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Optimisation problems occur in many situations and aspects of modern life.
In reality, many of these problems are dynamic in nature, where changes
can occur in the environment that influence the solutions of the optimisation
problem. Many methods use a weighted average approach to the multiple ob-
jectives. However, generally a dynamic multi-objective optimisation problem
(DMOOP) does not have a single solution. In many cases the objectives (or
goals) are in conflict with one another, where an improvement in one objective
leads to a worse solution for at least one of the other objectives. The set of
solutions that can be found where no other solution is better for all the ob-
jectives, is called the Pareto optimal front (POF) and the solutions are called
non-dominated solutions. The goal when solving a DMOOP is not to find a
single solution, but to find the POF. This chapter introduces the usage of the
vector evaluated particle swarm optimiser (VEPSO) to solve DMOOPs. Every
objective is solved by one swarm and the swarms share knowledge amongst
each other about the objective that it is solving. Not much work has been
done on using this approach in dynamic environments. This chapter discusses
this approach, as well as the effect that various ways of transferring knowledge
between the swarms, together with the population size and various response
methods to a detected change, have on the performance of the algorithm.

1 Introduction

In the world of today optimisation problems occur in a vast variety of situa-
tions and aspects of modern life. However, in reality many of these problems
are dynamic in nature, where changes can occur in the environment that
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influence the solutions of the optimisation problem. Examples of dynamic op-
timisation problems can be found in a vast range of scheduling problems, such
as timetables, air traffic control, routing in telecommunication networks and
target tracking in military operations. Most optimisation problems have more
than one objective, e.g. the goals for a manufacturing process might be to
maximise the number of products that are manufactured, minimise the time
required to manufacture a specific number of products, minimise the time
that any machine is idle and minimising the cost. Using a specific machine
can be more expensive than another, however the more expensive machine
might require less time to manufacture the same number of products than
a machine that is cheaper to operate. If you want to manufacture the max-
imum number of products, using the more expensive machine will minimise
the time required, but will increase the cost. Optimisation problems that have
more than one objective are called multi-objective optimisation (MOO) prob-
lems. Normally these objectives are in conflict with one another, i.e. a better
solution for one objective leads to a worse solution for at least one of the other
objectives. The set of solutions that can be found where no other solution is
better for all the objectives, is called the Pareto optimal front (POF), and the
solutions are called non-dominated solutions.

When changes occur in the environment that influence the solutions of
the MOO problem, the goal becomes to track the changing POF. In order
to achieve this, the algorithm should be able to firstly detect that a change
has occcurred, and then respond to the change in an appropriate way. If one
or more machines used in a manufacturing process (such as the example ex-
plained above) break down, it will cause a change in the required solutions and
will therefore be an example of a dynamic MOO problem (DMOOP). Com-
paring one algorithm’s performance against another when solving a DMOOP
is not a trivial task, since in many real world problems the true POF is un-
known. Therefore, benchmark functions with different POF characteristics are
used to test the efficiency of an algorithm. To measure the performance of an
algorithm, peformance metrics are used.

Greeff and Engelbrecht proposed using the Vector Evaluated Particle
Swarm Optimisation (VEPSO) algorithm to solve DMOOPs [1]. When the
VEPSO approach is used, each swarm solves only one objective function and
then the swarms share knowledge amongst each other. In this chapter the per-
formance of the VEPSO algorithm, using different ways to transfer knowledge
between the swarms, are discussed. The effect of the way in which knowledge
is transferred between the swarms, in combination with swarm sizes and the
effect of various responses to detected changes in the environment, on the
performance of the VEPSO algorithm, is also discussed in this chapter.

The rest of the chapter’s layout is as follows: Section 2 provides background
information and highlights related work that is relevant for the research dis-
cussed in this paper. Section 3 provides an overview of the VEPSO algorithm
and the changes that has been made to the algorithm for DMOOPs. The ex-
periments that have been conducted are discussed in Sect. 4. The benchmark
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functions and performance metrics that have been used to test the algorithm’s
performance, are highlighted in Sects. 4.1 and 4.2 respectively. The statisti-
cal methods that were used for analyses are presented in Sect. 4.3. Section 5
describes the results of the experiments. Finally, Sect. 6 provides a summary
and conclusions on the work presented in this chapter.

