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Abstract. Dynamic Bayesian networks (DBNs) are temporal proistio
models for reasoning over time which are rapidlynigg popularity in modern
Artificial Intelligence (Al) for planning. A numbeof Hidden Markov Model
(HMM) representations of dynamic Bayesian networksth wdifferent
characteristics have been developed. However, #reties of DBNs have
obviously opened up challenging problems of howtioose the most suitable
model for specific real life applications espegiddy non-expert practitioners.
Problem of convergence over wider time steps is alsallenging. Finding
solutions to these challenges is difficult. In thgaper, we propose a new
probabilistic modeling called Emergent Future Sitwra Awareness (EFSA)
which predicts trends over future time steps tagate the worries of choosing
a DBN model type and avoid convergence problems wtredlicting over
wider time steps. Its prediction strategy is basedhe automatic emergence of
temporal models over two dimensional (2D) time stefpom historical
Multivariate Time Series (MTS). Using real life gicty available MTS data on
a number of comparative evaluations, our experieleasults show that EFSA
outperforms popular HMM and logistic regression eled This excellent
performance suggests its wider application in neseand industries.
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1 Introduction

Industrial practitioners and researchers observiivatiate time series (MTS) from
their daily business activities or dynamical sysefa.g. medical systems, retail,
sensor networks, etc). Complex hidden relationsfoppatterns) are often embedded
among the variables that describe such activitighinvand across the time steps.
Some classical methods such as neural networksstatidtical logistic regression
models have been applied to predict such hiddetenpat but they fall short of
proving their prediction capabilities [1]. Using reosophisticated approaches, these
hidden patterns can be revealed from the histoNt&6 to predict risks, or guide
actions to be taken at particular future times. Aeatail business may for instance
intend to know which products require declaratidndgéscounts among selected
outlets in specific months for next year. This isexample of prediction over time
within a multitude of complex situations and dynarBiayesian networks are well
suited for reasoning over time in complex environtad?2] [3].

The Hidden Markov Model (HMM) is a common and msistple form of DBNs
which has gained its wide applicability in spee@tagnition [3] [4]. Recently,



researchers have developed many HMM representatidnslynamic Bayesian

networks with different characteristics. Murphy [2pposed some variants of HMM
as explicit representations of DBN such as: hidriaed HMM, coupled HMM and

factorial HMM. Shenoy [5] presented another DBN mlodor Brain-Computer

Interfaces. As experts, they explicity modeled thidden network structure and
dependencies between different brain states.

However, the varieties of DBNs have obviously ogknp challenging problems
of how to choose the most suitable model for varioeal life applications. Some
prediction models also suffer from convergence xgoeential problems over wider
time steps [3]. That is, the prediction steps getlstowards zero or tend towards
infinity. To complicate the situation further, tloballenges have made technologies
such as the DBNs too complex for non-experts iriolwgbractitioners [6] (seasoned
software programmers, managers, etc).

In an attempt to address some of these challefgrsren [4] presented Structural
learning of DBN and also applied it to speech redtimn. Their DBN was learnt
under a number of assumptions from experts. Faamag, they observed stationary
assumption which made their DBN leads to a repeag¢dgiork structure at each time
step. In reality, situations in some time steps et@gnge. This is evident that most of
these existing DBNs approximate their models. Tisatthey do not truly (or
completely) emerge the network structures and pitibadistributions but the basis
of DBN requires modeling both [2] [3]. Murphy [2bofirms that the HMM, which is
the basis of most of these representations of ximirgy DBNs, are limited in their
expressive power. Finding solutions to these chgés is difficult.

In this paper, we propose a new probabilistic miodetalled Emergent future
Situation Awareness (EFSA) technology which predictnds over finite future time
steps. The EFSA eliminates the worries of choosirgpod DBN model and avoids
convergence problems. Its automatic and completerggnce of temporal models
(network structure and probability distributions)eo time from historical MTS is the
strategy of the prediction. Our major contributi@me as follows:

e The derivation of a temporal probabilistic theooy the new EFSA technology
which predicts trends over future time steps inaghsence of domain experts.

e The development of the EFSA algorithm which faathts the mitigation of the
worries of practitioners and researchers for chpsi DBN model from the
multitude of varieties for specific applications.

