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ABSTRACT

Researchers and practitioners have stressed that
autonomous navigation in complex environments is an

ongoing key challenge for robotic vehicles. Detection of

drivable routes is often used as one of the important
safety key operations to address some of the issues
associated with autonomous navigation. While a number
of conventional detection methods have been developed
for such navigation; awareness of drivable routes by
alleviating robot short-sightedness - without being

trapped in wuncertain dead-end problems, and to
facilitating global navigational planning have received

little attention. Finding a solution to these uncertainty

problems is a challenge. In this paper, temporal

probabilistic reasoning of the Emergent Situation

Awareness (ESA) technology is proposed as a supportive
strategy for autonomous navigation. The ability to reveal

uncertainties over time is a drivable route awareness
strategy of hidden paths embedded in the complex
environments. Experimental evaluations of the ESA on

real life and publicly available road frames outperform

the classical statistical baseline methods in handling
uncertainties over time. Our awareness results reveal to
robotic vehicles that all ground planes are not traversable
routes.

KEY WORDS
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1. Introduction

Safe autonomous navigation often formulates one of the
significant objectives of robotic technology [1].
Researchers and practitioners have stressed that
autonomous robotic navigation in complex environments
as shown in Figure 1 is an ongoing key challenge [1] [2].
In practice, it is convenient to say that complex
environments are relatively defined based on the
percentages of mingled features such as colours of ground
planes, bushes, and other objects perceived from left,
centre and right sides of the environments. Since certain
portions of ground are meant for say parking slots, one

664-094

Antoine BaguldMIEEE

Department of Computer Science,
University of Cape Town,
Rondebosch, Cape Town, South Africa.
(bagula@cs.uct.ac.za)

can see in Figure la that all ground planes are not
traversable but most traversable routes are ground planes.

(a) An Outdoor Road Frame (b) Seekur Robotic Vehicle

Figure 1: A sampled outdoor road frame and a CSIR
four-wheel platform synchronous drive robot, with three
pairs of stereo vision cameras.

The complexity affects autonomous navigation and
robotic research deliveries, and may hinder the growing
usage of robotic vehicles in industries to save lives. For
instance, robots are required to save lives from mining
accidents, such as 4000 coal miners who died in China in
2006 [3] and 3000 people who were trapped underground
in South Africa in 2007 [4]. From our practical
knowledge, improving the performance of detection of
drivable (or traversable) routes is obviously a sound basis
for optimizing autonomous robotic  navigation.
Researchers [2] have presented related detection methods
such as ensemble selection for road image classifications.
This is an iterative scheme on a robot’s motion that they
still confirmed as prone to computational intensity and
can slow down navigation. Our alternative approach is
different from theirs as the environment model of interest
herein is ready before the robot starts navigating. We
therefore say that in order to travel fast and alleviate
short-sightedness, the robot needs to be aware of
traversable routes into a far distance. We shall first
present the rudimentary details of our awareness strategy
before its application in robotic vehicles.

Situation Awareness (SA) is to a notable extent
becoming popular among decision makers. SA has gained
its popularity in, for example, the areas of air traffic
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control, emergency responders, and surgical te&@hs [
Instances of application areas where taking comsgutl-
response decisions is needed are disaster managgemen
business intelligence, robotics, even sport (eafpotic
soccer) where players have to make instant desisioa
constantly changing environment. Most notably, ¢hisr

an ongoing demand for SA technologies and theiauts

in environmental water management problems, insarea
presenting human health risks and in robotic agg8its
[7]. Each of these problem areas is too complex to
understand due to the uncertainties embedded ihdnat
compact representations of Bayesian Network (BN)
models are effective in handling complexities.

