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ABSTRACT 
Researchers and practitioners have stressed that 
autonomous navigation in complex environments is an 
ongoing key challenge for robotic vehicles. Detection of 
drivable routes is often used as one of the important 
safety key operations to address some of the issues 
associated with autonomous navigation. While a number 
of conventional detection methods have been developed 
for such navigation; awareness of drivable routes by 
alleviating robot short-sightedness - without being 
trapped in uncertain dead-end problems, and to 
facilitating global navigational planning have received 
little attention. Finding a solution to these uncertainty 
problems is a challenge. In this paper, temporal 
probabilistic reasoning of the Emergent Situation 
Awareness (ESA) technology is proposed as a supportive 
strategy for autonomous navigation. The ability to reveal 
uncertainties over time is a drivable route awareness 
strategy of hidden paths embedded in the complex 
environments. Experimental evaluations of the ESA on 
real life and publicly available road frames outperform 
the classical statistical baseline methods in handling 
uncertainties over time. Our awareness results reveal to 
robotic vehicles that all ground planes are not traversable 
routes. 
 
KEY WORDS 
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1.  Introduction 
 
Safe autonomous navigation often formulates one of the 
significant objectives of robotic technology [1]. 
Researchers and practitioners have stressed that 
autonomous robotic navigation in complex environments 
as shown in Figure 1 is an ongoing key challenge [1] [2]. 
In practice, it is convenient to say that complex 
environments are relatively defined based on the 
percentages of mingled features such as colours of ground 
planes, bushes, and other objects perceived from left, 
centre and right sides of the environments. Since certain 
portions of ground are meant for say parking slots, one 

can see in Figure 1a that all ground planes are not 
traversable but most traversable routes are ground planes. 
  

     
(a) An Outdoor Road Frame   (b) Seekur Robotic Vehicle  

     
Figure 1: A sampled outdoor road frame and a CSIR 
four-wheel platform synchronous drive robot, with three 

pairs of stereo vision cameras.  
 
The complexity affects autonomous navigation and 
robotic research deliveries, and may hinder the growing 
usage of robotic vehicles in industries to save lives. For 
instance, robots are required to save lives from mining 
accidents, such as 4000 coal miners who died in China in 
2006 [3] and 3000 people who were trapped underground 
in South Africa in 2007 [4]. From our practical 
knowledge, improving the performance of detection of 
drivable (or traversable) routes is obviously a sound basis 
for optimizing autonomous robotic navigation. 
Researchers [2] have presented related detection methods 
such as ensemble selection for road image classifications. 
This is an iterative scheme on a robot’s motion that they 
still confirmed as prone to computational intensity and 
can slow down navigation. Our alternative approach is 
different from theirs as the environment model of interest 
herein is ready before the robot starts navigating. We 
therefore say that in order to travel fast and alleviate 
short-sightedness, the robot needs to be aware of 
traversable routes into a far distance. We shall first 
present the rudimentary details of our awareness strategy 
before its application in robotic vehicles.  