2 Background

Eberhart and Kennedy [2] introduced Particle Swarm Optimisation (PSO),
a population-based optimisation method inspired by the social behaviour of
bird flocks. Each PSO swarm consists of a number of particles that searches
solutions by moving through the search space. Each individual particle has
a current position, x;, velocity, v;, and personal best position, y;, where the
particle had the smallest error with regards to the objective function. The
position amongst all the particles personal best positions that resulted in
the smallest error, is called the global best position, denoted as y. During
each iteration every particle’s new position is determined by adding the new
velocity to the particle’s current position.

Dynamic single-objective optimization problems have successfully been
solved using PSO ([3, 4, 5, 6]). When dealing with dynamic problems, where
a change in the environment results in a change in the solutions, it is vital
that the algorithm can detect that a change has occurred. The concept of a
sentry particle has been introduced by Carlisle and Dozier [7]. When using
the sentry particle approach to detect whether a change has occurred in the
environment, a random number of sentry particles are selected after each it-
eration. These particles are then re-evaluated before the next iteration, where
each particle’s current fitness value is compared with its previous fitness value,
i.e. its fitness value after the previous iteration. If these two values differ more
than a specified value, the swarm is alerted that a change has occurred. Hu and
Eberhart [8] suggested that the global best, and global second best particles
should be used as sentry particles.

If a change has been detected, the algorithm should respond appropriately
to the change. One approach, suggested by Carlise [9], is to re-calculate each
particle’s personal best. If the new personal best value is less fit than the
particles’s current position, its personal best value is replaced by its current
position. This comparison enables retaining valid past experience. Another
approach is to re-initialize a percentage of the swarm’s population, preventing
that the swarm remains in a small area after the change has occurred, and
enabling a portion of the particles to retain their memory, which could be
valuable information if the change is small. Cui et al. [6] proposed the usage
of an evaporation constant, with a value between zero and one, that is used to
update the particle’s best fitness value. The particle’s memory will gradually
decrease over time proportially to the evaporation constant. At a certain point
in time the particle’s current fitness will be better than the decreased fitness
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value. When this happens, the decreased fitness value will be replaced by
the particle’s current fitness. With the evaporation constant approach, the
environment is not monitored by any particles, as is the case with the usage
of sentry particles.

Much work has been done on using PSO for multi-objective optimisa-
tion (MOO) problems. Reyes-Sierra and Coello Coello provides a comprehen-
sive review of the various PSO approaches that were used to solve MOO
problems [10]. Recently evolutionary algorithms (EAs) ([11, 12, 13]) and
PSO ([14, 15]) have been used to solve DMOOPs. Since changes occur in
the environment, the goal is to track the changing POF. In order to test
and analyse an algorithm’s capability of tracking a dynamic POF, benchmark
functions are used. Jin and Sendhof [16] introduced how to define a dynamic
two-objective optimisation problem by reformulating a three-objective opti-
misation test function. Another approach where dynamic problems are cre-
ated by replacing objectives with new ones at specific times, were presented
by Guan et al. [11]. Other benchmark functions were developed by adapting
static MOO benchmark functions to dynamic ones. A number of test functions
for DMOO based on the static MOO two-objective ZDT functions [17] and the
scalable DTLZ functions [18] were developed by Farina et al. [19]. Some adap-
tions to these test functions were proposed in ([12, 20]). Mehnen et al. [12]
proposed DSW functions that are adapted from the static MOO function
problem of Schaffer [21] and others added noise to Deb’s functions ([22, 23]).

