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Abstract

An intra-cavity adaptive mirror is required to coemgate for time-dependent phase
aberrations to the laser beam, such as those cdyséuermal lensing. A piezoelectric
unimorph design can provide a small, low-cost defdsle mirror for this application. The
unimorph consists of a metallic disc, with a mirfimish, bonded to a piezoelectric disc. In
adaptive optics the deformations that the mirroreguired to perform are described by the
Zernike polynomials, which are a complete set dhagonal functions. The challenge is to
design a device that can represent selected polgi®ras accurately as possible with
specified amplitude. Numerical modelling is reqdirto predict the deformation shapes that
can be achieved by a unimorph mirror with a paldicelectrode pattern. The results from a
Rayleigh-Ritz model and a finite element model eyiplg elements including rotational
degrees of freedom were compared to results fraonaentional finite element model. The
Rayleigh-Ritz model, which used the Zernike polymm directly to describe the
displacements, produced a small model (stiffnesgixndimension equal to the number of
polynomials used) that predicts the deformationghefpiezoelectric mirror with remarkable
accuracy. While this method requires some efirintplement and is not very flexible, it
does provide insight into the operation of the defgble mirror and can be used to optimize
the design in an elegant manner. The finite elémardel including rotational degrees of
freedom is more efficient than the conventionaitérelement model but retains the flexibility
of this model. This method was applied to modepratotype deformable mirror and
produced good agreement with experimental results.

1. INTRODUCTION

Adaptive optics is routinely used in large eartisdzhtelescopes to correct for the effects of
atmospheric turbulence. These systems use larggsasf mirrors individually controlled by
sets of piezoelectric stack actuators and are fibvereery expensive. For intra-cavity laser
beam control, a smaller, lower-cost deformable aniis required. This mirror can be used to
correct for time-dependent phase aberrations tolaker beam, such as those caused by
thermal lensing in solid state lasers. A piezdelecanimorph design, such as that depicted in
figure 1, is suitable for this application [1].



The unimorph consists of a metallic disc, with arorifinish, bonded to a piezoelectric disc.
When a voltage is applied to the piezoelectric the&cinduced strains in the plane of the disc
cause bending of the unimorph. In this way retyivarge displacements, compared to the
10.6 um wavelength of a CQaser, can be obtained from a small and relatiredxpensive
device. The electrode on the free surface of tiegoelectric disc can be divided into
numerous segments, which can each have a diffecdtaige applied. In this way the mirror
can be deformed into a more complex shape.
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Figure 1. Unimorph deformable mirror configuration.
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In adaptive optics the imperfections in the optegtem and therefore the deformations that
the mirror is required to perform are described zgrnike polynomials. The Zernike
polynomials form a complete set of orthogonal fioret on the unit circle. The challenge is
to design a device that can represent selectechpuiyals as accurately as possible with
specified amplitude. Numerical modelling is requirto predict the deformation shapes that
can be achieved by a particular electrode pattern.

In this paper three numerical models are devel@wetthe results are compared. Firstly, a
Rayleigh-Ritz model, using the Zernike polynomidisectly to describe the motion of the
mirror is developed in section 2. The RayleighzRiodel has the advantage that the
deformations are directly expressed in terms ofAtnike polynomials so no curve fitting is
required. A finite element modelling approach, dthon specially formulated hybrid
axisymmetric piezoelectric elements with rotationkglgrees of freedom, is presented in
section 3. A least-squares fit of the deformatbthe mirror surface is carried out in order to
determine which of the Zernike polynomials are beexcited. A second finite element
model, this time using the commercial code COMSWas prepared for comparison. A first
prototype device was constructed and surface displants were measured using a laser
vibrometer, as detailed in section 4. The resfitthe three models are compared in section
5.1 while the first finite element model is compmhte experimental measurements in section
5.2. Optimization of the electrode pattern to txca particular polynomial is briefly
described in section 6.

2. RAYLEIGH - RITZ MODEL FORMULATION

The Rayleigh-Ritz method was applied to a cantilebeam with attached piezoelectric
ceramic patches by Hagood et al. in 1990 [2] ansl Iecome popular for piezoelectric
structures since then. The method is based on Iiersi principle for coupled
electromechanical systems and is described inldetdl] so only the additional details
required to apply the method to the unimorph aszdeed here. The method was applied to
the geometry shown in figure 2.
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Figure 2. Unimorph mirror dimensions and Zernike polynomiaded in modelling.