Situation Awareness (SA) is to a notable extent 
becoming popular among decision makers. SA has gained 
its popularity in, for example, the areas of air traffic 
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control, emergency responders, and surgical teams [6]. 
Instances of application areas where taking correct rapid-
response decisions is needed are disaster management, 
business intelligence, robotics, even sport (e.g. robotic 
soccer) where players have to make instant decisions in a 
constantly changing environment. Most notably, there is 
an ongoing demand for SA technologies and their variants 
in environmental water management problems, in areas 
presenting human health risks and in robotic agents [6] 
[7]. Each of these problem areas is too complex to 
understand due to the uncertainties embedded therein, but 
compact representations of Bayesian Network (BN) 
models are effective in handling complexities.   
 Bayesian Networks (BNs) are probabilistic 
models that are gaining popularity in decision-making, 
such as robotic module deciding on which field classes 
are traversable routes. The major shortcomings of their 
current implementations include the inaccurate complex 
modelling despite expert intervention and the absence of 
complete temporal pattern modelling capabilities. The 
available DBNs (Dynamic Bayesian Networks) with 
temporal modelling, such as Factorial HMM (Hidden 
Markov Models), Coupled HMM, Input-Output HMM, 
and PDBN (partial Dynamic Bayesian Network) [8] [9] 
have contributed to modelling up to the baseline but they 
are explicitly represented by skilled users, therefore are 
limited in their expressive power. System Engineers such 
as robotic researchers and non-expert practitioners, 
struggle to interpret the DBN models to carry out a 
directed goal. This can make robots not being well 
acquainted with the situations of traversable routes 
currently occurring in their various domains. Finding a 
solution to this issue is a challenge, and the difference 
between poor and good autonomous navigation lies in 
their situational understanding of traversable routes over a 
distance.  
 In this paper, we achieve emergent situational 
awareness by evolving actual local dynamics from global 
emergent behaviours. The global behaviour is the 
temporal probabilistic model, which captures 
uncertainties of possible routes embedded in the 
environment. The local dynamics are the smallest pieces 
of information needed by robots for easily making correct 
traversable routes detection. For instance, when a robot is 
navigating, finding the best connecting drivable routes on 
a number of selected, rather than all routes within a space 
of time, is local dynamics. This paper aims to empower 
robotic autonomy using the ESA (Emergent Situation 
Awareness) technology to make the best possible 
detection from any recognized far distance situation at 
any time. The ESA technology; evolves DBNs from 
environments captured as MTS (Multivariate Time 
Series) in the absence of domain experts, views 
knowledge as situational patterns over time, and provides 
a suitable platform guide for robots on best detection 
processes. The major contributions in this paper are as 
follows: 
 

• The integration and in-depth illustration of 
applying the ESA technology to optimize 
autonomous robot navigation through awareness 
of traversable routes over a long distance.  

• The evaluation of the ESA on publicly available 
road frames compared with classical statistical 
methods, which researchers often use as a 
baseline of comparisons to new approaches.  
 

The rest of this paper is arranged as follows: in section 2, 
we present the theoretical background of the ESA as a 
class of DBN or temporal probabilistic models. Section 3 
presents the proposed technology, which includes the 
system model and algorithm of the ESA. Section 4 
rigorously presents experimental applications and 
evaluations of the ESA on autonomous robotic navigation 
through the awareness of drivable routes. We conclude 
the paper in section 5. 
 
 
2.  Theoretical Background of the ESA 
 
2.1  Dynamic Bayesian Networks (DBNs) 
 
The simplest form of DBN is shown in Figure 2.  
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Figure 2: The simplest DBN is Hidden Markov Model 

with V as state   variables and E as evidence variables 
repeated in three time steps. 

 
DBNs are temporal probabilistic models which are often 
referred to as an extension of the Bayesian network (BN) 
models in artificial intelligence [8]. A Bayesian belief 
network is formally defined as a directed acyclic graph 
(DAG) represented as G = {V(G), A(G)}, where V(G) = 
{ V1,…,Vn}, vertices (or variables) of the graph G and 

)()()( GVGVGA ×⊆ , is the set of arcs of G. The 

network requires discrete random values such that if there 
exists random variables V1, . . ., Vn with each having a set 
of some values v1, . . ., vn then, their joint probability 
density distribution is defined in equation (1);   
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where )( iVπ  represents a set of probabilistic parent(s) of 

child Vi [10]. A parent variable otherwise referred to as 
cause has a dependency with a child variable known as 
effect. This is similar to variables V and E in a time step 
of Figure 2. Every variable V with a combination of 
parent(s) values on the graph G captures probabilistic 
knowledge (distribution) as a conditional probability table 



(CPT). A variable without a parent encodes a marginal 
probability. If the environment is small, a BN can be 
modelled by eliciting the probabilistic knowledge from 
domain experts. For more complex domains such as 
traversable routes, the most suitable Bayesian networks 
are learned from the environments captured as datasets. 
Intelligent system researchers such as [11] [12] have 
presented many algorithms to learn Bayesian networks 
from datasets. Its characteristics of capturing 
dependencies variables make it suitable for handling 
complex problems [7].  