* Using a 2D strategy to avoid convergence probleimsmpredicting longer time
steps, our EFSA model supports wider applicabibtyall users: experts and non
experts.

The rest of the paper is organized as follows. éctisn 2, we present the
theoretical backgrounds of the dynamic Bayesiamvoids and our previous ESA
(emergent situation awareness) technology. Theilsletd the proposed EFSA
technology are presented in section 3. In sectiowetevaluate the performance of
the EFSA’s consistency and accuracy, and benchntankith the HMM and the
logistic regression models. This paper concludesation 5.



2 Theoretical Background
2.1 Dynamic Bayesian Networ ks (DBNS)

Dynamic Bayesian networks are temporal probahilistiodels which are often
referred to as an extension of the Bayesian netw@&K) models in artificial
intelligence [2] [3]. A Bayesian belief network fermally defined as a directed
acyclic graph (DAG) represented as G = {X(G), A(Gythere X(G) = ¥i,....Xn}
vertices (variables) of the graph G a#dG) 0 X(G)x X(G), set of arcs of G. The

network requires discrete random values such fliheie exists random variablXs,
.. ., X, with each having a set of some valugs. . .,X, then, their joint probability
density distribution is defined in equation 1;

n
pr(Xl,---,Xn)=i£|O pr(X; | 72(X;)) )

where 77( Xi) represents a set of probabilistic parent(s) ofdckj [3]. A parent

variable otherwise referred to esusehas a dependency with a child variable known
as effect Every variableX with a combination of parent(s) values on the bré&p
captures probabilistic knowledge (distribution) asconditional probability table
(CPT). A variable without a parent encodes a mailginobability.

However, the inability of the BNs to capture timetamporal dependencies
facilitated the developments of various ways of gitig the dynamic Bayesian
networks presented at the introduction. The vagmland the CPTs of the BNs are
similar to the states and the probabilities usetha temporal dependencies of the
DBNSs. According to [3], a DBN is suitable for moliled) environment that emerges
(changes) over time and has the capability to ptefliture behaviour of the
environment. Any DBN observes the first-order ofrktav model which states that,
future eventVy; is independent of the past given the presenf3{/ Since DBN
handles complex situations of multiple dependeené&y of Markov model over time,
researchers [2] [3] present the following threeapagters required to construct a DBN
model: prior matrixPr (Vp); transition matrixPr (V;| Vi.1); and sensor matrier (g
| Vi). The prior matrix defines the initial probabilitysttibution of state¥/at the start
of emergence of DBNs. The transition matrix dessiltime dependencies for the
transitions of DBN stated/. Also, the sensor matrix captures the probahilisti
distributions from the relationships of observatiamiablest; at any time step.

In conjunction with the DBN matrices, equation ®w8 the combined joint
probability distribution for any temporal model tgpa finite timet.

t
PrVg vy om t,El,...,Et):PrNO)i Dlprwi Vi _) PrE; IV,) 2)

The emergence of our DBN technology is based on themretical principles
underpinning situation awareness [9] in order t&enanticipatory planning.

2.3 The ESA Technology

The ESA [13] is an innovative technology, which qidetely emerges temporal
models and reveals the hidden behavior of whatiigeatly happening over time in



any domain of interest. Formally, le¥{, E '} represent the set of state and observed
DBN variables in ESA at timé The DBNs are emerged over all the non-negative
current time steps e T, such thatT = {t;, t,... t} and the interlinked probabilistic
relationships at each time stejs represented in equation 3. Equation 3 represhst
interconnections of changing networks (or framexj probability distributions over
the time steps.

6oLt A oLt tot t
pr(v, Vot V) pr(vy 2V Z Y ) pr(v VY ) 3)

WhereA implies equivalence isot true generally. The attractive performance of the
ESA encourages its successful applications in mamegs, most notably in project
management [11]. On the other hand, the ESA falstf predicting into the future.
We therefore conjecture that a variant of the ES#ed the EFSA is required to
efficiently predict into the future based on thstbrical time steps.

