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Abstract 
 
An intra-cavity adaptive mirror is required to compensate for time-dependent phase 
aberrations to the laser beam, such as those caused by thermal lensing.   A piezoelectric 
unimorph design can provide a small, low-cost deformable mirror for this application.  The 
unimorph consists of a metallic disc, with a mirror finish, bonded to a piezoelectric disc.  In 
adaptive optics the deformations that the mirror is required to perform are described by the 
Zernike polynomials, which are a complete set of orthogonal functions.  The challenge is to 
design a device that can represent selected polynomials as accurately as possible with 
specified amplitude.  Numerical modelling is required to predict the deformation shapes that 
can be achieved by a unimorph mirror with a particular electrode pattern.  The results from a 
Rayleigh-Ritz model and a finite element model employing elements including rotational 
degrees of freedom were compared to results from a conventional finite element model.  The 
Rayleigh-Ritz model, which used the Zernike polynomials directly to describe the 
displacements, produced a small model (stiffness matrix dimension equal to the number of 
polynomials used) that predicts the deformations of the piezoelectric mirror with remarkable 
accuracy.  While this method requires some effort to implement and is not very flexible, it 
does provide insight into the operation of the deformable mirror and can be used to optimize 
the design in an elegant manner.  The finite element model including rotational degrees of 
freedom is more efficient than the conventional finite element model but retains the flexibility 
of this model.  This method was applied to model a prototype deformable mirror and 
produced good agreement with experimental results. 
 
1.  INTRODUCTION 
 
Adaptive optics is routinely used in large earth based telescopes to correct for the effects of 
atmospheric turbulence.  These systems use large arrays of mirrors individually controlled by 
sets of piezoelectric stack actuators and are therefore very expensive.  For intra-cavity laser 
beam control, a smaller, lower-cost deformable mirror is required.  This mirror can be used to 
correct for time-dependent phase aberrations to the laser beam, such as those caused by 
thermal lensing in solid state lasers.  A piezoelectric unimorph design, such as that depicted in 
figure 1, is suitable for this application [1]. 
 



The unimorph consists of a metallic disc, with a mirror finish, bonded to a piezoelectric disc.  
When a voltage is applied to the piezoelectric disc the induced strains in the plane of the disc 
cause bending of the unimorph.  In this way relatively large displacements, compared to the 
10.6 µm wavelength of a CO2 laser, can be obtained from a small and relatively inexpensive 
device.  The electrode on the free surface of the piezoelectric disc can be divided into 
numerous segments, which can each have a different voltage applied.  In this way the mirror 
can be deformed into a more complex shape. 

 
Figure 1. Unimorph deformable mirror configuration. 

 
In adaptive optics the imperfections in the optical system and therefore the deformations that 
the mirror is required to perform are described by Zernike polynomials.  The Zernike 
polynomials form a complete set of orthogonal functions on the unit circle.  The challenge is 
to design a device that can represent selected polynomials as accurately as possible with 
specified amplitude.  Numerical modelling is required to predict the deformation shapes that 
can be achieved by a particular electrode pattern. 
 
In this paper three numerical models are developed and the results are compared.  Firstly, a 
Rayleigh-Ritz model, using the Zernike polynomials directly to describe the motion of the 
mirror is developed in section 2.  The Rayleigh-Ritz model has the advantage that the 
deformations are directly expressed in terms of the Zernike polynomials so no curve fitting is 
required.  A finite element modelling approach, based on specially formulated hybrid 
axisymmetric piezoelectric elements with rotational degrees of freedom, is presented in 
section 3.  A least-squares fit of the deformation of the mirror surface is carried out in order to 
determine which of the Zernike polynomials are being excited.  A second finite element 
model, this time using the commercial code COMSOL, was prepared for comparison.  A first 
prototype device was constructed and surface displacements were measured using a laser 
vibrometer, as detailed in section 4.  The results of the three models are compared in section 
5.1 while the first finite element model is compared to experimental measurements in section 
5.2.  Optimization of the electrode pattern to excite a particular polynomial is briefly 
described in section 6. 
 