However, the inability of the BNs to capture 
time as temporal dependencies facilitated the 
development of various ways of modelling the dynamic 
Bayesian networks presented in the introduction. The 
variables and the CPTs of the BNs are similar to the states 
and the probabilities used in the temporal dependencies of 
the DBNs. According to [7], a DBN is suitable for 
modelling environment that emerges (changes) over time 
and has the capability to predict future behaviour of the 
environment. In this research, we want to predict the most 
likely paths that robots must traverse that are not known 
based on the current situations robots understand. Most 
DBNs observe the first-order of the Markov model which 
states that a future event Vt+1 is independent of the past 
given the present Vt [7]. The probability is represented as 
Pr(Vt+1 | Vt). The states of events in a DBN have complex 
interaction due to the time dependency and may impact 
on the observed variables of the DBN at any time step.   

Let t
iV  represent DBN variables of the ESA at 

time t; we derive the following equation (2) from equation 
(1), over all the non-negative time steps t є T, where T = 
{total time steps over the target areas} e.g. road frames, 
and t = {the time step within the volume of an area} e.g. 
an image frame.   
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The system of equation (2) forms temporal dependency 
relations between the time slices as shown in equation (3), 
which generates a matrix of transition knowledge 
embedded in the environments captured as MTS.  
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 implies that equivalence is not true generally. 

From equation (3), the relationships embedded among 
variables V at time step 1 may or may not be equivalent to 
the variables’ relationships at time step 2, and for 
subsequent time steps t. This is as a result of the changes 
in environmental patterns, which affect the relationships 
of the model variables over time. Such model is 
exemplified as vertices and arcs shown as part of Figure 
4. Unlike most DBNs in literature, equation (3) is a DBN 
that varies both its probabilistic distributions and its 
temporal DAGs by learning directly from MTS, which 

captures environmental features such as the road features. 
The relationships here are of greater value to situation 
awareness because hidden situations are revealed over 
time.  
 
2.2  Situation Awareness 
 
Situation Awareness (SA) refers to, “…the perception of 
the elements in the environment within a volume of time 
and space, the comprehension of their meaning, and the 
projection of their status in the near future [5].” The most 
established SA theory is described in a popular model in 
Figure 3 which describes the current situation model as a 
mental model at three hierarchical levels. As shown in 
Figure 3, level 1, 2, and 3 of SA correspond to perception, 
comprehension and projection respectively. The three 
components are the perception of elements in the 
environment within a volume of time and space, the 
comprehension of their meaning, and the projection of 
their status in the near future. 
                   

 
Figure 3: A Hierarchy of Mental Model [5]. 

 
 SA therefore enables a robot to recognize what 
situation is going on in its domain of interest in order to 
figure out what to do next. Thus, the temporality link 
between the theory of SA and the theory of DBNs 
motivated the development of the ESA and its 
applications in [13]. 
 
 
3.  The Proposed Technology for Robotics 
 
3.1  The System Model for the ESA 
 
The system model in Figure 4 comprises three essential 
components, which are learning algorithms, probabilistic 
distributions and the trend analysis. The first two 
components collectively achieve Figure 3 by discovering 
the system knowledge, which is integrated into the third 
component called the interface knowledge. The robot uses 
this knowledge as a platform to understand traversable 
routes ahead.   

In Figure 4, the Learning Algorithms 
dynamically evolve temporal models from the collection 
of pixels embedded in the multivariate time series (MTS). 
The MTS is observed over the collection of pixels 
extracted from frames and serves as input for the learning 
model. The algorithms emerge interlink temporal models 
from frames 0 to n. The existing learning algorithms such 



as genetic algorithms (GA) [11] [12], which are used for 
learning BNs from datasets, fit into Figure 4, if upgraded 
to learn over time. The optimized GA in [12] is upgraded 
to evolve over time and is used as a proof of concept in 
this system model. The algorithm uses information-
theoretic measures (e.g. Minimum Description Length) 
and mathematical components (e.g. PowerSet in set 
theory) as genetic operators and as a means of balancing 
between efficiency and decomposability. The GA is used 
due to its efficiency as it performed very well when used 
to emerge models from the environments of numerical, 
nominal and mixed datasets.  