Bayesian Networks (BNs) are probabilistic
models that are gaining popularity in decision-maki
such as robotic module deciding on which field stes
are traversable routes. The major shortcomingsheif t
current implementations include the inaccurate demp
modelling despite expert intervention and the abseof
complete temporal pattern modelling capabilitehe T
available DBNs (Dynamic Bayesian Networks) with
temporal modelling, such as Factorial HMM (Hidden
Markov Models), Coupled HMM, Input-Output HMM,
and PDBN (partial Dynamic Bayesian Network) [8] [9]
have contributed to modelling up to the baselinetbay
are explicitly represented by skilled users, thanefare
limited in their expressive power. System Enginesrsh
as robotic researchers and non-expert practitipners
struggle to interpret the DBN models to carry out a
directed goal. This can make robots not being well
acquainted with the situations of traversable mute
currently occurring in their various domains. Fimglia
solution to this issue is a challenge, and theediffice
between poor and good autonomous navigation lies in
their situational understanding of traversable @sudver a
distance.

In this paper, we achieve emergent situational
awareness by evolving actual local dynamics froobal
emergent behaviours. The global behaviour is the
temporal  probabilistic  model, which captures
uncertainties of possible routes embedded in the
environment. The local dynamics are the smallestes
of information needed by robots for easily makiogrect
traversable routes detection. For instance, wheabat is
navigating, finding the best connecting drivablates on
a number of selected, rather than all routes witghapace
of time, is local dynamics. This paper aims to ewgo
robotic autonomy using the ESA (Emergent Situation
Awareness) technology to make the best possible
detection from any recognized far distance situati
any time. The ESA technology; evolves DBNs from
environments captured as MTS (Multivariate Time
Series) in the absence of domain experts, views
knowledge as situational patterns over time, amndiges
a suitable platform guide for robots on best déect
processes. The major contributions in this paper a&
follows:

* The integration and in-depth illustration of
applying the ESA technology to optimize
autonomous robot navigation through awareness
of traversable routes over a long distance.

e The evaluation of the ESA on publicly available
road frames compared with classical statistical
methods, which researchers often use as a
baseline of comparisons to new approaches.

The rest of this paper is arranged as follows:eictien 2,

we present the theoretical background of the ESAa as
class of DBN or temporal probabilistic models. 88t
presents the proposed technology, which includes th
system model and algorithm of the ESA. Section 4
rigorously presents experimental applications and
evaluations of the ESA on autonomous robotic naiiga
through the awareness of drivable routes. We coeclu
the paper in section 5.

2. Theoretical Background of the ESA
2.1 Dynamic Bayesian Networks (DBNSs)

The simplest form of DBN is shown in Figure 2.

Figure 2: The simplest DBN is Hidden Markov Model
with V as state variables afths evidence variables
repeated in three time steps.

DBNSs are temporal probabilistic models which areof
referred to as an extension of the Bayesian net{Bkg
models in artificial intelligence [8]. A Bayesiarelef
network is formally defined as a directed acycliagh
(DAG) represented as G ¥V(G), A(G)}, whereV(G) =
{V1,....Vi}}, vertices (or variables) of the graph G and
AG) OV(G)xV(G), is the set of arcs of G. The

network requires discrete random values such thhere
exists random variableg, . . .,V, with each having a set
of some valuess, . . ., V, then, their joint probability
density distribution is defined in equation (1);

n
pr(Vy,...Vn) :iDO pr(V; | 72(v;)) @)

where 77(V;) represents a set of probabilistic parent(s) of

child V; [10]. A parent variable otherwise referred to as
cause has a dependency with a child variable known as
effect. This is similar to variable¥ andE in a time step

of Figure 2. Every variable/ with a combination of
parent(s) values on the graph G captures probtbilis
knowledge (distribution) as a conditional probabitable



(CPT). A variable without a parent encodes a maigin
probability. If the environment is small, a BN che
modelled by eliciting the probabilistic knowledgermh
domain experts. For more complex domains such as
traversable routes, the most suitable Bayesian arksw
are learned from the environments captured as etatas
Intelligent system researchers such as [11] [12]eha
presented many algorithms to learn Bayesian netwvork
from datasets. Its characteristics of capturing
dependencies variables make it suitable for hagdlin
complex problems [7].

