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Rotating structures and Bryan’s effect
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In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a
rate proportional to the rate of rotation. During investigations of the effect in various solid and
fluid-filled objects of various shapes, an interesting commonality was found in connection with the
gyroscopic effects of the rotating object. The effect has also been discussed in connection with a
rotating fluid-filled wineglass. A linear theory is developed, assuming that the rotation rate is
constant and much smaller than the lowest eigenfrequency of the vibrating system. The associated
physics and mathematics are easy enough for undergraduate students to understand. © 2009 American
Association of Physics Teachers.
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I. INTRODUCTION

When a vibrating structure is subjected to a rotation at an
angular rate �, the vibrating pattern rotates with respect to
the structure at a rate proportional to �. This effect, known
as “Bryan’s effect,” was first observed by Bryan1 in 1890.
Bryan defined the constant of proportionality for a body con-
sisting of a ring or cylinder for various modes of vibration as

BF =
Angular rate of the vibrating pattern

Angular rate of the vibrating body
. �1�

The constant of proportionality BF is known as “Bryan’s
factor.” Estimates based on Bryan’s effect were used to dem-
onstrate that the resonance of liquid surface vibrations in a
wineglass2 was predictable using a membrane model.3

We have been investigating Bryan’s effect in various solid
and fluid-filled symmetric objects that rotate at a constant
rate which is much smaller than the lowest frequency of
vibration of the structure. To understand Bryan’s effect, in-
vestigations were conducted starting with a slowly rotating
and vibrating �isotropic solid� disc and then progressing to a
cylinder and a sphere. Each of these investigations yielded
identical �up to constant coefficients� ordinary differential
equations that can be used to explain Bryan’s effect. In this
paper we demonstrate how these differential equations are
derived, how Bryan’s factor can be calculated, and how
Bryan’s effect can be predicted.

In 1988, Zhuravlev and Klimov4 investigated Bryan’s ef-
fect for an isotropic, spherically symmetric body rotating in
three dimensions. Among other results, they demonstrated
that Bryan’s effect depends on the vibration mode. Bryan’s
effect has numerous navigational applications.5 Bryan’s fac-
tor is used to calibrate vibrating cylindrical gyroscopes. In
Ref. 5 a thin cylindrical shell was considered for both high
and low rotational rates. Apart from navigational applica-
tions, the theory presented in Ref. 6 could be useful in un-
derstanding the dynamics of pulsating stars and earthquakes.

We will discuss Bryan’s effect for a symmetrically distrib-
uted annular disc, where both radial and tangential vibrations
are considered, and ignore axial vibrations. The theory is
readily adapted to an isotropic solid cylinder �or sphere� in
the form of concentric cylindrical �or spherical� bodies where

some of the layers are fluids.

1 Am. J. Phys. 77 �5�, May 2009 http://aapt.org/ajp
II. TRUE VELOCITY

Consider a body consisting of a solid disk with distributed
parameters as depicted in Fig. 1. Let N be the number of
concentric annular layers in the system and ai−1 and ai the
inner and outer radii of the ith annulus each with density �i,
thickness hi, modulus of elasticity Ei, and Poisson’s ratio �i,
i=1, . . . ,N �see Eqs. �A3� and �A4��. Assume that the disk is
subjected to nondecaying tangential and radial vibrations in
one of its natural modes and that vibration is absent along the
z-axis. In polar coordinates �with x=r cos � and y=r sin ��
consider the equilibrium position �x ,y�� P�r ,�� of a vibrat-
ing particle �vibrating mass element� in the ith layer of the
body, ai−1�r�ai. Let r̂ be the unit vector in the direction of
increasing r, so that the position vector of the equilibrium
point P�r ,�� is r=rr̂. Consider the orthogonal unit vector
�̂= ��r /��� / ��r /���. Let vi�̂+uir̂ represent the displacement
from the equilibrium position of the vibrating particle in the
ith layer. For simplicity we suppress the subscript i if no
confusion is expected. The position vector of the vibrating
particle is thus

R = �r + u�r̂ + v�̂ . �2�

Now consider an inertial coordinate system OXYZ with its
origin O at the center of the disc, where the X-, Y-, Z-axes
initially correspond to the x-, y-, z-axes, respectively.7 As-
sume that the disk rotates about the Z-axis with a small con-
stant angular frequency �. Consequently, the z-axis and the
Z-axis are identical, but the angle between the X-axis �which
is fixed in space� and the x-axis �which is fixed with respect
to the geometry of the disc� increases at a rate �. The angu-
lar velocity of the disk is thus

� = �k̂ , �3�

where k̂= r̂� �̂ is the unit vector in the direction of the posi-
tive Z-axis. We assume that the angular rate of rotation � is
substantially smaller than the lowest vibration frequency of
the system. Consequently, we will neglect centrifugal effects
and all other terms of O��2�.