 

Learning 
Algorithms

Trend
Analysis

Probabilistic
Distributions

Frame-t0 Frame-t1 Frame-tnFrame-t2

 
Figure 4: A System Model for the ESA. 
  

 The other functionality of the probabilistic 
distribution integrated into Figure 4 is a Bayesian 
inference of the Variable elimination algorithm [7], which 
is used to reason and detect traversable routes over time. 
This reasoning algorithm is based on Bayes’ theorem 
[10], expressed as posterior probability in equation (4) for 
some random variables Vs and Ve. The Vs implies state 
variable of the model while Ve implies evidence variable.  
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The component of trend analysis in Figure 4 is an 
interface that constructs a transition matrix of knowledge 
on traversable routes over time using the inference 
algorithm. The nature of knowledge in the patterns 
generated can determine the likely navigational action to 
be taken on any traversable situation n to arrive at (or 
avoid) the next situation n+1. In applying this technology, 
especially by robotic researchers or non-expert 
practitioners, we formally present the ESA algorithm as 
shown in Figure 5. 
 
3.2  The ESA Algorithm 
 
An MTS serves as the required schema to Figure 5, but 
the additional capability of the ESA algorithm in Figure 5 

serves to generate MTS from domain datasets without 
changing their originalities. Its development is based on 
the theories, algorithms, models and mathematical 
analysis, which are used as subroutines as presented in the 
previous sections.  
 In Figure 5, the Dsj is a column of the schema, dt 
is a frame dataset and bt is a temporal Bayesian Network 
emerged at time t. As shown in step 1[i], discretization 
classifies numerical datasets into their corresponding 
interval values relative to the patterns in the data 
attributes. Due to the predominance of computational 
intensity during data-preprocessing, the ESA introduces 
scalability into the discretization processes. In this 
scheme, space is shared and every used memory is 
cleared for the next processes. In step 1[v], the Bayesian 
learners are any of the algorithms that were recently 
mentioned [11] [12], whose functionalities are to carry 
out intra-slice learning over time. They emerge temporal 
optimal BN at each time step. Likewise, the Bayesian 
inference generates several situational trends as a 
transition matrix of knowledge, which is consequently 
used to reveal drivable routes. 

Revealing hidden traversable routes is made 
simpler with the ESA, as robots can now be well 
acquainted with their current complex domains before 
projecting over a long distance. Since the ESA is domain-
independent, it not only accommodates highly skilled 
users, but also allows non-expert robotic practitioners to 
benefit from temporal probabilistic modelling. 

 
 
INPUT (Ds : Dataset Schema) 
          
1.     While Ds = MTS,  

[i] If Dsj = Numeric, for j = 0, 1, 2. . . m. 
• Call Scalable_Discretizer (Dsj).  

[ii] Perform ordering on Ds using t key.   
[iii] Set t, the frame count, to 0. 
[iv] Let dt є Ds, ∀  t = 0, 1, 2, . . ., n.  
[v] For each t <= n, 

• Select frame dt for emergence. 
• Call Bayesian_Learner (dt). 
• Store the emerged temporal BN in 

matrix B. 
• Increment t by 1. 

[vi] For Situational Trends, Call Probabilistic  
       Distributions, ∀  bt є B.   
[vii] Return the dynamic BNs in B as the frames’ 
situations, then exit.  

2.     While Ds <> MTS, 
[viii] If Dsj = Date,  

• Select t.  
• Generate MTS from Ds using t. 

[ix] Repeat step 1.  
 
Figure 5: Emergent Situation Awareness (ESA) 

Algorithm.  
 



4.  Experimental Evaluations on  Traversable 
Routes for Robotic Vehicles 

 
One of the objectives of this paper is to bring the theory 
of the ESA technology to practice with an emphasis on 
robotic applications and practical work on the awareness 
of traversable routes. It consequently alleviates the 
robot’s short-sightedness and avoids being trapped in 
dead-end paths. This is an optimization strategy for 
autonomous robotic navigation. To justify the universality 
of the ESA and to assure that our modelling design is 
reproducible, real life and publicly available road images 
are used to test our theories and implementations. Three 
experiments were conducted on some complex 
environments including (1) public road images collected 
by a robotic vehicle [14] and (2) CSIR real life road 
frames captured locally.   