However, the inability of the BNs to capture
time as temporal dependencies facilitated the
development of various ways of modelling the dyrami
Bayesian networks presented in the introductione Th
variables and the CPTs of the BNs are similar ¢éostlates
and the probabilities used in the temporal depecidsrof
the DBNs. According to [7], a DBN is suitable for
modelling environment that emerges (changes) dwer t
and has the capability to predict future behaviolthe
environment. In this research, we want to predietrnost
likely paths that robots must traverse that arekmatwn
based on the current situations robots understistoct
DBNs observe the first-order of the Markov modelakih
states that a future eve¥t., is independent of the past
given the present \[7]. The probability is represented as
Pr(Vw1 | Vo). The states of events in a DBN have complex
interaction due to the time dependency and may d¢tnpa
on the observed variables of the DBN at any tirep.st

Let Vit represent DBN variables of the ESA at

timet; we derive the following equation (2) from equatio
(1), over all the non-negative time stapsT, where T =
{total time steps over the target areas} e.g. rraches,
and t = {the time step within the volume of an area.
an image frame.

provi Vi vl = iﬂ) prvi vl Ote T (2)

The system of equation (2) forms temporal depengenc
relations between the time slices as shown in egués),
which generates a matrix of transition knowledge
embedded in the environments captured as MTS.
A

1.1 .1 2.2 2

VLWV AVRY,
pr(Vl 2 n)E pr(Vl 2 n)—

t .t t
prv VoV ) (3)

implies that equivalence imt true generally.

From equation (3), the relationships embedded among
variablesV at time step 1 may or may not be equivalent to
the variables’ relationships at time step 2, and fo
subsequent time steps t. This is as a result ofliheges

in environmental patterns, which affect the relastaps

of the model variables over time. Such model is
exemplified as vertices and arcs shown as partigpfré

4. Unlike most DBNs in literature, equation (3)ai$BN

that varies both its probabilistic distributions daits
temporal DAGs by learning directly from MTS, which

captures environmental features such as the r@dadrés.
The relationships here are of greater value toasdn
awareness because hidden situations are reveakd ov
time.

2.2 Situation Awareness

Situation Awareness (SA) refers to, “...the perceptd
the elements in the environment within a volumeimok
and space, the comprehension of their meaning,ttzend
projection of their status in the near future [5[fe most
established SA theory is described in a popularehod
Figure 3 which describes the current situation rhedea
mental model at three hierarchical levels. As shdawn
Figure 3, level 1, 2, and 3 of SA correspongbeception,
comprehension and projection respectively. The three
components are the perception of elements in the
environment within a volume of time and space, the
comprehension of their meaning, and the projectibn
their status in the near future.

Current Situation Model

Jerception _)Pomprehensim—)ﬁjection ”

LEVEL1 LEVEL? LEVEL3

Figure 3: A Hierarchy of Mental Model [5].

SA therefore enables a robot to recognize what
situation is going on in its domain of interestarder to
figure out what to do next. Thus, the temporality|
between the theory of SA and the theory of DBNs
motivated the development of the ESA and its
applications in [13].

3. The Proposed Technology for Robotics
3.1 The System Model for the ESA

The system model in Figure 4 comprises three dssent
components, which are learning algorithms, prolisthl
distributions and the trend analysis. The first two
components collectively achieve Figure 3 by discione
the system knowledge, which is integrated into tthied
component called the interface knowledge. The rolses
this knowledge as a platform to understand trawdesa
routes ahead.

In  Figure 4, the Learning Algorithms
dynamically evolve temporal models from the coilect
of pixels embedded in the multivariate time se(M3'S).
The MTS is observed over the collection of pixels
extracted from frames and serves as input foréhening
model. The algorithms emerge interlink temporal eisd
from frames 0 to n. The existing learning algorithms such



as genetic algorithms (GA) [11] [12], which are dider
learning BNs from datasets, fit into Figure 4, jffguaded

to learn over time. The optimized GA in [12] is upded

to evolve over time and is used as a proof of cphoe
this system model. The algorithm uses information-
theoretic measures (e.g. Minimum Description Lepgth
and mathematical components (e.g. PowerSet in set
theory) as genetic operators and as a means aidida
between efficiency and decomposability. The GAdedu
due to its efficiency as it performed very well whased

to emerge models from the environments of numerical
nominal and mixed datasets.
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Figure 4: A System Model for the ESA.