Once the benchmark functions were used to test an algorithm’s capability
of tracking a dynamic POF, the data has to be analysed and the tracking capa-
bility of various algorithms should be compared against one another. In order
to compare one algorithm’s performance against another algorithm, perfor-
mance metrics are required. For DMOOP two groups of performance metrics
exist, namely performance metrics where the true POF is known and perfor-
mance metrics where the true POF is unknown. The convergence, measured
by the generational distance proposed by Van Veldhuizen [24], and spread or
distribution of the solutions are often used to measure an algorithm’s per-
formance when the POF is known ([23, 25]). The reversed generational dis-
tance and the collective mean error were proposed as performance metrics by
Branke et al. [14]. Another metric, the HV R(t) metric, represents the ratio
of the hypervolume of the solutions and the hypervolume of the known POF
at a specific time ([24, 14]). Li et al. [14] proposed a metric of spacing that
can be used when the true POF is unknown. Measures of accuracy, stability
and reaction capacity of an algorithm, that are based on the calculation of
the hypervolume of the non-dominated solution set, was proposed by Camara
et al. [15].

The next section discusses the Vector Evaluated Particle Swarm Optimi-
sation approach that is used to solve MOO problems.
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3 Vector Evaluated Particle Swarm Optimisation

The Vector Evaluated Particle Swarm Optimisation (VEPSO), a multi-swarm
variation of PSO and inspired by the Vector Evaluated Genetic Algorithm
(VEGA) [26], was introduced by Parsopoulos et al. [27].

With the VEPSO approach each swarm solves only one objective function
and shares its knowledge with the other swarms. The shared knowledge is
then used to update the velocity of the particles as indicated in Eqgs. (1) and
(2) below:

vl (t+ 1) = o] (8) + clra(y] () — 2] (1)) + chra (55 (1) — 2] (1)) (1)

D(t+1) =2l () + ol (t+1) (2)

where n represents the dimension with ¢ = 1,...,n; m represents the number
of swarms with j = 1,...,m as the swarm index; y° is the global best of the s-
th swarm; ¢} and ¢} are the cognitive and social parameters of the j-th swarm
respectively; ry,re € [0,1]"; w’ is the inertia weight of the j-th swarm; and
s€[l,...,j—1,741,...,m] represents the index of a respective swarm. The
index s can be set up in various ways, affecting the topology of the swarms in
VEPSO.

The VEPSO approach for MOO problems is presented in Algorithm 1.
The set of solutions found so far, forming the found POF, are stored in an
archive. If the archive is full, and the new solutions are non-dominated and
do not already exist in the archive, solutions are selected for removal from the
archive to make space for the new solutions based on the distance metric [28].

Algorithm 1 VEPSO for MOO problems

1. for number of iterations do

2 peform vepso iteration

3 if new solutions are non-dominated and don’t exist in archive
4 if space in archive

5. add new solutions to archive

6 else

7 remove solutions from archive

8 add new solutions to archive

In order to solve DMOOQO problems the algorithm has to be adapted. The
changes that were made to the VEPSO approach to solve DMOO problems
are discussed next.

3.1 VEPSO for Dynamic Multi-objective Optimisation

The VEPSO approach discussed above is used to solve MOO problems. In
order to use this approach for DMOO problems, the algorithm must be able
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to detect that a change has occurred and then respond to the change in an
appropriate manner. Sentry particles are used to detect a change (as discussed
in Sect. 2). When a change is detected, a percentage of the swarm'’s particles
are re-initialised. Re-initialisation of a particle entails re-setting its position
and then re-evaluating its personal best and the neighbourhood best. The
VEPSO approach for DMOO problems is presented in Algorithm 2. The next
Section discusses the experiments that were performed to evaluate the ability
of this approach to solve DMOO problems.

Algorithm 2 VEPSO for DMOO problems

1. for number of iterations do

2 check whether a change has occurred

3 if change has occurred

4 respond to change

5. re-evaluate solutions in archive

6 remove dominated solutions from archive

7 perform vepso iteration

8 if new solutions are non-dominated and don’t exist in archive

9. if space in archive

10. add new solutions to archive
11. else

12. remove solutions from archive
13. add new solutions to archive
14. select sentry particles

4 Experiments

This section describes the experiments that were conducted to test the per-
formance of VEPSO when solving DMOOPs. The benchmark functions and
performanc metrics, discussed in Sects. 4.1 and 4.2 respectively, were used
to test the performance of variations of the VEPSO algorithm presented in
Sect. 3.1.