2.  RAYLEIGH – RITZ MODEL FORMULATION 
 
The Rayleigh-Ritz method was applied to a cantilever beam with attached piezoelectric 
ceramic patches by Hagood et al. in 1990 [2] and has become popular for piezoelectric 
structures since then.  The method is based on Hamilton’s principle for coupled 
electromechanical systems and is described in detail in [2] so only the additional details 
required to apply the method to the unimorph are described here.  The method was applied to 
the geometry shown in figure 2.  
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Figure 2. Unimorph mirror dimensions and Zernike polynomials used in modelling. 

 
To apply the method one is required to select a set of assumed displacement distributions and 
electrical potential distributions.  In this case we use the Zernike polynomials, shown in figure 
2, as the assumed displacement distributions.  The displacement may be written as a 
superposition of assumed displacement functions with unknown coefficients, 
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where, R is the radius of the disc, w1(ρ) is the first Zernike polynomial, ρ is the non-
dimensionalised radius and a1(t) is the amplitude coefficient for the first polynomial, which 
has to be determined.  The first five axisymmetric deformation polynomials as listed below 
were used in the modelling. 
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Next, we require a strain-displacement operator for the particular structure being modelled.  If 
we limit ourselves to the case of axisymmetric bending displacements of a circular plate the 
appropriate strain-displacement operator is given in equation 3, where Lw is the strain-
displacement operator, w is the displacement normal to the neutral axis and z is the distance 
from the neutral axis. 
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The strain basis functions are then written in terms of the unknown coefficients as 
)()()()(),( tarWLtarNtrS ww ==  .        (4) 

The stiffness matrix is obtained by integration over the volume of the structure, 

dvNcNK w

v

T
w∫=           (5) 

In a similar fashion the electrical potential field is described by assumed functions.  As this is 
a thin piezoelectric disc it will be assumed that the electric field varies linearly through the 
thickness of the disc.  We set the voltage on the electrode contacting the copper to be zero and 
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the voltages on the ith free electrode segment to be vi.  We assume that there is no radial 
variation of the electrical potential under an electrode segment.  The electrical potential under 
electrode segment i is therefore, 10 /))((),( hzztvtzv ii +−= . 

The electric field is simply the negative of the gradient of this ie., 1/)()( htvt ii =ψ  and the 

field is written as, 
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The piezoelectric coupling matrix is then, 

dvNeN v

v

T
w∫=Θ .          (7) 

The mass matrix and capacitance matrix can be implemented if we wish to compute natural 
frequencies.   

dvNNC v

v

T
vp ∫= ε           (8) 

WdvWM
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The coupled electromechanical equations are then, 
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Special attention must be paid to the piezoelectric material properties used in the model.  The 
properties listed by piezoelectric ceramic manufacturers are for three dimensional 
piezoelectric problems.  In the thin piezoelectric disc used in the unimorph we assume that the 
stress in the thickness direction of the disc is zero but this strain is non zero.  The in-plane 
stresses are non-zero.  The strains and stresses can be related by retaining the relevant terms in 

EdTsS tE +=  as follows. 

3
31

31

2

1

2212

1211

2

1 E
d

d

T

T

ss

ss

S

S
EE

EE









+















=









         (11) 

This relation can be manipulated to the form required for the above development, ie., 
EeScT tE −= , 
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The position of the neutral axis (z0) can be calculated by minimizing the strain energy or the 
flexural rigidity and the result is,   
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where for the piezoelectric material, 
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The position of the neutral axis is required during the integration to form the stiffness matrix.  
The integrations, required to form the matrices, can be performed analytically to obtain 
expressions for each term in the matrices.  The matrix elements therefore contain the design 
dimensions (R, h1, h2, ρ1, ρ2) and material properties explicitly.  These integrations were 



conveniently performed in the freeware package ‘Maxima’ and the resulting expressions were 
copied into Matlab.  
 