To apply the method one is required to select afsassumed displacement distributions and
electrical potential distributions. In this case use the Zernike polynomials, shown in figure
2, as the assumed displacement distributions. dieplacement may be written as a
superposition of assumed displacement functions wiknown coefficients,

a(t)
w(r,t) =W(na®) = Riw(p) -~ w(o)ly i (1)
a,(t)
where, R is the radius of the disayi(p) is the first Zernike polynomialp is the non-
dimensionalised radius arad(t) is the amplitude coefficient for the first polyn@i which

has to be determined. The first five axisymmetiééormation polynomials as listed below
were used in the modelling.

w, = -1+2p°

w, =1-6p° +6p*

w, = -1+12p* -30p* +20p° (2)
w, =1-20p” +90p" —140p° + 70p°

W, = —1+30p% - 2100* +5600° - 6300° + 252"

Next, we require a strain-displacement operatotHerparticular structure being modelled. If
we limit ourselves to the case of axisymmetric begdlisplacements of a circular plate the
appropriate strain-displacement operator is givenequation 3, wherd.,, is the strain-
displacement operatow is the displacement normal to the neutral axis argdthe distance
from the neutral axis.
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The strain basis functions are then written in geahthe unknown coefficients as
S(r,t) =N, (r)a(t) = Lw(r)a(t) . 4)
The stiffness matrix is obtained by integrationratve volume of the structure,
K =[N, eN,dv (5)

In a similar fashion the electrical potential fieéddescribed by assumed functions. As this is
a thin piezoelectric disc it will be assumed tha tlectric field varies linearly through the
thickness of the disc. We set the voltage on kbetr@de contacting the copper to be zero and



the voltages on théh free electrode segment to 5e We assume that there is no radial
variation of the electrical potential under an &#lede segment. The electrical potential under

electrode segmenis thereforey, (z,t) = -V, (t)(z+z,)/h,.
The electric field is simply the negative of theadjent of this ie.g, (t) =v.(t)/h and the
field is written as,

vy ()

w®) =[h - Uh] =Ny (6)
Vin(t)

The piezoelectric coupling matrix is then,

©=[N, eN,dv. )

The mass matrix and capacitance matrix can be mmgéed if we wish to compute natural
frequencies.

C, = j N, N, dv (8)
M = j OW T Wdv (9)
The coupled electromechanical equations are then,

Ka-0Ov=f 10
f'a+C,v=q (10)

Special attention must be paid to the piezoeleatiaterial properties used in the model. The
properties listed by piezoelectric ceramic manufes are for three dimensional
piezoelectric problems. In the thin piezoelecdtligc used in the unimorph we assume that the
stress in the thickness direction of the disc 1® 4mut this strain is non zero. The in-plane
stresses are non-zero. The strains and stregsée calated by retaining the relevant terms in

S=sFT +d'E as follows.

E (T d
O 2l
S, S, S,, T, d31
This relation can be manipulated to the form rezpifior the above development, ie.,

T =cFS-¢€'E,

_ E E d
with cE:%{ Slé Sle} ande' = El E{ 31}.
SlEZ _SlEl S, —-S; S, +5; (0

The position of the neutral axig) can be calculated by minimizing the strain enavgyhe
flexural rigidity and the result is,

7 = h22E2 @a- V12) B h].2E1 @- sz)

0 2 27! (12)
2[h2E2 @- Vy )+ hlEl(l_ V, )]

where for the piezoelectric materiai, = G2 andg, =c,,(1-v?).
1

The position of the neutral axis is required dutting integration to form the stiffness matrix.
The integrations, required to form the matrices, banperformed analytically to obtain

expressions for each term in the matrices. Theimelements therefore contain the design
dimensions R, hy, hy, p1, p2) and material properties explicitly. These intéigres were



conveniently performed in the freeware package ‘hax and the resulting expressions were
copied into Matlab.

3. ELEMENTS WITH ROTATIONAL DOF'S AND POLYNOMIAL EXTRA  CTION

To compare the numerical procedure based on theelghyRitz method proposed in the
previous section, a more conventional finite elenaaralysis is conducted. For the purposes
of this comparison, an axisymmetric finite elemamidel using specially developed finite
elements with rotational degrees of freedom is eygal. These elements have been shown
to be especially well suited to bending-dominatexbfems [3].

The variational formulation employs the skew-symioepart of the stress tensor as a
Lagrange multiplier to enforce the continuum medtgmefinition of rotations in terms of
displacement gradient, see (13). The stress teastwerefore not priori assumed to be
symmetric. The specific elastic elements usedigahalysis are based on the functional

M, (u,y,skews) = %J'csymmDu SymmOudV + J'(skewDu —vy)SkewosdV -
Q Q

, (13)
%yﬂskewd dv - jf M dV +Boundaryterms
Q Q

More detail regarding the elastostatic elements bwyound in [3]. In order to model the
piezoelectrically driven deformable mirror, thesttestatic elements were extended to account
for the piezoelectric effect. For brevity, the ¢tional on which the piezoelectric elements
with rotational degrees of freedom are based igjivain here.