3 The Proposed EFSA Technology
3.1 Theoretical Derivations of the EFSA

Researchers [3] assert that prediction too far dwitilme lag) into the future
converges to a fixed point (i.e. remains constangfl time). In order to minimize the
convergence problem, the EFSA predicts future semsing the strategy of a two
dimensional (2D) time steps. The first dimensiospéce of time stepfy, t... t}
monitors the behavioural current patterns as uséldel ESA. The second dimensional
time stepqTy,..., T} observes the historical patterns for each of tine stepgt;, t...

t.}. This is an extension of any periddn the ESA. Therefore in practice, at the end
of the tn of Tm, the EFSA updates further futurentts to ensure accuracy. Let the
DBN variablesV ' span the space of 2D time steps represented isytsiem of
equations 4.

tot t tot t tot t
T, =H{ vil,ij...,va:‘ }To={ vil,vjz...,van hoooos Tm={ vil,ij...,va:‘ }
for eachi, j,a =12,../ (4)
tis the length of the DBN variables andis the length of the history. All the
changing parameterizations (the DAGs and the piibityadistributions) of the DBN

in the EFSA are now carried out across the histbtime stepdl;...T,. That is, the
emergence (or learning of the temporal models)st@kace across the links:

{v.tl v.tl v.tl } {vtn vtn vtn }
vty L vty L

Once the temporal probabilistic model emerges, iptied with reasoning now
acts on the model. From Markovian principle [3] ethistates that next states of a

system depend on the finite history of the previstases, we can now have multiple
predictions from the space of 2D time steps in &qna4 into the future as follows:

t t t
= 1+ A 2+ A n+A
Tm+ A { VI 'VJ 'Va! }'
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In equation 5,E, E,...Ecare the set of evidences or observations @f V
Vj,...V arespectively made so far within the space of tineps Equation 5 is
therefore the set of predictions that can be coetplly the Bayesian inference
algorithms such as Variable elimination, etc [3]heT variable elimination
implemented in [10] was integrated as the inferemegine in the EFSA due to its
efficiency. Therefore, the EFSA performs a multifulure predictions from the space
of time.

3.2 The Description of the EFSA

The emergence of DBN or temporal probabilistic madéhe EFSA is often a task of
BN learning algorithms provided it can learn acrtiestime steps [2]. Therefore, the
outlines of learning DBNs automatically from EFSIyaithm are now refined from
[13] as follows:

INPUT (Ds: Multivariate Time Series- MTYS)

1. WhileDs= MTS,
[i] Sett, the frame count, to 1.
[ii] Set T, the historical time step,to 1, 2, ..., m
li] Let dyeDs, L t=1,2,...Nn
[iv] For eacht <=n,
[v] Foreach &k=m,
« Select frameal, into { d; }
[vi] IncrementT by 1.
* Invoke Learning_Algorithms @}).
« Store the emerged framerirby mmatrix B.
[vii] Incrementt by 1.
2. Returnthe DBN in B
3. Predict the nexttime steps using inference engine,
then exit.

Figure 1: Emergent Future Situation Awareness Algorithm

In Figure 1, all parameters retain their usual nmegnand dis a frame dataset at time
t. It is selected into setd} over T for learning frames of the DBN. Any Bayesian
learning algorithms such as [7] [8] can be used asbroutine. The algorithms carry
out the intra-slice and inter-slice learning overe. Each variable in stébmust have
parents in stef-1. We integrated the genetic algorithm [8] to letdre DBNs due to
its efficiency.



4. Performance Evaluation

One of the objectives of our proposed EFSA techmoie to bring theory to practice
(implementation) with an emphasis on applicationd aractical work. The HMM
and logistic regression models have been used riregperiments as a baseline of
comparison with our EFSA model. The logistic regies model is a function of
dependent variable over the independent varialiles [

4.1 Experiment 1: Comparing EFSA consistency with other popular models

Our intention here was to determine whether the &ZE&n predict multiple n-time
steps consistently. As a proof of concept, we edraut the evaluations of the three
models on three MTS datasets - DIABETES and SENSfaRisets from UCI
repository [12], and a real life RAINFALL datasditained from a Southern African
country (Botswana). The treatment records fromibbavior of a diabetes patient
were captured electronically as MTS. It containgesal treatment measurement
codes such as 33 (regular insulin dose), 48 (uffsgetdlood glucose), etc. It is
expected here to predict treatment measurementsredgin future for the patient
based on the historical behavioral patterns. Fetairce, equation (6) below is a
situation which predicts how much of the minimurbdat 7 units) measurement of
regular insulin dose will be required for the n&2tmonths in the year 1991.