To test the effect of various ways of transferring knowledge between the
swarms, a ring topology is used, as well as a random selection, i.e. the swarm
whose knowledge is used is selected randomly. These different topologies are
tested using a varied population size, where the swarms’ number of particles
are varied between 10, 20, 30 and 40 particles respectively. Furthermore, vari-
ous responses to change are used, where either 10%, 20% or 30% of the swarm’s
population is re-initialised. Re-initialisation of particles was either done for all
swarms, or only for the swarm that is solving the objective function that has
changed.

All experiments consisted of 30 runs and each run consisted of 1 000 it-
erations. The frequency of change, 7, was set to 5 as suggested by Farina et
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al. [19], i.e. during each run the functions change every 5 iterations, resulting
in 200 changes per run. The PSO parameters were set to values that lead to
convergent behaviour [29], namely w=0.72 and ¢l = ¢2 = 1.49.

4.1 Benchmark Functions

To test the performance of VEPSO solving DMOOPs with various types of
POFs, with two or more objective functions, four functions proposed by Farina
et al. [19] are used. Below, 7 is the generation counter, 7 is the number of
iterations for which ¢ remains fixed and n; is the number of distinct steps in
t.

Minimize : f(x,t) = (fi(x,t), g(x11,t) - h(xmr, fi(xi, t), g(xm, t),t))
Jia) =i
glxm) =14+ (x:i = G(1))?

FDAL = { h(fi,9) =1—,/L

where :
G(t) =sin(0.57t), t=-L|Z]

ne L7

xi € [0,1]; x11 = (z2,...,2n) € [-1,1]

3)

The function parameters were set to n = 20 and n; = 10 (as suggested

by [19]). Function FDA1 (Eq. (3)) has a convex POF where the values in the

decision variable space changes, but the values in the objective space remains
the same.

Minimize : f(x,t) = (f1(x1,t), g(x11,t) - h(xm, fi(x1,t), g(x11,t),1t))

filx) =z
gl =1+ 37, o @0
— L 2
FDA2 = Wi g) =1 — %(H(t)JrZzl_exIH(xl H()?)
where :

H(t) = 0.75+ 0.75sin(0.57t), t = L | Z |
ni
x1 € [0, 1]; x11, xm1 € [—1,1]

(4)

For FDA2 the parameters were set to the following: |xp1| = |xm1| = 15
and n; = 10 (as suggested by [19]). Function FDA2 (Eq. (4)) has a POF that
changes from a convex to a non-convex shape, while the values in the decision
variable space remains the same.
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Minimize : f1(x),..., fm(x)
VT, cos(57)
)T cos(245)) sin(F=f2)

ming : fn(%) = (1+ g(xu)) sin(2 1")

FDA4 = ¢ where : (5)

glxar) = Y,y (@0 — G(1))?

G(t) = |sin(0.57t)|

F(t) = 102050 ¢ = 1 L%J
\Vi=1,...,n; k=2,...,m—1

(
ming : fi1(x) = (1 + g(xr)
ming : fr(x) = (1 + g(x11)

XII*(l’m,---, n), T [

For FDA4 the parameters were set as n = m + 9, |xg| = 10, n; = 10
(as suggested by [19]) and m = 3 for a 3-objective function. Function FDA4
(Eq. (5)) has a non-convex shaped POF where the values in the decision
variable space changes, but the values in the objective space remains the
same.

