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Abstract. Dynamic Bayesian networks (DBNs) are temporal probabilistic 
models for reasoning over time which are rapidly gaining popularity in modern 
Artificial Intelligence (AI) for planning. A number of Hidden Markov Model 
(HMM) representations of dynamic Bayesian networks with different 
characteristics have been developed. However, the varieties of DBNs have 
obviously opened up challenging problems of how to choose the most suitable 
model for specific real life applications especially by non-expert practitioners. 
Problem of convergence over wider time steps is also challenging. Finding 
solutions to these challenges is difficult. In this paper, we propose a new 
probabilistic modeling called Emergent Future Situation Awareness (EFSA) 
which predicts trends over future time steps to mitigate the worries of choosing 
a DBN model type and avoid convergence problems when predicting over 
wider time steps. Its prediction strategy is based on the automatic emergence of 
temporal models over two dimensional (2D) time steps from historical 
Multivariate Time Series (MTS). Using real life publicly available MTS data on 
a number of comparative evaluations, our experimental results show that EFSA 
outperforms popular HMM and logistic regression models. This excellent 
performance suggests its wider application in research and industries.   
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1 Introduction 
 
Industrial practitioners and researchers observe multivariate time series (MTS) from 
their daily business activities or dynamical systems (e.g. medical systems, retail, 
sensor networks, etc). Complex hidden relationships (or patterns) are often embedded 
among the variables that describe such activities within and across the time steps. 
Some classical methods such as neural networks and statistical logistic regression 
models have been applied to predict such hidden patterns but they fall short of 
proving their prediction capabilities [1]. Using more sophisticated approaches, these 
hidden patterns can be revealed from the historical MTS to predict risks, or guide 
actions to be taken at particular future times. Any retail business may for instance 
intend to know which products require declaration of discounts among selected 
outlets in specific months for next year. This is an example of prediction over time 
within a multitude of complex situations and dynamic Bayesian networks are well 
suited for reasoning over time in complex environments [2] [3].  

The Hidden Markov Model (HMM) is a common and most simple form of DBNs 
which has gained its wide applicability in speech recognition [3] [4]. Recently, 



researchers have developed many HMM representations of dynamic Bayesian 
networks with different characteristics. Murphy [2] proposed some variants of HMM 
as explicit representations of DBN such as: hierarchical HMM, coupled HMM and 
factorial HMM. Shenoy [5] presented another DBN model for Brain-Computer 
Interfaces. As experts, they explicitly modeled the hidden network structure and 
dependencies between different brain states.     

However, the varieties of DBNs have obviously opened up challenging problems 
of how to choose the most suitable model for various real life applications. Some 
prediction models also suffer from convergence or exponential problems over wider 
time steps [3]. That is, the prediction steps get stuck towards zero or tend towards 
infinity. To complicate the situation further, the challenges have made technologies 
such as the DBNs too complex for non-experts including practitioners [6] (seasoned 
software programmers, managers, etc).  

In an attempt to address some of these challenges, Deviren [4] presented Structural 
learning of DBN and also applied it to speech recognition. Their DBN was learnt 
under a number of assumptions from experts. For instance, they observed stationary 
assumption which made their DBN leads to a repeated network structure at each time 
step. In reality, situations in some time steps may change. This is evident that most of 
these existing DBNs approximate their models. That is, they do not truly (or 
completely) emerge the network structures and probability distributions but the basis 
of DBN requires modeling both [2] [3]. Murphy [2] confirms that the HMM, which is 
the basis of most of these representations of the existing DBNs, are limited in their 
expressive power. Finding solutions to these challenges is difficult.  

In this paper, we propose a new probabilistic modeling called Emergent future 
Situation Awareness (EFSA) technology which predicts trends over finite future time 
steps. The EFSA eliminates the worries of choosing a good DBN model and avoids 
convergence problems. Its automatic and complete emergence of temporal models 
(network structure and probability distributions) over time from historical MTS is the 
strategy of the prediction. Our major contributions are as follows: 

 
• The derivation of a temporal probabilistic theory for the new EFSA technology 

which predicts trends over future time steps in the absence of domain experts.  
• The development of the EFSA algorithm which facilitates the mitigation of the 

worries of practitioners and researchers for choosing a DBN model from the 
multitude of varieties for specific applications. 