The public road images, whose example is 
shown in Figure 6, were provided with labelled colours, 
where the light-blue portion depicts a ground plane, the 
red (or dark) class depicts grass, the yellow (or lightest) 
class depicts tall vegetation and the deep-blue (or very 
dark) corresponds to an unlabelled (or uncertain) portion. 
The objective relevant to our work herein is for robots to 
autonomously understand the situations in a long range 
and find the best paths to traverse from one frame to the 
other, especially on the uncertain areas. Seven of the 
images, which contain traces of several ground colours 
were connected as a set of contiguous frames Fi, such that 
traversal starts from {F18-F16-F14-F13-F10-F7-F4} [14] and 
are depicted as {F1, F2,....,F7} respectively. 

 

       
                    x1  x2   x3   x4   x5   x6  x7 
(a) Original Public Road    (b) Labelled Road Frame 

 
Figure 6: An original public road and its labelled frames 

from Bayesian fusion repository [14]. 
 
A MTS (multivariate time series) dataset was captured 
from this environment where each frame is partitioned 
into seven column grids of {X1, X2,...,X7}, representing 
possible robot traversable pathways and consists of an 
average of 45 row grids. The colour features and their 
areas or sizes are estimated from each window grid and 
the resulting MTS is used by the ESA software to emerge 
the appropriate temporal probabilistic model.  

Similar streams of frames were perceived from 
CSIR campus roads, such as a frame result shown in 
Figure 7, where each frame is partitioned into three 
columns of left, centre and right grids. The frame partition 
also includes three row grids with the horizon being 

ignored. These frames are run through an image 
processing tool in MATLAB, where low level analysis 
per pixel with a 9 by 9 support window is carried out. 
This analysis operates on a defined colour band in the 
RGB colour space, and the instances of traversable paths 
are labelled as states {LD, CD, RD, dead-end}. The states 
imply left, centre, and right drivable respectively, where 
dead-end is not a drivable portion. This means that each 
of the four states has 25% equal chances of being the 
most probable result of drivable routes. With a similar 
objective as the public roads above, the areas of these 
colour features are similarly estimated and the resulting 
MTS in a tabular structure is used by the ESA software to 
emerge temporal probabilistic model.  

 
4.1  Experiment 1: Illustrating  the  Awareness of  Best 

Traversable Routes for Robots 
 
Having captured the models of the road environments, the 
robot acts on these models either before or during 
autonomous navigation to understand situations ahead. 
An effective stereo camera mounted on the Seekur robot 
perceives new environmental frame features from a long 
range, which are used to query or reason on the model in 
less than a second to detect and enable the robot to 
understand the drivable paths on CSIR roads. A 
probabilistic query example is illustrated in equation (5) 
and its detection results are shown in Figure 7. Equation 
(5) acts on the temporal model emerged and overlay 
predicted drivable results on its image frame in Figure 7. 
As new frames arrive, their corresponding temporal 
models are acted upon accordingly. More information on 
inference is provided in [7]. 
 
pr (Drivable  t ? | LC t = 0.62, LSize t = 9%, CC t = 0.6,  

     CSize t = 10%, RC t = 0.62, RSize t = 13%)             (5) 

Equation (5) is a Bayesian inference problem which uses 
equation (4) and becomes: 
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Figure 7: Awareness results of drivable routes on CSIR 
road over a long range with a 77% probability of having 
dead-end, 40% for next LD and CD results, and 39% for 
having last results, far above the 25% equal probability as 

degrees of beliefs.   
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On the query of features situation in equation (5), the 
robot wants to know the most probable and drivable areas 
of Figure 7 for example, when the road features situation 
(e.g. LC = left colour with grey saturation 0.62, its left 
colour size (LSize), etc.) are perceived over a distance. 
From our temporal probabilistic modelling framework, it 
should be noted that the features, which are the evidences 
perceived along robot’s direction, change within the space 
of time in the queries such as equation (5). One can see in 
Figure 7 that the ESA reveals a dead-end ahead of robot’s 
direction and confirms that all ground planes are not 
drivable.  