An observer in the Oxyz coordinate system will measure
the unit vectors r̂ and �̂ to be constants. Hence this observer
will use Eq. �2� to calculate the velocity V* of the vibrating
particle in the rotating framework Oxyz, by differentiating R,

ˆ ˆ
treating r and � as constants: 95
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V* = �dR

dt
�

r̂,�̂=const
= u̇r̂ + v̇�̂ . �4�

An observer in the OXYZ coordinate system will note that
the direction of the unit vectors r̂ and �̂ is continuously
changing. Hence, they are not constant vectors in the OXYZ
frame.

In addition to the velocity V*, we must take into account
the velocity imparted by rotation. Recall that a particle mov-
ing along a circular path of radius r and with angular rotation
rate � has a tangential speed �r. Hence, a particle with an-
gular velocity � and position vector R has a velocity com-
ponent given by the cross product ��R. Consequently, the
“true velocity” of the vibrating particle as observed from
within the fixed frame OXYZ is

V = V* + � � R �5�

=�u̇ − �v�r̂ + �v̇ + ��r + u���̂ . �6�

Spiegel7 provides a detailed discussion of the derivation of
Eq. �5�.

III. KINETIC AND POTENTIAL ENERGY

If we use Eq. �6�, the kinetic energy Ek of the system of
particles forming the concentric annular layers is given by

Ek =
1

2�
i=1

N

�ihi	
0

2� 	
ai−1

ai

Vi · Vir dr d� �7a�



1

2�
i=1

N

�ihi	
0

2� 	
ai−1

ai

��u̇i
2 + v̇i

2�

+ 2��uiv̇i − u̇ivi� + 2�v̇ir�r dr d� . �7b�

When a spring is stretched, the elastic forces involved can do
work. Elastic forces are present when an “elastic” body vi-
brates, and so it is necessary to introduce some of the theory
of elasticity to calculate the potential energy of the system of
particles forming the concentric annular layers. A short dis-
cussion of elasticity is given in Appendixes A–C. According
to Eq. �B4�, the potential energy Ep of a system of concentric
annular layers is given by

Ep =
1

2�
i=1

N

hi	
0

2� 	
ai−1

ai

�	r,i
r,i + 	�,i
�,i

+ �r�,i�r�,i�r dr d� , �8�

Fig. 1. Coordinate system for the annular disk consisting of various concen-
tric annular layers of varying thickness.
where the symbols 	 and � stand for the tensile stress and

2 Am. J. Phys., Vol. 77, No. 5, May 2009
shear stress, respectively, and 
 and � stand for tensile strain,
and shear strain respectively. According to Eqs. �C3� and
�C4�, the stresses are

	r,i =
Ei

1 − �i
2 �
r,i + �i
�,i�, 	�,i =

Ei

1 − �i
2 �
�,i + �i
r,i� ,

�9�

�r�,i =
Ei

2�1 + �i�
�r�,i. �10�

Strains may be calculated as follows �see, for instance, Ref.
10 or 11�:


r,i =
�ui

�r
, 
�,i =

1

r
� �vi

��
+ ui� , �11�

�r�,i =
�vi

�r
+

1

r
� �ui

��
− vi� . �12�

Problem 1. Substitute Eqs. �9� and �10� into Eq. �8�, and
then use Eqs. �11� and �12� to obtain