Minimize : f1(x),..., fm(x

)
)T
ming : fr(x) = (1 + g(x))( :v;k
m}inz D fm(x) = (1 + g(x11)) sin(%~° )

g(x11) = G(t) + Z%_Exn (z; — G(t))? (6)
yi=a D Viell,..., (m—1)]

G(t) = |sin(0.57t)|

F(t) =1+ 100sin*(0.57t), t =L | Z|

X1 = (Tm, ..., Tn); 2 €[0,1,Vi=1,...,n; k=2,..., m—1

)

(
ming : fi(x) = (1 + g(xm)
)

%)) sin( et

FDA5 =

Identical function parameters and values as those specified for FDA4 were
used here. Function FDA5 (Eq. (6)) has a non-convex shaped POF where the
values in both the decision variable space and the objective space changes.

4.2 Performance Metrics

This chapter assumes that the POF of the benchmark functions are unknown,
since in reality this will often be the case. The performance metrics that
are used to compare the performance of the VEPSO variations are discussed
below.

Spacing

The metric of spacing [23] indicates how evenly the non-dominated solutions
are distributed along the discovered POF, and is defined as
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1 1 npg % 1 npg 1 g
S=— | — di—d)?| ,d=—— d; S=—Y» S 7
npr | NPF ;( ) — Z J (7)
where npp is the number of non-dominated solutions found and d; is the
euclidean distance, in the objective space, between a non-dominated solution
1 and its nearest non-dominated solution. B
To compare one algorithm against another, the average spacing metric S

is calculated for each iteration just before a change in the environment occurs.

Hypervolume

The S-metric or hypervolume (HV) [17] computes the size of the region that
is dominated by a set of non-dominated solutions, based on a reference vector

that is constructed using the worst objective values of each objective. It is
defined as

HV(PF) = UseprHV(E) with HV(E)={f € 0 :f < £ }(8)
where PF' denotes the set of non-dominated sets, O is the objective space and
HV (f) is the set of objective vectors dominated by f.

In order to compare one algorithm against another, the HV metric is
calculated for each iteration just before a change in the environment occurs.
The average over 30 runs is then calculated for each of these iterations.

If it is unknown when a change will occur, the performance metrics can
be calculated over all iterations instead of only the iterations just before a
change occurrs in the environment.

To determine whether there is a significant difference in the performance
of one algorithm compared to another algorithm, statistical tests are used as
explained in Section 4.3.

4.3 Statistical Analysis

To determine whether there is a difference in performance with respect to the
performance metrics, a Kruskal-Wallis test was performed for each function. If
this test indicates that there is a difference, pairwise Mann-Whitney tests were
performed. In all of these tests the average hypervolume value and average
spacing value for each of the variations as indicated in Tables 2, 4, 6 and 8 were
compaired against the average hypervolume value and average spacing value
for each of the variations as indicated in Tables 3, 5, 7 and 9. The p-values of
these tests can be seen in Table 1.

5 Results

This section discusses the results that were obtained from the experiments,
with regards to the performance of the variations of VEPSO and the effect of
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Table 1. p-values of Statistical Tests

Function Kruskal-Wallis Mann-Whitney
S av S av
FDA1 0.73 0.6056 - -
FDA2 0.9384 0.8519 - -

FDA4 [1.237x10 °(9.54x10 ©[1.101x10 %] 4.93x10°
FDA5 | 0.003097 [0.0001263| 0.009095 |7.868x10°

the way in which knowledge is transferred on VEPSO’s performance. Further-
more, the effect of the population size and response to a detected change in
the environment is highlighted. The results of the experiments can be seen in
Tables 2-9 and Figs. 1-4. The overall performance of the knowledge transfer
strategies can be seen in Table 10. In the tables A indicates that all swarms are
re-initialised in response to a change and C indicates that only the swarms
that solve the objective functions that have changed are re-initialised. The
values that are printed in bold in all tables indicate the best value for the spe-
cific metric. In all figures the filled “¢” symbol indicates solutions found when
20% of the particles, of only the swarms whose objective function changed,
are re-initialised and the “x” symbol indicates solutions found when 20% of
the particles of all swarms are re-initialised when a change is detected in the
environment (refer to Sect. 5.3).