Pr(Measuremerit # <= 7 units | Codé = 33) (6)

forallt O T, where in diabetes MT$7= {Jan...Dec}andT = {1988, 1989, 1990}.

A common empirical technique to evaluate the penforce of Bayesian network
technologies is to use a basic cross validation \[8¢ adopted the cross validation
approach by setting 1991 time step as actual tatahd learnt (or trained) the DBN
model across 1988 to 1990 time steps. The EFSAmnsawith the temporal model
and acts by predicting over time as described uwmggn (6). This experiment was
repeated using basic HMM constructed dynamicallyhenfly using GeNle Bayesian
software [13]. Similarly, equation (6) was alsoeafed using the logistic regression
model implemented in R statistical software [14jeTactual and the predicted results
were recorded in each experiment and are showaleTl.

The sensor dataset captures the traffic of pedp¥eirfg in and out of main
door of a Callt2 building at UCI. Our objective bas to be able to predict counts of
people for every half an hour over future weekseHasn the historical behavioural
patterns of traffic. For instance in equation (¥ want to predict the possibility of
counting average number (between 8 and 17) of pebplk flows out of the building
for the next 5 weeks.

Pr(Count™” = ‘8<=17’ people | Flow' = ‘outflow’) (7)

forallt O T, where in Sensor MT$,= {Week-1...Week-53ndT = {July, Aug,
Sept}.We also adopted the cross validation approach tiingeOctober time step as
actual test data and learnt (or trained) the DBNI@hacross 15 weeks of July to Sept
time steps. The EFSA reasons with the temporal inaieé acts by predicting over



time as described in equation 7. This experimens a0 repeated using other
models. The actual and the predicted results vemrerded in each experiment and are
shown in Table 1.

Table 1: Performance Comparison of Future Predictions oredlgituations Among EFSA,
HMM and Logistic Regression Model

Data Time Actual EFSA HMM Logistic(%)
Sets Steps (%) (%) (%) Regression
Jan 40.15 73.26 70.43 87.30
o Feb 50.79 58.7 72.45 87.31
g Mar 74.64 90.99 79.45 87.41
% Apr 65.42 80.44 89.69 87.42
May 72.51 69.08 89.07 87.46
Jun 60.14 59.69 90.16 87.48
July 69.43 76.54 93.28 87.51
Aug 61.09 75.69 95.31 87.53
Sept 55.17 85.48 95.36 87.56
Wk-1 19.55 12.46 24.13 25.29
%’ Wk-2 20.88 13.39 23.07 26.18
2 Wk-3 24.44 18.69 33.17 37.07
= Wk-4 27.11 18.81 33.41 37.95
Wk-5 3.11 2.76 21.01 38.01
Jan 70.22 53.57 58.24 45.88
o Feb 72.75 56.67 51.12 45.62
%- Mar 72.39 55.48 44.09 45.33
o Apr 61.95 55.29 41.20 45.04
- May 62.34 56.67 40.02 44,72
Jun 78.21 62.67 39.59 44.38
Jul 85.73 59.81 38.90 44.03
Aug 78.85 58.38 38.89 43.65
Sept 83.45 58.00 36.87 43.25
Oct 80.30 60.05 25.65 42.82
Nov 89.21 62.31 25.14 42.38
Dec 91.26 65.05 24.69 41.90

The real life rainfall dataset was obtained frorSauthern African country
(Botswana) to access onsets of rainfall for Farnmtersunderstand their varying
planting dates. Our objective here is to be ablpraglict normal onset at any station
over future months in every coming year. For insgarequation 8 predicts the normal
onset of rainfall over future months for a giveatisin number 2. This may include
more complex conditions, like considering how seanaalies affect the onset and
wind, as shown in equation 9 which other method$ ss regression model struggle
to handle [2]. For the purpose of comparison, wepkie simpler as equation 8.

