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ABSTRACT

The ability of various ecosystems to perform vitahctions such
as biodiversity production, and water, energy anttient cycling
depends on the ecosystem state, i.e. health. Beosystate
assessment has been a topic of intense reseatchadueached a
point at which accurate large scale (e.g. regidoalobal scale)
modelling and monitoring are hindered by limitagonn
conventional assessment methods such as diredt dainpling,
modelling from environmental drivers such as terapee,
precipitation and available nutrients, and modgllfrom remote
sensing data. The Ecosystem-Earth Observation EExoresearch
group at the Council for Scientific and Industigsearch (CSIR),
South Africa has highlighted the need in remotessenresearch
for an integrated sensing approach at the systewsl.|This
perspective is based on the assumption that a fim@depproach
that exploits the strength of the various techrsgue situ
environmental variables, direct field observationd aremote
sensing data) could potentially improve the asseasnof
ecosystem state at various geographic scalesidiight, the Eco-

modelling from environmental drivers such as terapee,
precipitation and available nutrients, and modgllfrom remote
sensing data (Figure 1).

Direct field Legend

observation e Datta integration

Integration of
methods
-

O Model outputs

Model inputs

Geostatistical
modelling

Regional
Ecosystem state

(type, structure, canopy
chemistry, productivity eto)

assessment

Empirical/
physically-
based
modelling

\_/

Empirical/
process-based
modelling

Remote
sensing data
(airispace borne

platform)

variables
(temperature,
precipitation, light,
available
nutrients)

EO research group has embarked on an agro-systate strigure 1. Conceptual framework

assessment project since 2007 as a first step dswane
implementation of the integrated modelling approémhvarious
ecosystems. The agro-system consists of a monoeufarest
plantation ofEucalyptus grandis situated in KwaZulu-Natal, South
Africa. This paper presents preliminary resultsrfrthe KwaZulu-
Natal E. grandis experimental study.
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1. INTRODUCTION

Ecosystem functions including biodiversity prodantiand water,
energy and nutrient cycling are essential to hugisaitisation[1].
The ability of various ecosystems to perform thevabfunctions
depends on the ecosystem state, i.e. health[2}eTdre, effective
monitoring of ecosystem state including the strigtuspecies
composition, canopy biochemistry and productividycrucial to
ensuring the well-being of various ecosystems. fstesn state
assessment has been a topic of intense reseatchadueached a
point at which accurate large scale (e.g. regidoalobal scale)
modelling and monitoring are hindered by limitagonn
conventional assessment techniques such as diettshmpling,

First, direct field techniques for quantifying egstem state are
difficult, extremely labour intensive, and costly terms of time
and money. Furthermore, they cannot usually beneeig over
regional scales of vegetation because of logistics huge number
of sample variations[3]. Second, it has long bestaldished that
environmental variables including climatic, edaphiand
topographic factors determine ecosystem state radusgascales(4,
5]. These environmental variables have either beesed
empirically to estimate and map ecosystem stateaorinput
variables in ecosystem process models[6]. Ecosyspencess
models applied in a spatially distributed mode aeasimilate and
integrate a diverse assemblage of environmenta[@laHowever,
the draw back of this approach is that some eccédgihenomena
are stochastic and cannot be predicted by envirotahgariables
alone e.g. fire, grazing, other anthropogenic factbastly, remote
sensing, using current or anticipated technologyyidely viewed
as a non-subjective method for large-scale monigoriof
ecosystem state and processes. Remote sensingebasubed
extensively to quantify vegetation biophysical abidchemical
properties[3]. However, reported estimation acdesaare low for



ecosystems characterised by subtle differencesohisical and
biochemical variables[3].

The Ecosystem-Earth Observation (Eco-EO) reseammiipgat the
Council for Scientific and Industrial Research (BBl has
highlighted the need in remote sensing researclarfiomtegrated
sensing approach at the systems level. This peigpes based on
the assumption that a modelling approach that éspilee strength
of the various techniquesn(situ environmental variables, direct
field observation and remote sensing data) coulderpially
improve the assessment of ecosystem state at sageographic
scales. Figure 1 illustrates the general conoémystem-level
integrated modelling. Integration can occur at texel; data and
modelling techniques. For example, (i) empiricaldels can be
derived from integrating remote sensing and enviremtal data
(e.g.[7]) (ii) using direct field observations dsetmain data and
remote sensing or environmental variables as ciabias,
ecosystem state can be estimated by geostatisticalelling
(e.q.[8]), (iii) remote sensing metrics can be uszsl input
parameters in process models of plant growth e6§,. (iii)
environmental and field data can be used to defadiative
transfer models for canopy reflectance ( e.g. [9]).

The Eco-EO research group has embarked on an gsfens state
assessment project since 2007 as a first step dswdne
implementation of the integrated modelling appro&mhvarious
ecosystems. The agro-system consists of a monoeufarest
plantation ofEucalyptus grandis situated in KwaZulu-Natal, South
Africa. This experimental site is classified acdéoglto three site
qualities namely good, medium, and poor based drgsality, as
defined by total available water (TAW) in the sepilofile. The
latter is largely dependent on soil properties sasheffective
rooting depth and soil type, in conjunction withinfall and
temperature classes[10]. The objectives were to:

- assess the relationship betwe€ngrandis site quality
and canopy reflectance,
- develop integrated models involving remote senssitg,

clay loam soils. The experimental site is clasdifeccording to
three site qualities namely good, medium, and femed on soil
quality, as defined by total available water (TAWW) the soll

profile. The latter is largely dependent on soibgerties such as
effective rooting depth and soil type (form), inngunction with

rainfall and temperature classes[10].
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Figuré 2. Study site in the Richmond area of theaKulu-Natal
Midlands, South Africa

2.2. Spectral and other measurements

Two sets of measurements were made in August 200 Aagust
2008. In August 2007, canopy reflectance spectrasiity-eight
trees (25=good, 25=medium and 18=poor sites) welteated on
clear sky days using an ASD spectroradiometer @SB nm)

quality and topographic variables for estimatingfom a raised platform, while leaf and canopy sgct

ecosystem state,

- parameterise radiative transfer models (leaf antbpa
reflectance models) for estimatifig grandis ecosystem
state variables

- and lastly, develop integrated models involvingeftr
growth model and remote sensing data to prediestor
productivity.