The other functionality of the probabilistic
distribution integrated into Figure 4 is a Bayesian
inference of the Variable elimination algorithm [Which
is used to reason and detect traversable routestiove.
This reasoning algorithm is based on Bayes’ theorem
[10], expressed as posterior probability in equafi®) for
some random variablegs and V.. The Vs implies state
variable of the model whil¥, implies evidence variable.

PrVe | Vg) * Pr
Pt [Ve) = — ¢ 'Pri ; Y (4)
e

The component of trend analysis in Figure 4 is an
interface that constructs a transition matrix obkiedge

on traversable routes over time using the inference
algorithm. The nature of knowledge in the patterns
generated can determine the likely navigationabadio

be taken on any traversable situatiorio arrive at (or
avoid) the next situation+ 1. In applying this technology,
especially by robotic researchers or non-expert
practitioners, we formally present the ESA algaritlas
shown in Figure 5.

3.2 The ESA Algorithm

An MTS serves as the required schema to Figureut, b
the additional capability of the ESA algorithm ilgére 5

serves to generate MTS from domain datasets without
changing their originalities. Its development is&@ on

the theories, algorithms, models and mathematical
analysis, which are used as subroutines as prekientiee
previous sections.

In Figure 5, théDg is a column of the schemd,
is a frame dataset afwlis a temporal Bayesian Network
emerged at timé. As shown in step I[ discretization
classifies numerical datasets into their correspund
interval values relative to the patterns in the adat
attributes. Due to the predominance of computationa
intensity during data-preprocessing, the ESA inioes
scalability into the discretization processes. Imst
scheme, space is shared and every used memory is
cleared for the next processes. In stey, zhe Bayesian
learners are any of the algorithms that were régent
mentioned [11] [12], whose functionalities are tarrg
out intra-slice learning over time. They emerge geral
optimal BN at each time step. Likewise, the Bayesia
inference generates several situational trends as a
transition matrix of knowledge, which is conseqlent
used to reveal drivable routes.

Revealing hidden traversable routes is made
simpler with the ESA, as robots can now be well
acquainted with their current complex domains hefor
projecting over a long distance. Since the ESAocimnain-
independent, it not only accommodates highly stille
users, but also allows non-expert robotic practéig to
benefit from temporal probabilistic modelling.

INPUT (Ds: Dataset Schema)

1. WhileDs= MTS,
[i] If Dg =Nurreric,forj=0,1,2..m
+ Call Scalable_DiscretizeDy).
[ii] Perform ordering orDs usingt key.
[iii] Set t, the frame count, tO.
[iv]Let dieDs, 0 t=0,1,2,.. 0
[v] For eacht <= n,
 Select framel for emergence.
» Call Bayesian_Learnedy.
» Store the emerged temporal BN in
matrix B.
* Increment by 1.
[vi] For Situational Trends, Call Probabilistic
Distributions,[] by e B.
[vii] Return the dynamic BNs iB as the frames’
situations, then exit.
2. WhileDs <> MTS,
[viii] If Dg = Date,
e Select.
e Generate MTS frond, usingt.
[ixX] Repeat step 1.

Figure 5: Emergent Situation Awareness

Algorithm.

(ESA)



4. Experimental Evaluationson Traversable
Routes for Robotic Vehicles

One of the objectives of this paper is to bring theory

of the ESA technology to practice with an emphasis
robotic applications and practical work on the aamass

of traversable routes. It consequently alleviatbe t
robot’s short-sightedness and avoids being trapiped
dead-end paths. This is an optimization strategy fo
autonomous robotic navigation. To justify the umsadity

of the ESA and to assure that our modelling dessgn
reproducible, real life and publicly available roagages
are used to test our theories and implementatibheee
experiments were conducted on some complex
environments including (1) public road images azike

by a robotic vehicle [14] and (2) CSIR real lifeab
frames captured locally.