 
3. ELEMENTS WITH ROTATIONAL DOF'S AND POLYNOMIAL EXTRA CTION 
 
To compare the numerical procedure based on the Rayleigh-Ritz method proposed in the 
previous section, a more conventional finite element analysis is conducted.  For the purposes 
of this comparison, an axisymmetric finite element model using specially developed finite 
elements with rotational degrees of freedom is employed.  These elements have been shown 
to be especially well suited to bending-dominated problems [3]. 
 
The variational formulation employs the skew-symmetric part of the stress tensor as a 
Lagrange multiplier to enforce the continuum mechanics definition of rotations in terms of 
displacement gradient, see (13).  The stress tensor is therefore not a priori assumed to be 
symmetric.  The specific elastic elements used in this analysis are based on the functional 
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More detail regarding the elastostatic elements may be found in [3].  In order to model the 
piezoelectrically driven deformable mirror, the elastostatic elements were extended to account 
for the piezoelectric effect.  For brevity, the functional on which the piezoelectric elements 
with rotational degrees of freedom are based is not given here. 
 
As mentioned previously, in adaptive optics the spatial deformations that the mirror is 
required to perform are described using Zernike polynomials, which form a complete set of 
orthogonal functions over the unit circle.  The form of the polynomials used in this section is 
given by: 
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with 0≤ρ≤ 1,  0≤φ≤2π,  and where 
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Note that m
nR  is only defined for (n-m) positive and even.  Furthermore, due to the symmetry 

of the problem, only axisymmetric polynomials are considered (i.e. m=0).  For brevity, we 
will denote this subset of Zernike polynomials as follows 

Zi ≡ 0
2
=

=
m

inZ ,  i=0,1,2,… .      (16) 

Note that in (2) wi ≡ Zi . 
 
A finite element analysis of the structure described in Figure 2 was performed, and from this 
analysis, the vertical displacements of the surface were extracted.  Figure 3 depicts an 
example result using the finite element method described above.  Now a procedure is required 
to determine which of the Zernike polynomials are excited. 
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Figure 3.  Typical result using the finite element method, depicting the discretisation and deformed shape.       

 
To this end, a least-squares fit of the surface displacements is employed, i.e. we minimize the 
function 
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where yi is the ith of the N surface nodal displacements.  The minimization is carried out using 
the procedure described in [1].  The output of this process is a vector of the coefficients ak 
which scale the magnitude of the M non-constant Zernike polynomials. 
 
Figure 4 illustrates a typical result of the polynomial fitting procedure using various numbers 
of (non-constant) Zernike polynomials, i.e. M = 3, 5, 10 and 20.  The figure demonstrates that 
the error in the fit decreases as the number of polynomials increases, indicating that the 
procedure is reliable. 
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(a) Zernike polynomial fit of finite element results. (b) Error of Zernike polynomial fit. 
Figure 4. Example of Zernike polynomial fitting of finite element prediction of mirror surface using voltage 

Vdrive=[200:0:0]. 
 

4. EXPERIMENTAL DETAILS 
 
In order to assess the practicality of the proposed numerical models, a physical prototype was 
constructed.  The prototype unimorph-type deformable mirror consists of a 40 mm diameter, 
0.3 mm thick, PZT4 piezoelectric ceramic disc bonded to a copper disc 44 mm in diameter 
and 0.3 mm thick.  The slightly larger diameter of the copper provides a surface onto which is 
attached a grounding wire as shown in Figure 5.  The free electrode on the piezoelectric disc 
is segmented into three concentric rings.  The electrode patterning was carried out using laser 
ablation with an excimer laser.  The unimorph was driven by applying a harmonic voltage 
excitation to the segmented electrodes.  Point deformations of the disc were measured using a 
Polytec laser vibrometer.   
 



  
(a) Deformable mirror prototype (front view). (b) Deformable mirror prototype (rear view). 