Ep =
1

2�
i=1

N
Eihi

1 − �i
2	

0

2� 	
ai−1

ai � �ui

�r
�2

+ �1

r
� �vi

��
+ ui��2

+
2�i

r

�ui

�r
� �vi

��
+ ui�

+
1 − �i

2
� �vi

�r
+

1

r
� �ui

��
− vi��2�r dr d� . �13�

IV. GYROSCOPIC EFFECTS IN DISTRIBUTED
BODIES

Equations of motion for the vibrating particle in the ith
body can be obtained by using Eqs. �9�–�12�, and the equa-
tions of motion discussed by Redwood.8 The resulting equa-
tions consist of two coupled partial differential equations in-
volving terms such as �2ui /�t2, ��2vi /�t2�, ��ui /�r�, �vi /��,
�2ui /�r��. Solving this coupled system of partial differential
equations is a nontrivial problem that involves finding, for
each i, two families of eigenfunctions Ui,m�r� and Vi,m�r�,
m=2,3 ,4 , . . . . The number m is the vibration mode number
or the circumferential wave number. We will not attempt to
determine these eigenfunctions here, and we leave this deter-
mination for a future paper. We will assume that we can
calculate these eigenfunctions and that we can �for each
mode of vibration� express the displacements ui and vi of a
vibrating particle in the ith layer of the body as follows:

ui�r,�,t� = Ui�r��C�t�cos m� + S�t�sin m�� , �14�

vi�r,�,t� = Vi�r��C�t�sin m� − S�t�cos m�� , �15�

m=2,3 ,4 , . . ., where the functions C�t� and S�t� are to be
determined. Here, for simplicity, we have suppressed the
mode number on the eigenfunctions, that is, Ui�r�=Ui,m�r�
and Vi�r�=Vi,m�r�. It is left as an exercise to determine the
nature of the functions C�t� and S�t�.

Problem 2. Substitute Eqs. �14� and �15� into Eqs. �7b�

and �13�. Simplification of these expressions involves a long 169
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algebraic calculation. The use of a computer algebra system
such as Mathematica or Maple yields

Ek = ��I0�Ċ2 + Ṡ2� + 2�I1�ĊS − CṠ�� �16�

and

Ep = �I2�C2 + S2� , �17�

where

I0 =
1

2�
i=1

N

hi�i	
ai−1

ai

�Ui
2 + Vi

2�r dr , �18�

I1 = �
i=1

N

hi�i	
ai−1

ai

UiVir dr , �19�

and

I2 =
1

2�
i=1

N
Eihi

1 − �i
2	

ai−1

ai �Ui��
2 + 2�iUi�

Ui + mVi

r

+ �Ui + mVi

r
�2

+
1 − �i

2
�Vi� −

mUi + Vi

r
�2�r dr .

�20�

A. Lagrange’s equations

The Lagrangian follows from Eqs. �16� and �17�:

L�C,S,Ċ, Ṡ� = Ek − Ep = ��I0�Ċ2 + Ṡ2� − 2�I1�CṠ − ĊS�

− �C2 + S2�I2� . �21�

The vibration of the mth mode is governed by Lagrange’s
equations of motion:

d

dt� �L

�Ċ
� −

�L

�C
= 0, �22�

and

d

dt� �L

�Ṡ
� −

�L

�S
= 0. �23�

Equations �22� and �23� yield

C̈ + 2�Ṡ + �2C = 0 �24�

and

S̈ − 2�Ċ + �2S = 0, �25�

respectively, where, for the mth mode of vibration

− 1 �  =
I1

I0
� 1, �26�

and � is given by

� =�I2

I0
. �27�

B. Bryan’s factor

We now show that � is an eigenvalue of the vibrating

system and that  in Eq. �26� is Bryan’s factor BF in Eq. �1�.
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To interpret what Eqs. �24� and �25� represent we combine
the two equations by considering the complex function

Z = C + iS �28�

to obtain the single equation

Z̈ − i�2��Ż + �2Z = 0. �29�

If we write Z in polar form

Z�t� = r�t�ei��t�, �30�

and assume that ��t� has the linear form ��t�=at, we obtain

r̈ + 2i�a − ��ṙ + �2�a − a2 + �2�r = 0. �31�

If we choose a=�, the coefficient of ṙ is eliminated in Eq.
�31�, and we obtain the differential equation of a harmonic
oscillator:

r̈ + �2r = 0, �32�

where

� = ��2 + 2�2 �33�

is an eigenvalue of the vibrating system with eigenfrequency
of vibration f =� /2�. According to the assumption made
shortly after Eq. �3�, �� f . Consequently,

� 
 � , �34�

and so � is an eigenvalue of the vibrating system. Equations
�24� and �25� can now be viewed in the form

Z�t� = r�t�ei�t. �35�

Equation �35� shows that Eqs. �24� and �25� represent a “vec-
tor” in the complex plane with its magnitude varying like a
harmonic oscillator and its position varying at a rate propor-
tional to the constant, small rotation rate � of the isotropic
body. Hence, according to Eq. �1�, Bryan’s factor

BF =
�

�
=  . �36�

Consequently, if a gyroscope based on Bryan’s effect12 is to
be calibrated, then, without conducting lengthy experiments,
Bryan’s factor can be calculated from Eq. �26� once the
eigenfunctions of Eqs. �14� and �15� are known.