As mentioned previously, in adaptive optics thetigbaleformations that the mirror is
required to perform are described using Zernike mpmtyials, which form a complete set of
orthogonal functions over the unit circle. The foofrthe polynomials used in this section is
given by:
Z;(p.¢) = R cosmg), (14)
with 0<p< 1, X¢<2r, and where
(n-m)/2 ’ (n‘_ !()|

AP PR (Ve (e v )

Note thatR™ is only defined forrg-m) positive and even. Furthermore, due to the symme
of the problem, only axisymmetric polynomials amnsidered (i.em=0). For brevity, we
will denote this subset of Zernike polynomials akofvs

Z=272"0 i=0,1,2,... . (16)

n=2i !

(15)

Note that in (2w, = Z; .

A finite element analysis of the structure desatibe Figure 2 was performed, and from this
analysis, the vertical displacements of the surfaeee extracted. Figure 3 depicts an
example result using the finite element method dlesd above. Now a procedure is required
to determine which of the Zernike polynomials axeited.
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Figure 3. Typical result using the finite element methoepidting the discretisation and deformed shape.

To this end, a least-squares fit of the surfacplai®ments is employed, i.e. we minimize the
function

X2 = iZ::[Yi - zlt/l:oakzk (r; )] 2 , (17)

wherey; is thei™ of theN surface nodal displacements. The minimizatioraisied out using
the procedure described in [1]. The output of fiigcess is a vector of the coefficiemis
which scale the magnitude of tMenon-constant Zernike polynomials.

Figure 4 illustrates a typical result of the polymal fitting procedure using various numbers
of (non-constant) Zernike polynomials, iM.= 3, 5, 10 and 20. The figure demonstrates that
the error in the fit decreases as the number ofnpohials increases, indicating that the
procedure is reliable.
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Figure 4. Example of Zernike polynomial fitting of finiteexhent prediction of mirror surface using voltage
Virive=[200:0:0].

4. EXPERIMENTAL DETAILS

In order to assess the practicality of the propasederical models, a physical prototype was
constructed. The prototype unimorph-type deformabirror consists of a 40 mm diameter,
0.3 mm thick, PZT4 piezoelectric ceramic disc bahtte a copper disc 44 mm in diameter
and 0.3 mm thick. The slightly larger diametethad copper provides a surface onto which is
attached a grounding wire as shown in Figure 5e ff&ée electrode on the piezoelectric disc
is segmented into three concentric rings. Thetde patterning was carried out using laser
ablation with an excimer laser. The unimorph weseth by applying a harmonic voltage
excitation to the segmented electrodes. Pointrdeftions of the disc were measured using a
Polytec laser vibrometer.



(a) Deformable mirror prototype (front view). (bef@rmable mirror prototype (rear view).

Figure 5. Prototype deformable mirror.
5. COMPARISON OF RESULTS

In this section results of the Rayleigh-Ritz amdté element numerical models are compared.
For completeness, a commercial finite element cGadensol Multiphysics, is also used in the

comparison. Results from the first finite elemerdd®l are then compared to experimental
results derived from the prototype device describeBection 4.

5.1 Comparison of Rayleigh-Ritz, R-DOF FE and Comnreial FE models

Firstly, the numerical models are compared withmmrtsidering an experimental comparison.
In this case, both the piezoceramic and the cogjses have the same diameter. A model
with three annular electrodes was used for the emisgn. A 40 mm diameter device made
from a 0.5 mm thick PZT4 disc(5=12.3e-12 MIN; ;- =-4.05e-12 MIN; ds;= -123e-12
m/V, ez~ = 635x8.85e-12 F/m) bonded to a 0.5 mm thick copliec (E=110 GPay=0.33)
was modelled. The extent of the first electrodieam p=0 to p1, the second from= p; to p,,
and the third fromp= p, to 1. The electrodes were positioned where they wbeléxpected

to best excite the third Zernike polynomial, pe=0.27 ancg, =0.72. These points are found
2

w, . . . . : .
2 =0. This estimate neglects the influence of circueriéal strains and a

by solving —

better estimate of the optimal electrode positisnmesented in section 6.

The cases of 200V applied to each electrode indallg were computed. The voltage on the
individual segments is contained in the vedfgre = [V1: V2 : V3], whereV; is the voltage
on thei™ electrode segment. The displacements are iltestia figure 6 and the coefficients
of the Zernike polynomials are listed in table 1.
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(a) Varive=[200:0:0]. (b) Mirve=[0:200:0]. () Miive=[0:0:200].
Figure 6. Comparison of mirror surface displacement prediictising different numerical models.