Pr(Onset** = ‘normal’ | Station' = 2) (8)



Pr(Onset*? = ‘normal’ | Station' = 2, Sea_Anom > 0.5, wind < 7.7units ) (9)

forallt O T, where in Rainfall MTSt = {Jan...Dec}andT = {1971,...2000}.

We also adopted the cross validation approach bingeyear 2001 time step as

actual test data and learnt (or trained) the DBNlehacross 1971 to 2000 time steps.
The EFSA also reasons with the temporal model &gl lay predicting over time as

described in equation 8. This experiment was adpeated using HMM and logistic

regression models. The actual and the predictedltsesvere recorded in each

experiment and are shown in Table 1.

The Table reveals the consistencies or how eadteheaptures the direction of
predictive patterns. That is, increase or decr@ageedictions from one time step to
the next when compared with the actual results. iRstance, one can see sensor
results in Table 1 as the EFSA prediction incredsea 12.46 in week-1 to 13.39 in
week-2 and this corresponds to a rise in the acasallts. In view of this, one can see
generally in Table 1 that the EFSA has the bedliptien directions (consistency) of
50%, 100% and 70% for the Diabetes, Sensor an@R#efall datasets respectively.
This results from the fact that the EFSA truly exsd its network and probability
distribution with the aid of its 2D strategy of theedictions.

4.2 Experiment 2: Comparing EFSA Accuracy with Other Popular Models

=l

Comparisons of Prediction Accuracies
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Figure 2: Temporal probabilistic reasoning of the EFSA io@s prediction accuracies on
Diabetes better than the HMM and the logistic regjien model.

We conducted another set of experiments to medmweaccurate are the predictions
of the models compared to the actual results. Tlearacy is simply computed as the
difference between a 100% and the percentage @esgation, where the error is the
absolute difference between actual value from &s¢ data and the predicted value
from the models, divided by the actual value [3heTprediction accuracies on all
datasets are computed from Table 1 and for instéheeresults of diabetes are
specifically recorded in Table 2 accordingly. Figu2 therefore compares the
performance accuracies of the EFSA with other nodel Diabetes results in Table



2. The objective here is to improve the predictimcuracy. Observe the predictions
of the regression model on diabetes and rainfallTable 1 as it tends towards a
convergence problem.

Over the time steps, the average accuracies &HSA, HMM and the regression
models on sensor predictions are 72.49%, 62.38%bant% respectively. Also, the
average accuracies of the three techniques orafigimédictions are 76.76%, 51.79%
and 57.87% respectively. This shows that the ovexaturacy of the EFSA as
improved than others i84.3%. Thus, the EFSA is more consistent and performs
better with future predictions within the multivaié time series.

Table 2: Evaluation of Accuracy for Future Predictions Oiabetes Situations
Among EFSA, HMM and Logistic Regression Models

Dataset Time EFSA HMM Logistic(%)
Steps (%) (%) Regression
Jan 17.53 24.58 17.90
Feb 84.43 57.35 28.11
Mar 78.09 93.56 82.89
Apr 77.04 62.90 66.37

_ May 95.27 77.16 79.38

Diabetes Jun 99.25 50.08 54.54
July 89.76 65.65 73.96
Aug 76.10 43.98 56.72
Sept 45.45 27.15 41.29

Average 73.65 55.82 55.68

Accuracy

5 Concluding Remarks and Future Work

In this paper, we developed and presented the BE&H#nology as a new temporal
probabilistic reasoning for consistent multiple giotions into the future in the
absence of domain experts. This shows that nonresxpew have fewer worries in
choosing from the multitude of DBN types for rafé hpplications.

This study shows that the EFSA can potentially beza powerful temporal
probabilistic model used by both experts and nguees to predict future trends in
anticipatory planning. This technology simply emexgfrom environments and
predicts in any domain of interest. The improvedrall 74.3% accuracy of the EFSA
over the 56.66% of HMM and 54.76% of logistic resgien model when evaluated on
the domains of the three datasets guarantees liabiliy of the EFSA in many
diverse areas. The relative efficiency of the EFS@ygests its wide application to
make DBNs much simpler for use by researchers mrniddustries. We are currently
developing an economic scalable model for handiiagsive MTS for the EFSA.
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