Here we present a synopsis of some of the resarltthé first
three objectives.

2.MATERIALSAND METHODS
2.1. Study site

The study area is located in the Richmond aredefkiwaZulu-
Natal Midlands of South Africa (239" S, 30 17' E) and consists

of 8 year oldE. grandis plantations (Figure 2). Plantation forestry

is a major land use in the study area due to deitelimate and
soils. The terrain generally consists of undulapiains, which are
incised with steep river valleys, with altitudeimg from 800m to
1400m above-mean-sea-level. The geology consistanfistone
and clay formations, which have resulted in sandy,c¢o sandy

measurements were made for & grandis trees (15=good,
26=medium and 21=poor sites) at 19 locations oardky days in
August 2008. For all spectral measurements, thiemad data were
converted to reflectance using a reference reafliegominator)
for each sample from a white spectralon referermrelp About 25
to 30 sunlit leaf samples were collected for lepéciral and
chlorophyll measurements.

For the purpose of parameterisation of leaf radiatiransfer
models, leaf spectra and biophysical/biochemicaberties were
measured for leaves at different stages of devetoprim order to
ensure a high variability in the data set. Leaahphyll content
data was measured using the chlorophyll-meter, SB&2 The
SPAD readings were later converted to chlorophgiitent using
equations developed by Uddling et al. [11]

2.3. Dataanalysis

This section is outlined according to the objedive
- One-way analysis of variance (ANOVA) was used to
assess the relationship between site quality andpsa
spectral properties. The spectral proxies (spertdites)

of leaf water (normalised water difference index



A. Leaf water indices

B. Leaf chlorophyl indices
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Figure 3. Relationship between site quality and atemsensing

indices

(NDWI), moisture stress index (MSI)) and chloroghyl
(Carter chlorophyll index, red-edge position (REP))
content were used to describe the canopy spectral

characteristics.

With regards to assessing the utility of the inabed
approach, the
investigating the performance of linear regressimuels
derived from remote sensing am situ data only and
subsequently assessing if the integration of the data

types improves the estimation of an ecosystem state

variable such as leaf chlorophyll content.

As a first step towards developing a canopy redlece
model for predicting E. grandis state, we assesbed
utility of the leaf radiative transfer model (RTMh
predicting E. grandis state. Leaf biophysical

biochemical parameter ranges torgrandis were used

research method consisted of first

3.2. Integrating remote sensing and in situ data to predict
Eucalyptusleaf state

The next question was whether the integration t&f guality and
remote sensing data could improve the estimaticanogcosystem
state variable such as leaf chlorophyll contentaflahlorophyll
data was only available for 2008. The best leabrdghyll index,
the red-edge position accounted for 39% of theavae in SPAD
readings (Figure 4). REP and site quality werentlest significant
variables selected in a stepwise regression inwglviemote
sensing indices and ancillary data (site quality digital terrain
model derived variables) for estimating leaf chfrgl content.
This integrated approach yielded af & 0.47 (p<0.05). These
results are significant given the subtle differencelow variability
in the chlorophyll content (SPAD range
deviation = 3.3) for the study site.
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to parameterise the PROSPECT RTM. PROSPECT was

subsequently used to simulate 1200 leaf spectnaoke

sensing models were developed from the simulatéal da

and inverted to estimate leaf chlorophyll content.

3.RESULTS

3.1. Predicting site quality

ANOVA results for August 2007 showed that spectliffierences
between site qualities are significant. Leaf wédDWI, MSI) and
chlorophyll (Carter chlorophyll index, REP) indicehibited
significant differences between sites (Figure 3)ege results were
not consistent with those obtained in August 20@8spectral
differences between sites in 2008 were not sigmific However,
REP (a leaf chlorophyll indicator) showed a nom#igant
gradient from the low to the good sites. Rainfatadof the study
area showed 2008 (858.8 mm between September 20§udst
2008) as a wetter year than 2007 (807.2 mm bet&sgiember
2006-July 2007). Although TAW was not specificaiyasured for
the above periods, we hypothesise that the TAWignads most
apparent in a drier year than in a wetter year.
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Figure 4. Relationship between predicted and oleskechlorophyll

3.3. Estimating leaf Chlorophyll using the leaf radiative
transfer model - PROSPECT

Models developed from simulate. grandis spectra using the
PROSPECT radiative transfer model yielded high esges for



predicting leaf chlorophyll content. The best potide model
involved REP derived by the linear extrapolationtind of Cho

and Skidmore[12], root mean square error =pug cm? [5]
representing 4% of the mean, see Figure 5).
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Figure 5. Relationship between predicted and oleserv
chlorophyll from radiative transfer modelling [10]

4. CONCLUSIONS

The study thus demonstrated that the integratiaemibte sensing

and in situ data could be important in providing more accurate
estimates ofE. grandis state in KwaZulu Natal, South Africa [11]
compared to remote sensing only models. Such niodediffort

would become important at the regional scale inrtbar future as
space-borne imaging spectroscopy or hyperspecteisoss
become more available. The potential for develomntadiative
transfer function for predicting E. grandis at tbef level has also [12]
been demonstrated. This effort needs to be upddalthe canopy

level.
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