Voltage Polynomial Ravleigh-Ritz R-DOF element Comsol
(Vdrive) number yielg model Multiphysics
a [um] -1.170 -1.042 -1.187
[200:0:0] a [um] 0.472 0.429 0.491
az [um] -0.258 -0.234 -0.257
a [pm] -4.436 -4.204 -4.343
[0:200:0] az [um] -0.002 0.055 0.001
ag [um] 0.441 0.404 0.427
ay [um] -1.729 -1.696 -1.485
[0:0:200] a [um] -0.471 -0.484 -0.519
ag [um] -0.183 -0.170 -0.175

Table 1. Comparison of the predicted Zernike polynomiadfficients using different numerical models.
5.2 Comparison of finite element models and experiemtal data

The first FE model is now compared to experimedt#h. Due to the practical issue of
attaching the grounding wire to the copper dise, ¢bpper disc was slightly larger than the
PZT4 disc. The Rayleigh-Ritz model was not extentte include this detail. Due to the
flexibility of the finite element method when comed to the Rayleigh-Ritz method, and the
close agreement between the numerical models, afilyite element analysis is carried out
for this geometry. The results for driving eaclecélode are shown in figure 7 and the
coefficient of the Zernike polynomials are listedtable 2. It is noted that the shape of the
deformations are very similar but the model ovexdmts the deformation. It is believed that
this is because the material properties of thegakezxtric disc used in the experiment are not
known accurately and differ from those used in thedel. The coefficients of the
polynomials which are strongly excited are predictgth reasonable accuracy. Those that
have small response show large percentage ertbmigh the absolute error is acceptable.
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Figure 7. Comparison of numerical prediction of mirror sedalisplacement with experimental results.

Voltage Polynomial  Experimental FEA Percentage
(Mdrive) coefficient [pm] [nm] difference [%)]
a -3.08 -3.22 -4.35
[10000] a 1.10 1.32 -16.67
as -0.68 -0.75 -9.33
a -12.67 -14.31 -11.46
[01000] a 0.73 0.97 -24.72
a 1.10 1.17 -5.98
a -5.45 -7.30 -25.34
[00100] a -2.04 -2.15 -5.12
a -0.55 -0.28 96.43

Table 2. Comparison of the predicted Zernike polynomiaftioients using FEA and experimental results.
6. DEFORMABLE MIRROR OPTIMIZATION

The thickness of the device has a strong influesrcéhe deformations that can be obtained
with thin devices producing greater deformationBractical difficulties in making a thin
device which is still flat limit the thickness did device. One area where the designer has
freedom is in selecting the electrode configuratiémthis section it is briefly shown how the
Rayleigh-Ritz model can be used to optimize thetedele configuration.

Consider the problem of optimizing the layout ot tthree electrodes to maximize the
deformation of the third Zernike polynomial. Thesplacement of the mirror to a voltage
vectorv in terms of the Zernike polynomials may be writtirectly from (10) aa = K "Ov.
We have two design variablgs andp, and we want to maximize the coefficient of thedhi
polynomialag. We note that the stiffness matrix and voltagetameare not functions of these

variables thereforeg—a = K‘lg—ev. We know that to excite the third polynomial tretage
£ £

applied to the middle electrode will have oppogitgarity to that applied to the inner and
outer electrodes therefore we canvsevmax[l -1 l]T. In addition, we are only interested
in the coefficient of the third polynomial, whichr be extracted as follows:

%o o010 ok ®p -1 1.
0p

If we perform this computation and set the regBultero we obtain the following equation,



79380Qp° — 211456(" +190188Q° — 6337440° +528040=0. It is interesting to note that

the above equation is produced for differentiatioth respect to eithegr, or p, and there is no
coupling between these variables in the piezoetectupling matrix. The two solutions in
the range 0 v < 1 arep; = 0.35 angh, = 0.7377. These values of andp, were checked by
computing the performance of configurations arotimsl point and it was found that these are
indeed the optimal positions for the two electrddasions. The predicted deformation in the
third polynomial, using this optimal electrode dgafation, is approximately 10% greater
than that predicted with the previous electroddigaration (1 =0.27 angh, = 0.72).

7. CONCLUSIONS

The three numerical models compared in this papedyted very similar results. The
Rayleigh-Ritz method produces a small model (stg& matrix dimension equal to the
number of polynomials used) that predicts the deé&tions of the piezoelectric mirror with
remarkable accuracy. This method also providaghnsnto the operation of the device and
can be used to optimize the design in an eleganhara The method is not very flexible if
different geometries and boundary conditions ageiired and does require considerable time
to implement although the use of symbolic matherahtsoftware can reduce the time
required. The results from this model would prevalgood starting point for FE modelling.
The FE method including rotational degrees of foedis more efficient than the
conventional FE method available in commercialvgafe but retains the flexibility of the
method for axisymmetric problems. Good agreemess wbtained between experimental
measurements and the FE method including rotatibegiees of freedom.
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