The public road images, whose example is
shown in Figure 6, were provided with labelled cof
where the light-blue portion depicts a ground plahe
red (or dark) class depicts grass, the yellow igitést)
class depicts tall vegetation and the deep-bluevéoy
dark) corresponds to an unlabelled (or uncertaomign.
The objective relevant to our work herein is fobats to
autonomously understand the situations in a lomgyea
and find the best paths to traverse from one freonbe
other, especially on the uncertain areas. Sevethef
images, which contain traces of several ground uslo
were connected as a set of contiguous framesuEh that
traversal starts from {fg-Fig-F14-F13-F10-F7-F4} [14] and
are depicted as {FF,,....,F} respectively.

XX X X4 X% X X7
(a) Original Public Road (b) Labelled Road Frame

Figure 6: An original public road and its labelled frames
from Bayesian fusion repository [14].

A MTS (multivariate time series) dataset was cagtur
from this environment where each frame is partéibn
into seven column grids ofXj, X,,...,.X;}, representing
possible robot traversable pathways and consistanof
average of 45 row grids. The colour features ardr th
areas or sizes are estimated from each window agrét
the resulting MTS is used by the ESA software teeya
the appropriate temporal probabilistic model.

Similar streams of frames were perceived from
CSIR campus roads, such as a frame result shown in
Figure 7, where each frame is partitioned into g¢hre
columns of left, centre and right grids. The frapaetition
also includes three row grids with the horizon Rein

ignored. These frames are run through an image
processing tool in MATLAB, where low level analysis
per pixel with a 9 by 9 support window is carriedt.o
This analysis operates on a defined colour banthén
RGB colour space, and the instances of travergzdtles
are labelled as states {LD, CD, RD, dead-end}. Jtages
imply left, centre, and right drivable respectivelyhere
dead-end is not a drivable portion. This means ¢laah
of the four states has 25% equal chances of béiag t
most probable result of drivable routes. With aikim
objective as the public roads above, the areahedet
colour features are similarly estimated and theilties)
MTS in a tabular structure is used by the ESA saferto
emerge temporal probabilistic model.

4.1 Experiment 1: lllustrating the Awarenessof Best
Traversable Routes for Robots

Having captured the models of the road environméhés
robot acts on these models either before or during
autonomous nhavigation to understand situations cahea
An effective stereo camera mounted on the Seelustro
perceives new environmental frame features frorang |
range, which are used to query or reason on theshind
less than a second to detect and enable the robot t
understand the drivable paths on CSIR roads. A
probabilistic query example is illustrated in edomt(5)
and its detection results are shown in Figure akqn

(5) acts on the temporal model emerged and overlay
predicted drivable results on its image frame iguFe 7.

As new frames arrive, their corresponding temporal
models are acted upon accordingly. More informatian
inference is provided in [7].

pr (Drivable '?| LC ' = 0.62, LSize'= 9%, CC'= 0.6,
CSizé = 10%, RC' = 0.62, RSize' = 13%) (5)
Equation (5) is a Bayesian inference problem whisés

equation (4) and becomes:

Pr(LCt = 062,..., RS'zet =13% | Drivablet) X Pr(DrivabIet)

PrLC' = 062,..,RSiZe' = 13%)

3]

o

o

=}

w Dead-end
o -

) - LD,CD

2

Q LD,CD, RD

Figure 7: Awareness results of drivable routes on CSIR

road over a long range with a 77% probability ofihg

dead-end, 40% for next LD and CD results, and 36#6 f

having last results, far above the 25% equal pritibabs
degrees of beliefs.



On the query of features situation in equation (&g
robot wants to know theost probable and drivable areas
of Figure 7 for example, when the road featurasasion
(e.g. LC = left colour with grey saturation 0.6%5 left
colour size (LSize), etc.) are perceived over dadice.
From our temporal probabilistic modelling framew,oitk
should be noted that the features, which are tidenges
perceived along robot’s direction, change withia space
of time in the queries such as equation (5). Omese® in
Figure 7 that the ESA reveals a dead-end aheaabof’s
direction and confirms that all ground planes ae n
drivable.