• Using a 2D strategy to avoid convergence problems when predicting longer time 
steps, our EFSA model supports wider applicability for all users: experts and non 
experts. 

 
The rest of the paper is organized as follows. In section 2, we present the 

theoretical backgrounds of the dynamic Bayesian networks and our previous ESA 
(emergent situation awareness) technology. The details of the proposed EFSA 
technology are presented in section 3. In section 4, we evaluate the performance of 
the EFSA’s consistency and accuracy, and benchmark it with the HMM and the 
logistic regression models. This paper concludes in section 5. 

 
 



2  Theoretical Background 
 

2.1 Dynamic Bayesian Networks (DBNs) 
 
Dynamic Bayesian networks are temporal probabilistic models which are often 
referred to as an extension of the Bayesian network (BN) models in artificial 
intelligence [2] [3]. A Bayesian belief network is formally defined as a directed 
acyclic graph (DAG) represented as G = {X(G), A(G)}, where X(G) = {X1,…,Xn}, 
vertices (variables) of the graph G and )()()( GXGXGA ×⊆ , set of arcs of G. The 

network requires discrete random values such that if there exists random variables X1, 
. . ., Xn with each having a set of some values x1, . . ., xn then, their joint probability 
density distribution is defined in equation 1;  
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where )( iXπ  represents a set of probabilistic parent(s) of child Xi [3]. A parent 

variable otherwise referred to as cause has a dependency with a child variable known 
as effect. Every variable X with a combination of parent(s) values on the graph G 
captures probabilistic knowledge (distribution) as a conditional probability table 
(CPT). A variable without a parent encodes a marginal probability.  

However, the inability of the BNs to capture time as temporal dependencies 
facilitated the developments of various ways of modelling the dynamic Bayesian 
networks presented at the introduction. The variables and the CPTs of the BNs are 
similar to the states and the probabilities used in the temporal dependencies of the 
DBNs. According to [3], a DBN is suitable for modelling environment that emerges 
(changes) over time and has the capability to predict future behaviour of the 
environment. Any DBN observes the first-order of Markov model which states that, 
future event Vt+1 is independent of the past given the present Vt [3]. Since DBN 
handles complex situations of multiple dependent events of Markov model over time, 
researchers [2] [3] present the following three parameters required to construct a DBN 
model: prior matrix, Pr (V0); transition matrix, Pr (Vt | Vt-1); and sensor matrix, Pr (Et 
| Vt). The prior matrix defines the initial probability distribution of states V0 at the start 
of emergence of DBNs. The transition matrix describes time dependencies for the 
transitions of DBN states Vt. Also, the sensor matrix captures the probabilistic 
distributions from the relationships of observation variables Et at any time step.  

In conjunction with the DBN matrices, equation 3 shows the combined joint 
probability distribution for any temporal model up to a finite time t. 
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The emergence of our DBN technology is based on the theoretical principles 
underpinning situation awareness [9] in order to make anticipatory planning. 
 
2.3 The ESA Technology 
 
The ESA [13] is an innovative technology, which completely emerges temporal 
models and reveals the hidden behavior of what is currently happening over time in 



any domain of interest. Formally, let {V t, E t}  represent the set of state and observed 
DBN variables in ESA at time t. The DBNs are emerged over all the non-negative 
current time steps t є T, such that T = {t1, t2… tn} and the interlinked probabilistic 
relationships at each time step t is represented in equation 3. Equation 3 represents the 
interconnections of changing networks (or frames) and probability distributions over 
the time steps. 
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 implies equivalence is not true generally. The attractive performance of the 

ESA encourages its successful applications in many areas, most notably in project 
management [11]. On the other hand, the ESA falls short of predicting into the future. 
We therefore conjecture that a variant of the ESA called the EFSA is required to 
efficiently predict into the future based on the historical time steps.  
 
3 The Proposed EFSA Technology 
 
3.1 Theoretical Derivations of the EFSA 
 
Researchers [3] assert that prediction too far (wider time lag) into the future 
converges to a fixed point (i.e. remains constant for all time). In order to minimize the 
convergence problem, the EFSA predicts future trends using the strategy of a two 
dimensional (2D) time steps. The first dimensional space of time steps {t1, t2… tn} 
monitors the behavioural current patterns as used in the ESA. The second dimensional 
time steps {T1,…,Tm} observes the historical patterns for each of the time steps {t1, t2… 
tn}. This is an extension of any period T in the ESA. Therefore in practice, at the end 
of the tn of Tm, the EFSA updates further future trends to ensure accuracy. Let the 
DBN variables V t span the space of 2D time steps represented in the system of 
equations 4.  

