${ }^{1}$ Rotating structures and Bryan's effect

2 Stephan V. Joubert, ${ }^{\text {a) }}$ Michael Y. Shatalov, ${ }^{\text {b) }}$ and Temple H. Fay
Department of Mathematics and Statistics, Tshwane University of Technology, Private Bag x680, 0001 Pretoria, Gauteng, South Africa

(Received 14 July 2008; accepted 4 February 2009)
In 1890 Bryan observed that when a vibrating structure is rotated the vibrating pattern rotates at a rate proportional to the rate of rotation. During investigations of the effect in various solid and fluid-filled objects of various shapes, an interesting commonality was found in connection with the gyroscopic effects of the rotating object. The effect has also been discussed in connection with a rotating fluid-filled wineglass. A linear theory is developed, assuming that the rotation rate is constant and much smaller than the lowest eigenfrequency of the vibrating system. The associated physics and mathematics are easy enough for undergraduate students to understand. © 2009 American Association of Physics Teachers.
[DOI: 10.1119/1.3088877]

15 I. INTRODUCTION

16 When a vibrating structure is subjected to a rotation at an 17 angular rate Ω, the vibrating pattern rotates with respect to 18 the structure at a rate proportional to Ω. This effect, known 19 as "Bryan's effect," was first observed by Bryan ${ }^{1}$ in 1890. 20 Bryan defined the constant of proportionality for a body con21 sisting of a ring or cylinder for various modes of vibration as

22

$$
\begin{equation*}
\mathrm{BF}=\frac{\text { Angular rate of the vibrating pattern }}{\text { Angular rate of the vibrating body }} . \tag{1}
\end{equation*}
$$

23 The constant of proportionality BF is known as "Bryan's 24 factor." Estimates based on Bryan's effect were used to dem25 onstrate that the resonance of liquid surface vibrations in a 26 wineglass 2 was predictable using a membrane model. ${ }^{3}$
27 We have been investigating Bryan's effect in various solid 28 and fluid-filled symmetric objects that rotate at a constant 29 rate which is much smaller than the lowest frequency of 30 vibration of the structure. To understand Bryan's effect, in31 vestigations were conducted starting with a slowly rotating 32 and vibrating (isotropic solid) disc and then progressing to a 33 cylinder and a sphere. Each of these investigations yielded 34 identical (up to constant coefficients) ordinary differential 35 equations that can be used to explain Bryan's effect. In this 36 paper we demonstrate how these differential equations are 37 derived, how Bryan's factor can be calculated, and how 38 Bryan's effect can be predicted.
39 In 1988, Zhuravlev and Klimov ${ }^{4}$ investigated Bryan's ef40 fect for an isotropic, spherically symmetric body rotating in 41 three dimensions. Among other results, they demonstrated 42 that Bryan's effect depends on the vibration mode. Bryan's 43 effect has numerous navigational applications. ${ }^{5}$ Bryan's fac44 tor is used to calibrate vibrating cylindrical gyroscopes. In 45 Ref. 5 a thin cylindrical shell was considered for both high 46 and low rotational rates. Apart from navigational applica47 tions, the theory presented in Ref. 6 could be useful in un48 derstanding the dynamics of pulsating stars and earthquakes. 49 We will discuss Bryan's effect for a symmetrically distrib50 uted annular disc, where both radial and tangential vibrations 51 are considered, and ignore axial vibrations. The theory is 52 readily adapted to an isotropic solid cylinder (or sphere) in 53 the form of concentric cylindrical (or spherical) bodies where 54 some of the layers are fluids.

II. TRUE VELOCITY

Consider a body consisting of a solid disk with distributed 56 parameters as depicted in Fig. 1. Let N be the number of 57 concentric annular layers in the system and a_{i-1} and a_{i} the 58 inner and outer radii of the i th annulus each with density $\rho_{i}, 59$ thickness h_{i}, modulus of elasticity E_{i}, and Poisson's ratio $\nu_{i}, 60$ $i=1, \ldots, N$ [see Eqs. (A3) and (A4)]. Assume that the disk is 61 subjected to nondecaying tangential and radial vibrations in 62 one of its natural modes and that vibration is absent along the 63 z-axis. In polar coordinates (with $x=r \cos \varphi$ and $y=r \sin \varphi$) 64 consider the equilibrium position $(x, y) \equiv P(r, \varphi)$ of a vibrat- 65 ing particle (vibrating mass element) in the i th layer of the 66 body, $a_{i-1} \leqslant r \leqslant a_{i}$. Let $\hat{\mathbf{r}}$ be the unit vector in the direction of 67 increasing r, so that the position vector of the equilibrium 68 point $P(r, \varphi)$ is $\mathbf{r}=r \hat{\mathbf{r}}$. Consider the orthogonal unit vector 69 $\hat{\boldsymbol{\varphi}}=(\partial \mathbf{r} / \partial \varphi) /|\partial \mathbf{r} / \partial \varphi|$. Let $v_{i} \hat{\boldsymbol{\varphi}}+u_{i} \hat{\mathbf{r}}$ represent the displacement 70 from the equilibrium position of the vibrating particle in the 71 i th layer. For simplicity we suppress the subscript i if no 72 confusion is expected. The position vector of the vibrating 73 particle is thus

$$
\begin{equation*}
\mathbf{R}=(r+u) \hat{\mathbf{r}}+v \hat{\boldsymbol{\varphi}} . \tag{2}
\end{equation*}
$$

