valleys, with altitude rising from 800m to 
1400m above-mean-sea-level. The geology consists of sandstone 
and clay formations, which have resulted in sandy clay, to sandy 

clay loam soils. The experimental site is classified according to 
three site qualities namely good, medium, and poor based on soil 
quality, as defined by total available water (TAW) in the soil 
profile. The latter is largely dependent on soil properties such as 
effective rooting depth and soil type (form), in conjunction with 
rainfall and temperature classes[10].  
 

 
Figure 2. Study site in the Richmond area of the KwaZulu-Natal 
Midlands, South Africa  
 
2.2. Spectral and other measurements 
 
Two sets of measurements were made in August 2007 and August 
2008. In August 2007, canopy reflectance spectra for sixty-eight 
trees (25=good, 25=medium and 18=poor sites) were collected on 
clear sky days using an ASD spectroradiometer (350-2500 nm) 
from a raised platform, while leaf and canopy spectral 
measurements were made for 65 E. grandis trees (15=good, 
26=medium and 21=poor sites) at 19 locations on clear sky days in 
August 2008. For all spectral measurements, the radiance data were 
converted to reflectance using a reference reading (denominator) 
for each sample from a white spectralon reference panel. About 25 
to 30 sunlit leaf samples were collected for leaf spectral and 
chlorophyll measurements.  
 
For the purpose of parameterisation of leaf radiative transfer 
models, leaf spectra and biophysical/biochemical properties were 
measured for leaves at different stages of development in order to 
ensure a high variability in the data set. Leaf chlorophyll content 
data was measured using the chlorophyll-meter, SPAD-502. The 
SPAD readings were later converted to chlorophyll content using 
equations developed by Uddling et al. [11] 
 
2.3. Data analysis 
 
This section is outlined according to the objectives 

- One-way analysis of variance (ANOVA) was used to 
assess the relationship between site quality and canopy 
spectral properties. The spectral proxies (spectral indices) 
of leaf water (normalised water difference index  
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Figure 3. Relationship between site quality and remote sensing 
indices 
 

- (NDWI), moisture stress index (MSI)) and chlorophyll 
(Carter chlorophyll index, red-edge position (REP)), 
content were used to describe the canopy spectral 
characteristics.  

- With regards to assessing the utility of the integrated 
approach, the research method consisted of first 
investigating the performance of linear regression models 
derived from remote sensing or in situ data only and 
subsequently assessing if the integration of the two data 
types improves the estimation of an ecosystem state 
variable such as leaf chlorophyll content. 

- As a first step towards developing a canopy reflectance 
model for predicting E. grandis state, we assessed the 
utility of the leaf radiative transfer model (RTM) in 
predicting E. grandis state. Leaf biophysical and 
biochemical parameter ranges for E. grandis were used 
to parameterise the PROSPECT RTM. PROSPECT was 
subsequently used to simulate 1200 leaf spectra. Remote 
sensing models were developed from the simulated data 
and inverted to estimate leaf chlorophyll content.  

  
 

3. RESULTS 
 

3.1. Predicting site quality 
 
ANOVA results for August 2007 showed that spectral differences 
between site qualities are significant. Leaf water (NDWI, MSI) and 
chlorophyll (Carter chlorophyll index, REP) indices exhibited 
significant differences between sites (Figure 3). These results were 
not consistent with those obtained in August 2008 as spectral 
differences between sites in 2008 were not significant. However, 
REP (a leaf chlorophyll indicator) showed a non-significant 
gradient from the low to the good sites. Rainfall data of the study 
area showed 2008 (858.8 mm between September 2007-August 
2008) as a wetter year than 2007 (807.2 mm between September 
2006-July 2007). Although TAW was not specifically measured for 
the above periods, we hypothesise that the TAW gradient is most 
apparent in a drier year than in a wetter year. 

 
3.2. Integrating remote sensing and in situ data to predict 
Eucalyptus leaf state 
 
The next question was whether the integration of site quality and 
remote sensing data could improve the estimation of an ecosystem 
state variable such as leaf chlorophyll content? Leaf chlorophyll 
data was only available for 2008. The best leaf chlorophyll index, 
the red-edge position accounted for 39% of the variance in SPAD 
readings (Figure 4). REP and site quality were the most significant 
variables selected in a stepwise regression involving remote 
sensing indices and ancillary data (site quality and digital terrain 
model derived variables) for estimating leaf chlorophyll content. 
This integrated approach yielded an R2 of 0.47 (p<0.05).  These 
results are significant given the subtle differences or low variability 
in the chlorophyll content (SPAD range = 41.4-56.3, standard 
deviation = 3.3) for the study site. 
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Figure 4. Relationship between predicted and observed chlorophyll 
 
3.3. Estimating leaf Chlorophyll using the leaf radiative 
transfer model - PROSPECT 
 
Models developed from simulated E. grandis spectra using the 
PROSPECT radiative transfer model yielded high accuracies for 
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predicting leaf chlorophyll content. The best predictive model 
involved REP derived by the linear extrapolation method of Cho 
and Skidmore[12], root mean square error = 2 µg cm-2, 
representing 4% of the mean, see Figure 5 ).  
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Figure 5. Relationship between predicted and observed 

chlorophyll from radiative transfer modelling 
 

4. CONCLUSIONS 
 

The study thus demonstrated that the integration of remote sensing 
and in situ data could be important in providing more accurate 
estimates of E. grandis state in KwaZulu Natal, South Africa 
compared to remote sensing only models. Such modelling effort 
would become important at the regional scale in the near future as 
space-borne imaging spectroscopy or hyperspectral sensors 
become more available. The potential for developing a radiative 
transfer function for predicting E. grandis at the leaf level has also 
been demonstrated. This effort needs to be up-scaled to the canopy 
level.  
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