5.1 Overall Performance

Table 10 highlights the overall performance of VEPSO when using either a ring
topology or a random topology to exchange knowledge between the swarms.
For the 2-objective functions, namely FDA1 and FDA2, there are no real
statistical significant differences in VEPSO’s performance with regards to the
spacing and hypervolume performance metrics. However, using the random
topology for knowledge exchange does lead to a wider spread of solutions
for FDA2 as can be seen in Fig. 2. For the 3-objective functions, FDA4 and
FDAS5, there is a significant difference in performance. This is indicated by
the p-values in Table 1. The p-values that indicate a significant difference in
performance are highlighted in bold. From Table 10 it can be seen that the
random topology lead to a much higher hypervolume value for FDA4, but a
higher spacing metric value. For FDA5, the random topology lead to a lower
spacing metric value, but a lower hypervolume value. This indicates that more
investigation is required to determine the effect on performance for a wider
range of functions. Furthermore, randomly selecting which swarm’s knowledge
to use (random topology) leads to a wider spread of solutions for FDA4, as
can be seen in Fig. 3.
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5.2 Population Size

From Tables 2-9 it is interesting to note that for the ring topology the best hy-
pervolume values for functions FDA1, FDA4 and FDA5 were obtained when
each swarm had 20 particles. For the random topology the highest hyper-
volume values for functions FDA2, FDA4 and FDA5 were obtained using 40
particles per swarm. When knowledge was exchanged using the ring topology,
swarms that consisted of 30 particles lead to the lowest spacing values for func-
tions FDA2 and FDAS5. However, for FDA1 and FDA4, the best values for
the spacing metric were obtained with 20 and 10 particles respectively. When
a random topology was used to exchange knowledge between the swarms, the
best spacing values were obtained for functions FDA1, FDA2 and FDA4 us-
ing 20 particles per swarm. For FDA5 30 particles per swarm lead to the best
spacing values.

5.3 Response Strategies

When using a ring topology for knowledge transfer, the best hypervolume
values for FDA2, FDA4 and FDA5 were obtained when 30% of the particles
were re-initialised of the swarm that is optimising the objective function that
has changed. However, when a random topology is used to transfer knowledge
between the swarms, the best hypervolume values were obtained when 10%
of the particles were re-initialised of the swarm that is optimising the objec-
tive function that has changed (refer to Tables 2-9). The best spacing values
were obtained for both functions FDA2 and FDA4 re-initialising 20% of the
particles of all swarms. For FDA1 and FDAS5 the best spacing values were
obtained by re-initialising 10% and 30% of the particles of only the swarm
whose objective function changed respectively.

Table 2. Spacing and Hypervolume Metric Values for Function FDA1

%R Ring Topology: #Particles
10 20 30 40 Avg

S Hv § v s Hv S Hv |S av
10A  0.362 6.55 0.35 9.04 0.349 858 0.359 10.14 |0.355 8.578
10C 0.386 8.27 0.3 8.79 0.345 822 0.361 9.72 ]0.348 8.75
20A 0379 871 0.274 698 0.341 832 0.332 8.61 |0.332 8.155
20C 0.343 10.24 0.399 10.16 0.349 8.34 0.351 8.34 |0.361 9.27
30A 0355 8.64 0.352 9.23 0.35 10.92 0.392 9.08 |0.362 9.468
30C 0.381 10.67 0.362 10.12 0.39 10.12 0.362 8.29 |0.373 9.8

Avg 0.368 8.847 0.34 9.053 0.354 7.693 0.36 9.03
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Fig. 1. Solutions for Function FDA1 using ring topology on the top and random
topology on the bottom