T1 = { n
t

V
t

j
V

t

i
V α...,, 21 }; T 2 = { n

t
V

t

j
V

t

i
V α...,, 21  }; . . . ; Tm = { n

t
V

t

j
V

t

i
V α...,, 21  }                                 

for each l,...2,1,, =αji                    (4) 

l is the length of the DBN variables and m is the length of the history. All the 
changing parameterizations (the DAGs and the probability distributions) of the DBN 
in the EFSA are now carried out across the historical time steps T1…Tm. That is, the 
emergence (or learning of the temporal models) takes place across the links:  
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Once the temporal probabilistic model emerges, prediction with reasoning now 
acts on the model. From Markovian principle [3] which states that next states of a 
system depend on the finite history of the previous states, we can now have multiple n 
predictions from the space of 2D time steps in equation 4 into the future as follows:     
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In equation 5, Ei, Ej,…Eα are the set of evidences or observations of Vi, 

V j,…V α respectively made so far within the space of time steps. Equation 5 is 
therefore the set of predictions that can be computed by the Bayesian inference 
algorithms such as Variable elimination, etc [3]. The variable elimination 
implemented in [10] was integrated as the inference engine in the EFSA due to its 
efficiency. Therefore, the EFSA performs a multiple future predictions from the space 
of time.  

 
3.2 The Description of the EFSA 

The emergence of DBN or temporal probabilistic model of the EFSA is often a task of 
BN learning algorithms provided it can learn across the time steps [2]. Therefore, the 
outlines of learning DBNs automatically from EFSA algorithm are now refined from 
[13] as follows:  
   
 
INPUT (Ds : Multivariate Time Series - MTS) 
          
1.     While Ds = MTS,  

 [i] Set t, the frame count, to 1. 
[ii] Set T, the historical time step, to 1, 2, …, m 
[iii] Let dt є Ds, ∀  t = 1, 2, . . ., n.  
[iv] For each t <= n, 
[v]      For each T <= m, 

• Select frame dt into { dt }  
               [vi]    Increment T by 1. 

• Invoke Learning_Algorithms ({dt}). 
• Store the emerged frame in n by m matrix B. 

[vii] Increment t by 1. 
2.     Return the DBN in B 
3.     Predict the next n time steps using inference engine,   
        then exit. 
 
Figure 1: Emergent Future Situation Awareness Algorithm 
  
In Figure 1, all parameters retain their usual meanings and dt is a frame dataset at time 
t. It is selected into set {dt} over T for learning frames of the DBN. Any Bayesian 
learning algorithms such as [7] [8] can be used as a subroutine. The algorithms carry 
out the intra-slice and inter-slice learning over time. Each variable in step T must have 
parents in step T-1. We integrated the genetic algorithm [8] to learn the DBNs due to 
its efficiency.  
 



4. Performance Evaluation  
 

One of the objectives of our proposed EFSA technology is to bring theory to practice 
(implementation) with an emphasis on applications and practical work. The HMM 
and logistic regression models have been used in our experiments as a baseline of 
comparison with our EFSA model. The logistic regression model is a function of 
dependent variable over the independent variables [1].  

 
4.1 Experiment 1: Comparing EFSA consistency with other popular models 

 
Our intention here was to determine whether the EFSA can predict multiple n-time 
steps consistently. As a proof of concept, we carried out the evaluations of the three 
models on three MTS datasets - DIABETES and SENSOR datasets from UCI 
repository [12], and a real life RAINFALL dataset obtained from a Southern African 
country (Botswana). The treatment records from the behavior of a diabetes patient 
were captured electronically as MTS. It contains several treatment measurement 
codes such as 33 (regular insulin dose), 48 (unspecified blood glucose), etc. It is 
expected here to predict treatment measurements required in future for the patient 
based on the historical behavioral patterns. For instance, equation (6) below is a 
situation which predicts how much of the minimum (about 7 units) measurement of 
regular insulin dose will be required for the next 12 months in the year 1991. 