Understanding best traversable routes on the 
public roads before the robot starts navigating becomes 
essential to meet up with the ever changing complex 
environment (e.g. Figure 6). Robots may issue any 
probabilistic queries similar to equations (6) and (7) 
which act upon the model and create awareness results 
about traversable routes as shown in Figures 8 and 9. In 
equations (6) and (7), the robot wants to understand the 
most probable and traversable routes on Figure 6 for 
example, given the features perceived over all the seven 
frames tested.  
 
pr (Routes t ? | X7_Colour t = deep-blue, X7_Area t =  

     60<=90 %)               (6) 

 
Figure 8: Emergent Situation Awareness of traversable 
routes on public roads given that route X7 often contains 
at least 60 to 90% of deep-blue (uncertain) colour 

features.  
 
As shown in Figure 8, the ESA reveals the best 
traversable routes of X6 to X2 on frames F1 to F7 
respectively with their corresponding strong degrees of 
beliefs (or probabilities) higher than 14% equal chances 
of selecting each route. Figure 9 reveals the patterns and 
summarises the competitions of routes {X1,...,X7} to be 
selected as most probable and traversable over the 7 
frames. On Figure 9, the results show to the robot that the 
best traversable route on road frames F1 to F4 is X2 with 
varying probabilities. 
 
pr (Routes t = Xi ?

 | X1_Colour t = deep-blue, X1_Area t =  

     <=15%)                    (7) 

 
Figure 9: Summarised competitive traversable routes on 
public roads given that route X1 often contains at least 

15% of deep-blue colour features.  
 
4.2  Experiment 2:  Empirical  Evaluations  on  the 

Awareness of CSIR Drivable Routes  
 
The objective here is to find the impact and performance 
of the ESA on the awareness of traversable routes. A 
scientific method used is a 90% training and 10% test 
frames situations of the multiple cross validation 
technique [7]. It is an unbiased method where the 
perceived test feature situations are selected at random 
from known road frames as expected results and 
traversable routes are predicted by the ESA model 
emerged from the remaining training sets. The results 
depicted by Table 1 are a summary of the average 
performance accuracy of the ESA on the CSIR roads in 
terms of expected and predicted drivable results.  
  
Table 1: Performance Accuracy of the ESA Technology 

on Awareness of Drivable Routes. 
Road 
Datasets 

Features 
Situations 

Expected 
Drivable 

Predicted 
Drivable 

 
 
 
 
CSIR 

Pr(Drivable t 
| s1), t =F230 

LD,CD,RD LD, RD  

Pr(Drivable t 
| s2), t =F215 

Dead-end Dead-end 

Pr(Drivable t 
| s3), t =F305 

CD, RD CD, RD 

Pr(Drivable t 
| s4), t =F185 

Dead-end Dead-end 

Pr(Drivable t 
| s5), t =F305 

CD CD 

Accuracy                                             92% 
 
The test features’ situations are depicted as si, where for 
example s1 = {LC t = 0.65, LSize t = 97%, CC t = 0.65, 
CSize t = 100%, RC t = 0.65, RSize t = 100%}, from 
frame 230 and s5 = { LC t = 0.58, LSize t = 5%, CC t = 
0.6,  CSize t = 90%, RC t = 0.62, RSize t = 10%} from 
frame 305. The perceived situations, si, are used similarly 
like the probabilistic query in equation (5), which 
thereafter uses equation (4). The ESA detected only 2 
drivable paths instead of 3 on the first result of Table 1. 
However, by comparing the expected and the predicted 



drivable results, observe the overall accuracy of 92%. 
This suggests that integrating the ESA on robots for 
traversable route awareness is a solution to alleviate 
short-sightedness and supports accurate autonomous 
navigation.      
 
4.3  Experiment 3: Comparing the ESA with Classical 
Statistical Methods on Public Roads 
 
Bayesian network modelling technologies have been 
compared with other AI (artificial intelligence) techniques 
such as neural networks and ruled-based techniques in 
recent scientific research. The probabilistic networks 
showed better performance over these techniques in water 
analysis [6]. This experiment therefore evaluates the ESA 
with classical statistical methods, which researchers often 
used as a baseline of comparisons in handling 
uncertainties. The classical statistical methods use the 
frequency concept of probability [7] to handle 
uncertainties, while the temporal probabilistic modelling 
of the ESA uses Bayes’ theorem [10] over time.  
 