Table 3. Spacing and Hypervolume Metric Values for Function FDA1

%R Random Topology: #Particles

10 20 30 40 Avg
S av S v s av S av |S av
10A  0.37 9.272 0.326 9.531 0.35 7.481 0.342 8.35 ]0.347 8.659
10C  0.353 7.909 0.369 10.19 0.352 7.512 0.331 9.165 [0.351 8.694
20A  0.341 7.829 0.365 9.944 0.377 8.686 0.362 9.352 |0.361 8.953
20C  0.373 9.278 0.353 8.805 0.399 8.676 0.375 10.09 |0.375 9.212
30A 0.339 8.453 0.363 8.781 0.384 8.835 0.351 7.768 |0.359 8.459
30C 0.444 9.114 0.335 9.393 0.339 9.482 0.324 8.971 |0.361 9.24
Avg 037 8.643 0.352 9.441 0.367 8.445 0.348 8.949 |- -
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Fig. 2. Solutions for Function FDA2 using ring topology on the top and random
topology on the bottom

Table 4. Spacing and Hypervolume Metric Values for Function FDA?2

%R Ring Topology: #Particles
10 20 30 40 Avg

S HV S HV S Hv S HV |S av
10 A 0.264 3.411 0.235 4.293 0.2 4.762 0.307 4.79 ]0.252 4.314
10 C 0.236 5.155 0.487 9.561 0.238 4.335 0.317 5.503 [0.32  4.092
20 A 0.33 5.957 0.146 3.034 0.269 4.574 0.223 3.106 |0.161 4.17
20 C 0.267 3.396 0.236 4.25 0.256 4.574 0.264 3.862 |0.256 4.021
30 A 0.175 2.828 0.24 4.905 0.25 3.13 0.262 3.214 |0.232 3.519
30 C 0.207 3.958 0.243 4.399 0.248 15.995 0.253 5.74 |0.238 5.015
Avg 0.247 4.118 0.265 5.074 0.244 6.228 0.271 4.369 |- —
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20% panicks re-inflialiead, all =wvarms =
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Fig. 3. Solutions for Function FDA4 using ring topology on the top and random
topology on the bottom

Table 5. Spacing and Hypervolume Metric Values for Function FDA2

%R Random Topology: #Particles

10 20 30 40 Avg
S v § v s v S Hv |§ av
10 A 0.251 3.963 0.253 4.513 0.219 2.357 0.284 10.77 |0.252 5.401
10 C 0.365 8.9 0.476 5.804 0.259 4.444 0.317 6.391 [0.354 6.385
20 A 0.3 4.426 0.172 3.315 0.338 6.904 0.548 7.208 |0.226 5.463
20 C 0.247 4.028 0.193 2489 0.263 4.71 0.215 4.881 |0.153 4.027
30 A 0.216 4.625 0.145 2.745 0.244 5.105 0.205 3.313 |0.203 3.947
30C 0.214 3.954 0.241 3.566 0.195 2.735 0.482 5.583 |0.283 3.957
Avg 0.266 4.983 0.247 3.739 0.253 4.376 0.341 6.358 |- -
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Table 6. Spacing and Hypervolume Metric Values for Function FDA4

%R Ring Topology: #Particles
10 20 30 40 Avg

S vV S v § av S av S av
10A 0.19 1.08 0.19 039 0.19 0.24 0.03 1.19 0.15 0.72
10C 0.03 6.04 0.02 13 0.09 1230.2 0.14 5122.9 |0.07 1590.1
20 A 0.03 9.25 0.03 0.33 0.03 1.47 0.03 0.43 0.03 2.87
20C 0.04 2.60 0.03 322 0.03 0.71 0.03 5.62 0.03 3.04
30 A 0.03 264 0.02 0.37 0.02 0.49 0.08 170.27 |0.04 43.45
30C 0.02 0.09 0.03 9.63 0.03 1.22 0.13 4107.2 |0.05 1029.5
Avg 0.06 3.62 0.03 254 0.06 20572 0.07 1567.9 |- -

Table 7. Spacing and Hypervolume Metric Values for Function FDA4

%R Random Topology: #Particles
10 20 30 40 Avg
E S HV S HV R E

10 A 0.21 249.56 0.24 274.31 0.37 4580.01 0.27 1241.37 (0.27 1586.31
10 C 0.46 60434.4 0.20 114.76 0.28 600.62 0.19 59.5 0.28 15302.3
20 A 0.21 97.98 0.20 2054.1 0.31 100.02 0.3 3080.7 |0.25 1333.2
20 C 0.19 97.98 0.32 2054.1 0.19 100.02 0.39 3080.70 {0.27 1333.2
30 A 0.31 1121.8 0.17 3595 0.27 277.75 0.31 4503.9 [0.26 1484.9
30 C 0.33 1093.8 0.19 42.02 04 6379.8 0.16 25.31 0.27 1885.2