Figure 5.  Prototype deformable mirror. 
 
5. COMPARISON OF RESULTS 
 
In this section results of the Rayleigh-Ritz and finite element numerical models are compared. 
For completeness, a commercial finite element code, Comsol Multiphysics, is also used in the 
comparison. Results from the first finite element model are then compared to experimental 
results derived from the prototype device described in Section 4. 
 
5.1 Comparison of Rayleigh-Ritz, R-DOF FE and Commercial FE models 
 
Firstly, the numerical models are compared without considering an experimental comparison.  
In this case, both the piezoceramic and the copper discs have the same diameter.  A model 
with three annular electrodes was used for the comparison.  A 40 mm diameter device made 
from a 0.5 mm thick PZT4 disc (s11

E=12.3e-12 m2/N; s12
E =-4.05e-12 m2/N; d31= -123e-12 

m/V, ε33
E = 635x8.85e-12 F/m) bonded to a 0.5 mm thick copper disc (E=110 GPa, ν=0.33) 

was modelled.  The extent of the first electrode is from ρ=0 to ρ1, the second from ρ= ρ1 to ρ2, 
and the third from ρ= ρ2 to 1.  The electrodes were positioned where they would be expected 
to best excite the third Zernike polynomial, i.e. ρ1 =0.27 and ρ2 =0.72.  These points are found 

by solving 0
2
3

2

=
∂
∂

ρ
w

.  This estimate neglects the influence of circumferential strains and a 

better estimate of the optimal electrode positions is presented in section 6. 
The cases of 200V applied to each electrode individually were computed.  The voltage on the 
individual segments is contained in the vector Vdrive = [V1 : V2 : V3 ], where Vi is the voltage 
on the ith electrode segment.  The displacements are illustrated in figure 6 and the coefficients 
of the Zernike polynomials are listed in table 1.   
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(a) Vdrive=[200:0:0]. (b) Vdrive=[0:200:0]. (c) Vdrive=[0:0:200]. 
Figure 6. Comparison of mirror surface displacement prediction using different numerical models.   

 
 

Voltage 
(Vdrive) 

Polynomial 
number 

Rayleigh-Ritz R-DOF element 
model 

Comsol 
Multiphysics 

 a1 [µm] -1.170 -1.042 -1.187 
[ 200 : 0 : 0 ] a2 [µm] 0.472 0.429 0.491 

 a3 [µm] -0.258 -0.234 -0.257 
 a1 [µm] -4.436 -4.204 -4.343 

[ 0 : 200 : 0 ] a2 [µm] -0.002 0.055 0.001 
 a3 [µm] 0.441 0.404 0.427 
 a1 [µm] -1.729 -1.696 -1.485 

[ 0 : 0 : 200 ] a2 [µm] -0.471 -0.484 -0.519 
 a3 [µm] -0.183 -0.170 -0.175 

Table 1.  Comparison of the predicted Zernike polynomial coefficients using different numerical models.  
 
5.2 Comparison of finite element models and experimental data 
 
The first FE model is now compared to experimental data.  Due to the practical issue of 
attaching the grounding wire to the copper disc, the copper disc was slightly larger than the 
PZT4 disc.  The Rayleigh-Ritz model was not extended to include this detail.  Due to the 
flexibility of the finite element method when compared to the Rayleigh-Ritz method, and the 
close agreement between the numerical models, only a finite element analysis is carried out 
for this geometry.  The results for driving each electrode are shown in figure 7 and the 
coefficient of the Zernike polynomials are listed in table 2.  It is noted that the shape of the 
deformations are very similar but the model over predicts the deformation.  It is believed that 
this is because the material properties of the piezoelectric disc used in the experiment are not 
known accurately and differ from those used in the model.  The coefficients of the 
polynomials which are strongly excited are predicted with reasonable accuracy.  Those that 
have small response show large percentage errors although the absolute error is acceptable.  
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(a) Vdrive=[100:0:0]. (b) Vdrive=[0:100:0]. (c) Vdrive=[0:0:100]. 