Understanding best traversable routes on the
public roads before the robot starts navigatingobess
essential to meet up with the ever changing complex
environment (e.g. Figure 6). Robots may issue any
probabilistic queries similar to equations (6) a(W)
which act upon the model and create awarenesstgesul
about traversable routes as shown in Figures 89aral
equations (6) and (7), the robot wants to undedstae
most probable and traversable routes on Figurer6 fo
example, given the features perceived over allstnen
frames tested.

pr (Routes'?| X;_Colour' = deep-blue, X;_Area' =
60<=90 %) 6)

Probabilistic Reasoning Over Time

Dynamic Bayesian Network For Situation Awareness
[—=—_Beliefs: 43.75, 36.19, 24.29. 20.49, 22.25. 41.62. 0.7 % |

60<=90)

o
3

_Area =
@ &
8 &

Pr ( Route 7 |
deep-blue, X7
3

=

X7_Colour
o
=4

Time Steps

Route Ranges: X6, X6, X6, X2, X2, X3, X2

Figure 8: Emergent Situation Awareness of traversable

routes on public roads given that routg often contains

at least 60 to 90% of deep-blue (uncertain) colour
features.

As shown in Figure 8, the ESA reveals the best
traversable routes of gXto X, on frames Fto F
respectively with their corresponding strong degreé
beliefs (or probabilities) higher than 14% equahmtes

of selecting each route. Figure 9 reveals the pattand
summarises the competitions of routes; {X,X;} to be
selected as most probable and traversable over7the
frames. On Figure 9, the results show to the rttatt the
best traversable route on road framedd-F; is X, with
varying probabilities.

pr (Routes'= X; ?| X,_Colour' = deep-blue, X;_Area' =
<=15%) @)

i
(7

Dynamic Bayesian Networks for Situation Awareness
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7 Road Frames Time Steps

Figure 9: Summarised competitive traversable routes on
public roads given that route;>ften contains at least
15% of deep-blue colour features.

4.2 Experiment2: Empirical Evaluations on the
Awareness of CSIR Drivable Routes

The objective here is to find the impact and penfance

of the ESA on the awareness of traversable rouies.
scientific method used is a 90% training and 10% te
frames situations of the multiple cross validation
technique [7]. It is an unbiased method where the
perceived test feature situations are selectecaraiom
from known road frames as expected results and
traversable routes are predicted by the ESA model
emerged from the remaining training sets. The tesul
depicted by Table 1 are a summary of the average
performance accuracy of the ESA on the CSIR roads i
terms of expected and predicted drivable results.

Table 1: Performance Accuracy of the ESA Technology
on Awareness of Drivable Routes.

Road Features Expected | Predicted

Datasets | Situations Drivable Drivable
Pr(Drivablé’ | LD,CD,RD | LD, RD
[S0), t =R
Pr(Drivable’ | Dead-end | Dead-end
[$2), t =Foie

CSIR Pr(Drivable' | CD, RD CD, RD
[S3), t =Fsoe
Pr(Drivable’ | Dead-end | Dead-end
[S), t =Frse
Pr(Drivable | CD CD
[Ss), t =Fsoe

Accuracy 92%

The test features’ situations are depicted;aw/isere for
example s= {LC ' = 0.65, LSize'= 97%, CC"' = 0.65,
CSize' = 100%, RC ' = 0.65, RSize' = 100%}, from
frame 230 andss= { LC ' = 058, LSize'= 5%, CC'=

0.6, CSize'= 90%, RC'= 0.62, RSize' = 10%} from
frame 305. The perceived situationsase used similarly
like the probabilistic query in equation (5), which
thereafter uses equation (4). The ESA detected anly
drivable paths instead of 3 on the first resulfTable 1.
However, by comparing the expected and the pretlicte



drivable results, observe the overall accuracy %9
This suggests that integrating the ESA on robots fo
traversable route awareness is a solution to alflevi

short-sightedness and supports accurate autonomous

navigation.

4.3 Experiment 3: Comparing the ESA with Classical
Statistical Methods on Public Roads

Bayesian network modelling technologies have been
compared with other Al (artificial intelligence)cteniques
such as neural networks and ruled-based technioues
recent scientific research. The probabilistic nekso
showed better performance over these techniqueater
analysis [6]. This experiment therefore evalualtesESA
with classical statistical methods, which reseacioften
used as a baseline of comparisons in handling
uncertainties. The classical statistical methods tie
frequency concept of probability [7] to handle
uncertainties, while the temporal probabilistic reltidg

of the ESA uses Bayes’ theorem [10] over time.