Equations �18�–�20�, �26�, and �27� show that for the mth
mode of vibration, Bryan’s factor and the eigenfrequency of
vibration depend on physical properties such as the density
and geometrical properties such as thickness. The eigenfre-
quency also depends on elastic properties such as Young’s
modulus and Poisson’s ratio.

Equation �35� defines a precessing wave. The rotating vi-
bration pattern lags behind the position of the static vibration
pattern if �0 and precedes the position of the static vibra-
tion pattern if �0. A calculation of  for a liquid filled
wineglass3 and m=2 reveals  to be negative. Hence, the
rotating vibration pattern should lag behind the static vibra-
tion pattern for the wineglass.

We note that Eqs. �24� and �25� are obtained with appro-
priate values of I0, I1, and I2 for isotropic cylindrical or
spherical distributed bodies. The definite integrals I0, I1, and

I2 are far more complicated for a cylinder and sphere. 249
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Problem 3. Show that to a good approximation

C�t� = cos �t�A cos �t + B sin �t� , �37�

S�t� = sin �t�A cos �t + B sin �t� �38�

�where A and B are arbitrary constants� by solving Eq. �32�
for r�t�, substituting into Eq. �35�, equating real and imagi-
nary parts, and then using Eq. �34�.

Problem 4. Use the Lagrangian L as given by Eq. �21� and
include viscous damping by introducing Rayleigh’s dissipa-

tion function F= �cĊ2+sṠ2� /2 into Lagrange’s equations
�see Ref. 9�. Assume weak, isotropic, viscous damping, that
is, c=s=�D, with the damping factor �=D / �2I0� much
smaller than the lowest eigenfrequency of the vibrating sys-
tem. Conclude that the introduction of light, viscous, isotro-
pic damping into the considerations does not alter the fact
that the damped vibrating pattern rotates at a rate � in the
Oxyz plane, where  is given by Eq. �26�. See Ref. 6 for
details.

V. CONCLUSION

By using standard concepts of physics such as kinetic en-
ergy, potential energy, and Lagrange’s equations, we have
demonstrated how Bryan’s effect for a composite disk that is
rotating slowly in space can be predicted and Bryan’s factor
can be calculated. These considerations also demonstrated
that Bryan’s factor depends on properties such as the density
and the thickness of the disk and that the eigenfrequency of
vibration of the disk also depends on elastic properties such
as Young’s modulus and Poisson’s ratio.

We can now better understand the operation and calibra-
tion of the hemispherical resonator gyroscope of Loper and
Lynch.12 Roughly speaking, suppose that a vibrating hemi-
sphere is fixed to a vehicle �such as a space shuttle or sub-
marine� moving through three-dimensional space and that a
sensor inside the vehicle observes the position of a node of
the fundamental vibration of the hemisphere �such vibrations
can be observed in the excellent holographic interferograms
of a vibrating wineglass in Ref. 13�. Suppose the vehicle
undergoes a slow rate of rotation � with respect to the space
through which it is moving and that this rotation rate is too
small for the human vestibular system to observe. The sensor
will register that the node rotates away from its original po-
sition. From observations within the vehicle the rotation rate
� of the node can be calculated and, using Bryan’s factor 
for the fundamental mode of vibration, the rate of rotation of
the vehicle �=� / with respect to the space through which
it is moving can be calculated.
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APPENDIX A: ELASTIC CONSTANTS

A body will deform when stretching and/or twisting forces
are applied to it. We consider as a first approximation a per-
fectly elastic body that returns to its original form after
stretching and/or twisting forces are removed from it.