 
Pr(Measurement t+ λ <= 7 units | Code t = 33)                    (6)    

  
for all t ⊂  T, where in diabetes MTS, t = {Jan…Dec} and T = {1988, 1989, 1990}.  

A common empirical technique to evaluate the performance of Bayesian network 
technologies is to use a basic cross validation [3]. We adopted the cross validation 
approach by setting 1991 time step as actual test data and learnt (or trained) the DBN 
model across 1988 to 1990 time steps. The EFSA reasons with the temporal model 
and acts by predicting over time as described in equation (6). This experiment was 
repeated using basic HMM constructed dynamically on the fly using GeNle Bayesian 
software [13]. Similarly, equation (6) was also repeated using the logistic regression 
model implemented in R statistical software [14]. The actual and the predicted results 
were recorded in each experiment and are shown in Table 1. 

The sensor dataset captures the traffic of people flowing in and out of main 
door of a CalIt2 building at UCI. Our objective here is to be able to predict counts of 
people for every half an hour over future weeks based on the historical behavioural 
patterns of traffic. For instance in equation (7), we want to predict the possibility of 
counting average number (between 8 and 17) of people that flows out of the building 
for the next 5 weeks.  

 
Pr(Count t+ λ = ‘8<=17’ people | Flow t = ‘outflow’)          (7)    

  
for all t ⊂  T, where in Sensor MTS, t = {Week-1…Week-5} and T = {July, Aug, 

Sept}. We also adopted the cross validation approach by setting October time step as 
actual test data and learnt (or trained) the DBN model across 15 weeks of July to Sept 
time steps. The EFSA reasons with the temporal model and acts by predicting over 



time as described in equation 7. This experiment was also repeated using other 
models. The actual and the predicted results were recorded in each experiment and are 
shown in Table 1. 

 
Table 1: Performance Comparison of Future Predictions on Three Situations Among EFSA, 

HMM and Logistic Regression Model  
 
Data 
Sets 

Time 
Steps 

Actual 
(%) 

EFSA 
(%) 

HMM 
(%) 

Logistic(%) 
Regression 

 Jan 40.15 73.26   70.43 87.30 
Feb 50.79 58.7     72.45 87.31 
Mar 74.64 90.99   79.45 87.41 
Apr 65.42 80.44   89.69 87.42 
May 72.51 69.08    89.07 87.46 
Jun 60.14 59.69    90.16 87.48 
July 69.43 76.54    93.28 87.51 
Aug 61.09 75.69    95.31 87.53 
Sept 55.17 85.48    95.36 87.56 

 Wk-1 19.55 12.46    24.13 25.29 
Wk-2 20.88 13.39    23.07 26.18 
Wk-3 24.44 18.69     33.17 37.07 
Wk-4 27.11 18.81     33.41 37.95 
Wk-5 3.11 2.76 21.01 38.01 

 Jan 70.22 53.57 58.24 45.88 
Feb 72.75 56.67 51.12 45.62 
Mar 72.39 55.48 44.09 45.33 
Apr 61.95 55.29 41.20 45.04 
May 62.34 56.67 40.02 44.72 
Jun 78.21 62.67 39.59 44.38 
Jul 85.73 59.81 38.90 44.03 
Aug 78.85 58.38 38.89 43.65 
Sept 83.45 58.00 36.87 43.25 
Oct 80.30 60.05 25.65 42.82 
Nov 89.21 62.31 25.14 42.38 
Dec 91.26 65.05 24.69 41.90 

 
The real life rainfall dataset was obtained from a Southern African country 

(Botswana) to access onsets of rainfall for Farmers to understand their varying 
planting dates. Our objective here is to be able to predict normal onset at any station 
over future months in every coming year. For instance, equation 8 predicts the normal 
onset of rainfall over future months for a given station number 2. This may include 
more complex conditions, like considering how sea anomalies affect the onset and 
wind, as shown in equation 9 which other methods such as regression model struggle 
to handle [2]. For the purpose of comparison, we keep it simpler as equation 8. 

  
Pr(Onset t+ λ = ‘normal’ | Station t = 2)                                  (8)    

R
ainfall 

D
iabetes 

Sensor 



Pr(Onset t+ λ = ‘normal’ | Station t = 2, Sea_Anom > 0.5, wind < 7.7units )         (9)    
 
for all t ⊂  T, where in Rainfall MTS, t = {Jan…Dec} and T = {1971,…2000}. 