Figure 7. Comparison of numerical prediction of mirror surface displacement with experimental results.    
 

Voltage 
(Vdrive) 

Polynomial 
coefficient  

Experimental 
[µm] 

FEA 
[µm] 

Percentage 
difference [%] 

 a1 -3.08 -3.22 -4.35 

[ 100 0 0 ] a2 1.10 1.32 -16.67 

 a3 -0.68 -0.75 -9.33 

 a1 -12.67 -14.31 -11.46 

[ 0 100 0 ] a2 0.73 0.97 -24.72 

 a3 1.10 1.17 -5.98 

 a1 -5.45 -7.30 -25.34 

[ 0 0 100 ] a2 -2.04 -2.15 -5.12 

 a3 -0.55 -0.28 96.43 

Table 2.  Comparison of the predicted Zernike polynomial coefficients using FEA and experimental results.   
 
6. DEFORMABLE MIRROR OPTIMIZATION 
 
The thickness of the device has a strong influence on the deformations that can be obtained 
with thin devices producing greater deformations.  Practical difficulties in making a thin 
device which is still flat limit the thickness of the device.  One area where the designer has 
freedom is in selecting the electrode configuration.  In this section it is briefly shown how the 
Rayleigh-Ritz model can be used to optimize the electrode configuration.   
 
Consider the problem of optimizing the layout of the three electrodes to maximize the 
deformation of the third Zernike polynomial. The displacement of the mirror to a voltage 
vector v in terms of the Zernike polynomials may be written directly from (10) as vKa Θ= −1 .  
We have two design variables ρ1 and ρ2 and we want to maximize the coefficient of the third 
polynomial a3.  We note that the stiffness matrix and voltage vector are not functions of these 

variables therefore, vK
a

ii ρρ ∂
Θ∂=

∂
∂ −1 .  We know that to excite the third polynomial the voltage 

applied to the middle electrode will have opposite polarity to that applied to the inner and 

outer electrodes therefore we can set [ ]TVv 111max −= .  In addition, we are only interested 

in the coefficient of the third polynomial, which can be extracted as follows: 

[ ] [ ]T
ii

K
a

11100100 13 −
∂

Θ∂=
∂
∂ −

ρρ
. 

 If we perform this computation and set the result to zero we obtain the following equation,   



05280463374419018802114560793800 3579 =+−+− ρρρρρ .  It is interesting to note that 
the above equation is produced for differentiation with respect to either ρ1 or ρ2 and there is no 
coupling between these variables in the piezoelectric coupling matrix.  The two solutions in 
the range 0 < ρ < 1 are ρ1 = 0.35 and ρ2  = 0.7377.  These values of ρ1 and ρ2 were checked by 
computing the performance of configurations around this point and it was found that these are 
indeed the optimal positions for the two electrode divisions.   The predicted deformation in the 
third polynomial, using this optimal electrode configuration, is approximately 10% greater 
than that predicted with the previous electrode configuration (ρ1 =0.27 and ρ2  = 0.72).  
 
7. CONCLUSIONS 
 
The three numerical models compared in this paper produced very similar results.  The 
Rayleigh-Ritz method produces a small model (stiffness matrix dimension equal to the 
number of polynomials used) that predicts the deformations of the piezoelectric mirror with 
remarkable accuracy.  This method also provides insight into the operation of the device and 
can be used to optimize the design in an elegant manner.  The method is not very flexible if 
different geometries and boundary conditions are required and does require considerable time 
to implement although the use of symbolic mathematical software can reduce the time 
required.  The results from this model would provide a good starting point for FE modelling.  
The FE method including rotational degrees of freedom is more efficient than the 
conventional FE method available in commercial software but retains the flexibility of the 
method for axisymmetric problems.  Good agreement was obtained between experimental 
measurements and the FE method including rotational degrees of freedom. 
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