Consider a length � of an elastic block �Fig. 2� with cross-
sectional area A that is subjected to a stretching force F�

�normal to the area A� causing the side length to increase
from � to �+��. The tensile stress 	 of the elastic body is
given by

	 =
F�

A
, �A1�

and the tensile strain 
 is given by


 =
��

�
. �A2�

Young’s modulus �or the modulus of elasticity� E is given by

E =
tensile stress

tensile strain
=

	



. �A3�

If a length of elastic body is stretched from length � to �
+��, its transverse dimensions �its height or breadth� t de-
creases from t to t+�t �here �t�0�. Hence, both longitudi-
nal strain �� /� and transverse strain �t / t are present simul-
taneously. �For isotropic substances transverse strain is the
same for any transverse dimensions such as height, breadth,
or diameter.� Poisson’s ratio � is defined as the positive di-
mensionless constant

� = − � longitudinal strain

transverse strain
� = − ���/�

�t/t � . �A4�

Suppose that an elastic block �Fig. 2� is subjected to a
shearing or twisting force F� �parallel to the area A� that
twists the body through a small angle � �in Fig. 2, �

�s /��. The shear stress � of the body is given by

� =
F�

A
, �A5�

and the shear strain � is given by

� = � . �A6�

The shear modulus G is given by

G =
shear stress

shear strain
=

�

�
. �A7�

Fig. 2. Elastic blocks undergoing tensile deformation �left block� and shear
deformation �right block�.
It can be shown �see Ref. 10� that 333
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AQ:
#1
G =
E

2�1 + ��
, �A8�

and so

� =
2�1 + ��

E
� . �A9�

Equations �A3� and �A7� are forms of Hooke’s law. For in-
stance, from Eq. �A3�, we deduce the well known law for
elastic elongation w �usually referred to as Hooke’s law�:

F = kw , �A10�

with k=AE /�, w=��, and F=F�.

APPENDIX B: POTENTIAL ENERGY

When a tensile extension w occurs, work has been done by
the force F=F�. This work is stored as potential energy.
According to the tensile form of Hooke’s law given by Eq.
�A10�, this tensile potential energy �also called tensile strain
energy� is given by

	
0

u

F dw = k	
0

u

w dw =
1

2
�kw��w� =

1

2
�F�� � ����

�B1a�

=
1

2
�tensile force� � �tensile extension� . �B1b�

A similar formula holds for shear potential energy. In an
elastic solid disk with distributed parameters as depicted in
Fig. 1, suppose that we have an elastic volume element dV at
the point P,

dV = drdzrd� = rdrd�dz , �B2�

as depicted in Fig. 3. Here the thickness of the disk at point
P is h=�0

hdz.
Tensile stresses 	r in the radial direction and 	� in the

tangential direction exist, but there are no tensile stresses on
faces �areas� parallel to the area rd�dr in the r�-plane. There

Fig. 3. Volume element dV=rdrd�dz in polar coordinates before deforma-
tion �thick lines� and after deformation �thin lines�.
are no shear stresses parallel to the areas drdz or rd�dz, but

5 Am. J. Phys., Vol. 77, No. 5, May 2009
there is a shear stress �r� parallel to the r�-plane. Suppose
that the volume element dV is subjected to a shear force
�r�rd�dr which produces a shear extension �r�dz. According
to the shear version of Eq. �B1b�, the work done by the shear
force to produce this shear extension is

1

2
�shear force��shear extension� =

1

2
��r�rd�dr���r�dz� .

�B3�

There are two similar expressions for the work done by the
radial and tangential tensile forces. We sum the three expres-
sions to obtain the total potential �or strain� energy of the
volume element:

dW =
1

2
�	r
r + 	�
� + �r��r��rdrd�dz . �B4�

APPENDIX C: SUPERPOSITION

Consider the tensile and shear strains of the volume ele-
ment dV of Eq. �B2�. A radial �tangential� strain 	r /E �	� /E�
is accompanied by a lateral contraction per unit length or a
lateral strain in the tangential �radial� direction −�	r /E
�−�	� /E�, where � is Poisson’s ratio. Shear stresses do not
cause lateral stresses. Hence, by superposition, the net strains
are


r =
1

E
�	r − �	��, 
� =

1

E
�	� − �	r� , �C1�

�r� =
1

G
�r� =

2�1 + ��
E

�r�. �C2�

Problem 5. Solve Eq. �C1� simultaneously and manipulate
Eq. �C2� to show that stresses are given in terms of strains as

	r =
E

1 − �2 �
r + �
��, 	� =
E

1 − �2 �
� + �
r� , �C3�

�r� =
E

2�1 + ��
�r�. �C4�
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