We also adopted the cross validation approach by setting year 2001 time step as 
actual test data and learnt (or trained) the DBN model across 1971 to 2000 time steps. 
The EFSA also reasons with the temporal model and acts by predicting over time as 
described in equation 8. This experiment was also repeated using HMM and logistic 
regression models. The actual and the predicted results were recorded in each 
experiment and are shown in Table 1.  

 The Table reveals the consistencies or how each model captures the direction of 
predictive patterns. That is, increase or decrease in predictions from one time step to 
the next when compared with the actual results. For instance, one can see sensor 
results in Table 1 as the EFSA prediction increases from 12.46 in week-1 to 13.39 in 
week-2 and this corresponds to a rise in the actual results.  In view of this, one can see 
generally in Table 1 that the EFSA has the best prediction directions (consistency) of 
50%, 100% and 70% for the Diabetes, Sensor and the Rainfall datasets respectively. 
This results from the fact that the EFSA truly evolves its network and probability 
distribution with the aid of its 2D strategy of the predictions. 

 
4.2 Experiment 2: Comparing EFSA Accuracy with Other Popular Models 
 

 
 

Figure 2: Temporal probabilistic reasoning of the EFSA improves prediction accuracies on 
Diabetes better than the HMM and the logistic regression model. 

 
We conducted another set of experiments to measure how accurate are the predictions 
of the models compared to the actual results. The accuracy is simply computed as the 
difference between a 100% and the percentage error deviation, where the error is the 
absolute difference between actual value from the test data and the predicted value 
from the models, divided by the actual value [3]. The prediction accuracies on all 
datasets are computed from Table 1 and for instance the results of diabetes are 
specifically recorded in Table 2 accordingly. Figure 2 therefore compares the 
performance accuracies of the EFSA with other models on Diabetes results in Table 



2. The objective here is to improve the prediction accuracy. Observe the predictions 
of the regression model on diabetes and rainfall in Table 1 as it tends towards a 
convergence problem.  

Over the time steps, the average accuracies of the EFSA, HMM and the regression 
models on sensor predictions are 72.49%, 62.38% and 50.74% respectively. Also, the 
average accuracies of the three techniques on rainfall predictions are 76.76%, 51.79% 
and 57.87% respectively. This shows that the overall accuracy of the EFSA as 
improved than others is 74.3%. Thus, the EFSA is more consistent and performs 
better with future predictions within the multivariate time series.  

 
Table 2: Evaluation of Accuracy for Future Predictions on Diabetes Situations        

Among EFSA, HMM and Logistic Regression Models  
 
Dataset Time 

Steps 
EFSA 
(%) 

HMM 
(%) 

Logistic(%) 
Regression 

 
 
 
 
 
Diabetes 

Jan 17.53 24.58 17.90 
Feb 84.43 57.35 28.11 
Mar 78.09 93.56 82.89 
Apr 77.04 62.90 66.37 
May 95.27 77.16 79.38 
Jun 99.25 50.08 54.54 
July 89.76 65.65 73.96 
Aug 76.10 43.98 56.72 
Sept 45.45 27.15 41.29 

Average 
Accuracy 

 73.65 55.82 55.68  

 
5 Concluding Remarks and Future Work 
 
In this paper, we developed and presented the EFSA technology as a new temporal 
probabilistic reasoning for consistent multiple predictions into the future in the 
absence of domain experts. This shows that non experts now have fewer worries in 
choosing from the multitude of DBN types for real life applications. 

This study shows that the EFSA can potentially become a powerful temporal 
probabilistic model used by both experts and non-experts to predict future trends in 
anticipatory planning. This technology simply emerges from environments and 
predicts in any domain of interest. The improved overall 74.3% accuracy of the EFSA 
over the 56.66% of HMM and 54.76% of logistic regression model when evaluated on 
the domains of the three datasets guarantees the reliability of the EFSA in many 
diverse areas. The relative efficiency of the EFSA suggests its wide application to 
make DBNs much simpler for use by researchers and in industries. We are currently 
developing an economic scalable model for handling massive MTS for the EFSA. 
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