Table 2: Comparing Classical Statistical Methods and the 

ESA in Handling Uncertainties.  
Probabilistic 
Features 
Situations 
(unobserved) 

Frequency 
Concept of 
Probability 

Temporal  
Probabilistic  
Reasoning –
ESA 

Pr(Routes t | s6),    
     t = Frame-1 

0.0%, unknown 5.45%,  X6 

Pr(Routes t | s7),  
     t = Frame-2 

0.0%, unknown 8.85%,  X6 

Pr(Routes t | s8),  
     t = Frame-4 

0.0%, unknown 3.50%,  X2 

Pr(Routes t | s9),  
     t = Frame-5 

0.0%, unknown 5.20%, X2 

Pr(Routes t | s10),  
 t = Frame-6 

0.0%, unknown 5.71%, X3 

 
The uncertainties imply that if a set of unobserved road 
situations is perceived during navigation, how will the 
robots handle it? That is supposing the environment 
slightly changes or certain features are omitted during 
modelling and the stereo camera observes unforeseen 
feature situations {s6, ..., s10} afterwards from some 
frames 1 to 6 respectively as summarised in Table 2. For 
instance, suppose the robot’s sensor perceives situation s6 
= {X 4_Colour t = red, X4_Area t >90%, X7_Colour t = 
red, X7_Area t = 10<=40%} from the middle of Figure 
6b, where grass (or red) is not present on route X7. 
Computing statistical frequency concept of probability on 
s6 from its frame learning sample resulted in 0% 
probability, which implies unknown routes. This is an 
uncertainty problem, which is not informative enough for 
robot to know which path to traverse from one frame to 
another. We therefore used the emerged ESA model for 
reasoning with a sampled set of probabilistic situations 
shown in Table 2 using both approaches, but found that 
the results of the temporal probabilistic model of the ESA 

outperforms the classical methods in handling such 
uncertainty. 
  

 
Figure 10: Visualising Capability of Handling 

Unforeseen (Uncertainty) Situations on Public Roads.  
 
Observe zero degrees of beliefs (or probabilities) of 
unknown routes for all situations chosen at random on the 
statistical methods column in Table 2. However, the ESA 
is still able to predict traversable routes for robots with 
minimal beliefs. We understand that this is because the 
classical statistical methods assume that all possible 
ground situations must be observed at modelling [7], but 
this is not true in the real life of uncertainty, especially in 
robotics. These results are visualised as shown in Figure 
10 as one can recall that the ESA uses Bayes’ theorem to 
handle the uncertainties over time.  
 
 
5.  Conclusion and Future Work 
 
In this paper, we have described the theories and 
illustrated the application of the temporal probabilistic 
reasoning technology, ESA, to awareness of drivable 
routes in robotics. This contributes to effective 
autonomous navigation and alleviates short-sightedness 
since robots can now understand situations in a far 
distance with its mounted stereo camera perceiving long 
range road features.   

This study shows that the ESA will potentially 
one day become a powerful technology used by 
researchers and robotic vehicles to understand long range 
field situations as it contributes to optimization of 
autonomous navigation. This technology simply emerges 
from complex environments and predicts traversable 
routes for robots. Our results confirm that all ground 
planes are not drivable. Its empirical evaluations measure 
its reliability as 92% in awareness of CSIR drivable paths 
as summarised in Table 1. The results of the five 
probabilistic situations on public roads in Table 2 and 
Figure 10 also show that the temporal probabilistic 
reasoning of the ESA outperforms the classical statistical 
methods in handling uncertainties embedded in robotic 
road environments. Interestingly, integrating this work 
into other robotic modules (e.g. path planning, etc.) would 
result in diverse real life problems (e.g. various mining 



accidents) being solved with autonomous robots. We are 
currently working on integrating scalability into the ESA 
to handle possible massive MTS or computations for 
robots.  
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