Table 2: Comparing Classical Statistical Methods and the
ESA in Handling Uncertainties.

Probabilistic Frequency Temporal

Features Concept of Probabilistic

Situations Probability Reasoning —

(unobserved) ESA

Pr(Routes'|ss), | 0.0%, unknown | 5.45%, X
t = Frame-1

Pr(Routes'|s;), | 0.0%, unknown | 8.85%, X
t = Frame-2

Pr(Routes'|ss), | 0.0%, unknown | 3.50%, X
t = Frame-4

Pr(Routes'|s;), | 0.0%, unknown | 5.20%, X
t = Frame-5

Pr(Routes' | s,0), | 0.0%, unknown | 5.71%, X

t = Frame-6

The uncertainties imply that if a set of unobservead
situations is perceived during navigation, how wiiie
robots handle it? That is supposing the environment
slightly changes or certain features are omittedndu
modelling and the stereo camera observes unforeseen
feature situations {s ..., sq afterwards from some
frames 1 to 6 respectively as summarised in Tableo2
instance, suppose the robot’s sensor perceivestisitug

= {X4_Colour' = red, X,_Area' >90%, X, Colour' =

red, X; Area' = 10<=40%} from the middle of Figure
6b, where grass (or red) is not present on route X
Computing statistical frequency concept of probgbdn

ss from its frame learning sample resulted in 0%
probability, which implies unknown routes. This as
uncertainty problem, which is not informative enbugr
robot to know which path to traverse from one fraime
another. We therefore used the emerged ESA model fo
reasoning with a sampled set of probabilistic situes
shown in Table 2 using both approaches, but folnadl t
the results of the temporal probabilistic modethed ESA

outperforms the classical methods in handling such
uncertainty.

200 X
8.00
_ 7.00
£ 600 1 X X Xs
. ! | |
E .00 | B Frequency Conceptof
-'E 400 1 IXZ Probability
E 3.00 | & Temporal Probabilistic
200 4 Reasoning- ESA
100 1
0.00
1 2 3 4 5
Traversable Routes
Figure 10: Visualising Capability of Handling

Unforeseen (Uncertainty) Situations on Public Roads

Observe zero degrees of beliefs (or probabilitief)
unknown routes for all situations chosen at randonthe
statistical methods column in Table 2. However, E$A
is still able to predict traversable routes for otsbwith
minimal beliefs. We understand that this is becahge
classical statistical methods assume that all plessi
ground situations must be observed at modelling ljidt
this is not true in the real life of uncertaintgpecially in
robotics. These results are visualised as showkfigare
10 as one can recall that the ESA uses Bayes’éhetw
handle the uncertainties over time.

5. Conclusion and Future Work

In this paper, we have described the theories and
illustrated the application of the temporal proliabc
reasoning technology, ESA, to awareness of drivable
routes in robotics. This contributes to effective
autonomous navigation and alleviates short-siglessin
since robots can now understand situations in a far
distance with its mounted stereo camera perceildng
range road features.

This study shows that the ESA will potentially
one day become a powerful technology used by
researchers and robotic vehicles to understand riange
field situations as it contributes to optimizatioof
autonomous navigation. This technology simply eragrg
from complex environments and predicts traversable
routes for robots. Our results confirm that all wgrd
planes are not drivable. Its empirical evaluatioreasure
its reliability as 92% in awareness of CSIR driwaphths
as summarised in Table 1. The results of the five
probabilistic situations on public roads in Tablea@d
Figure 10 also show that the temporal probabilistic
reasoning of the ESA outperforms the classicalssitzel
methods in handling uncertainties embedded in fobot
road environments. Interestingly, integrating thisrk
into other robotic modules (e.g. path planning,)etould
result in diverse real life problems (e.g. variousing



accidents) being solved with autonomous robots.af¢e
currently working on integrating scalability intoet ESA

to handle possible massive MTS or computations for
robots.
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