Avg 0.28 105159 0.22 762.52 0.3 12038.2 0.27 1998.6 |- -

Table 8. Spacing and Hypervolume Metric Values for Function FDA5

%R Ring Topology: #Particles
10 20 30 40 Avg
S HV S HV S HV S HV S HV

10 A 0.12 67.0 0.4 7747 0.31 35.99 0.32 41.54 0.31 55.49
10 C 0.61 52.94 0.29 201.35 0.78 1672.76 0.68 3334.49 [0.59 1315.39
20 A 0.55 6207.04 0.53 233672.3 0.29 20336.39 0.63 41.75 0.5 65064.4
20 C 0.54 30274.45 0.48 285.33 0.41 4882.7  0.37 422.62 (0.45 8966.27
30 A 047 257.3 0.49 12231.54 0.54 379.1 0.79 3844.01 |0.57 4177.99
30 C 0.63 2185.09 0.37 249.35 0.4 47829 0.24 45292 |0.27 841.41

Avg 0.5 6507.3 0.43 41119.55 0.32 4630.86 0.50 1356.23
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20% parniclkes re-infialzad, all swarms=
M%: panickes ie-infialieed, changed =warms

*

Fig. 4. Solutions for Function FDA5 using ring topology on the top and random
topology on the bottom

6 Summary

DMOO problems occur in a vast range of situations in modern life. The ob-
jectives are in conflict with one another and a change in the environment
influences the solutions of the optimisation problem. This chapter adapted
the VEPSO approach to solve DMOO problems. Two approaches to trans-
fer knowledge between the swarms were presented, namely a ring or ran-
dom topology. Furthermore, the performance of VEPSO was highlighted using
these two knowledge exchange approaches when the number of particles in the
swarms, and the response to a change is varied. Results indicated that there



Dynamic Multi-objective Optimisation using PSO 17

Table 9. Spacing and Hypervolume Metric Values for Function FDA5

%R Random Topology: #Particles
10 20 30 40 Avg

S ®wv S HV § HV S HV S av
10 A 0.41 53.53 0.38 48.13 0.25 23.47 0.32 22.14 0.34 36.82
10 C 0.37 2951 0.3 41595 0.33 11.97 0.94 185921.7 [0.485 46594.8
20 A 041 14.71 0.62 205.28 0.16 26.92 0.27 21.95 0.37 67.21
20 C 0.40 109241 0.32 110.61 0.45 275.92 0.45 169.91 0.51 41221
30 A 0.28 13.11 0.19 2881 0.16 6.83 0.32 149.66 0.24 49.61
30 C 0.26 260.53 0.29 113.73 0.33 24.25 0.37 14.95 0.31 103.37
Avg 0.35 243.97 0.35 153.75 0.28 61.56 0.45 31050.1 |- -

Table 10. Overall Result Comparison

Function Ring Toplogy

Random Topology

S HV S av
FDA1 0.355 9.003 0.359 8.869
FDA2 0.256 4.947  0.277 4.864
FDA4 0.063 444953 0.268 3820.845

FDAS5

0.47 13403.485 0.357

7877.332

is not a statistical significant difference in the performance of VEPSO when
these two knowledge exchange approaches were used for problems with only
2 objectives. However, when the problem has 3 objectives the random knowl-
edge transfer topology leads to an improvement in either the hypervolume
value or the spacing value. Further investigations will be done to determine
the effect with a wider range of functions, with a various number of objectives.

Current research focuses on improving the performance of the VEPSO
approach for DMOOPs. However, the best version of VEPSO will be compared
against other approaches in the future.
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