Now consider an inertial coordinate system $O X Y Z$ with its 76 origin O at the center of the disc, where the X-, Y-, Z-axes 77 initially correspond to the x-, y-, z-axes, respectively. ${ }^{7}$ As- 78 sume that the disk rotates about the Z-axis with a small con- 79 stant angular frequency Ω. Consequently, the z-axis and the 80 Z-axis are identical, but the angle between the X-axis (which 81 is fixed in space) and the x-axis (which is fixed with respect 82 to the geometry of the disc) increases at a rate Ω. The angu- 83 lar velocity of the disk is thus 84

$$
\begin{equation*}
\boldsymbol{\Omega}=\Omega \hat{\mathbf{k}} \tag{3}
\end{equation*}
$$

where $\hat{\mathbf{k}}=\hat{\mathbf{r}} \times \hat{\boldsymbol{\varphi}}$ is the unit vector in the direction of the posi- 86 tive Z-axis. We assume that the angular rate of rotation Ω is 87 substantially smaller than the lowest vibration frequency of 88 the system. Consequently, we will neglect centrifugal effects 89 and all other terms of $O\left(\Omega^{2}\right)$.

90
An observer in the $O x y z$ coordinate system will measure 91 the unit vectors $\hat{\mathbf{r}}$ and $\hat{\boldsymbol{\varphi}}$ to be constants. Hence this observer 92 will use Eq. (2) to calculate the velocity \mathbf{V}^{*} of the vibrating 93 particle in the rotating framework $O x y z$, by differentiating $\mathbf{R}, 94$ treating $\hat{\mathbf{r}}$ and $\hat{\boldsymbol{\varphi}}$ as constants:

Fig. 1. Coordinate system for the annular disk consisting of various concentric annular layers of varying thickness.

96

$$
\begin{equation*}
\mathbf{V}^{*}=\left.\frac{d \mathbf{R}}{d t}\right|_{\hat{\mathbf{r}}, \hat{\boldsymbol{\varphi}}=\text { const }}=\dot{u} \hat{\mathbf{r}}+\dot{v} \hat{\boldsymbol{\varphi}} . \tag{4}
\end{equation*}
$$

97 An observer in the $O X Y Z$ coordinate system will note that 98 the direction of the unit vectors $\hat{\mathbf{r}}$ and $\hat{\boldsymbol{\varphi}}$ is continuously 99 changing. Hence, they are not constant vectors in the $O X Y Z$ 100 frame.
101 In addition to the velocity \mathbf{V}^{*}, we must take into account 102 the velocity imparted by rotation. Recall that a particle mov103 ing along a circular path of radius r and with angular rotation 104 rate ω has a tangential speed ωr. Hence, a particle with an105 gular velocity $\boldsymbol{\Omega}$ and position vector \mathbf{R} has a velocity com106 ponent given by the cross product $\mathbf{\Omega} \times \mathbf{R}$. Consequently, the 107 "true velocity" of the vibrating particle as observed from 108 within the fixed frame $O X Y Z$ is
$109 \quad \mathbf{V}=\mathbf{V}^{*}+\boldsymbol{\Omega} \times \mathbf{R}$
$110=(\dot{u}-\Omega v) \hat{\mathbf{r}}+[\dot{v}+\Omega(r+u)] \hat{\boldsymbol{\varphi}}$.
111 Spiegel 7 provides a detailed discussion of the derivation of 112 Eq. (5).

113 III. KINETIC AND POTENTIAL ENERGY

114 If we use Eq. (6), the kinetic energy E_{k} of the system of 115 particles forming the concentric annular layers is given by

116

$$
\begin{equation*}
E_{k}=\frac{1}{2} \sum_{i=1}^{N} \rho_{i} h_{i} \int_{0}^{2 \pi} \int_{a_{i-1}}^{a_{i}} \mathbf{V}_{i} \cdot \mathbf{V}_{i} r d r d \varphi \tag{7a}
\end{equation*}
$$

$$
\approx \frac{1}{2} \sum_{i=1}^{N} \rho_{i} h_{i} \int_{0}^{2 \pi} \int_{a_{i-1}}^{a_{i}}\left[\left(\dot{u}_{i}^{2}+\dot{v}_{i}^{2}\right)\right.
$$

$$
\begin{equation*}
\left.+2 \Omega\left(u_{i} \dot{v}_{i}-\dot{u}_{i} v_{i}\right)+2 \Omega \dot{v}_{i} r\right] r d r d \varphi . \tag{7b}
\end{equation*}
$$

119 When a spring is stretched, the elastic forces involved can do 120 work. Elastic forces are present when an "elastic" body vi121 brates, and so it is necessary to introduce some of the theory 122 of elasticity to calculate the potential energy of the system of 123 particles forming the concentric annular layers. A short dis124 cussion of elasticity is given in Appendixes A-C. According 125 to Eq. (B4), the potential energy E_{p} of a system of concentric 126 annular layers is given by

127

$$
\begin{equation*}
E_{p}=\frac{1}{2} \sum_{i=1}^{N} h_{i} \int_{0}^{2 \pi} \int_{a_{i-1}}^{a_{i}}\left[\sigma_{r, i} \epsilon_{r, i}+\sigma_{\varphi, i} \epsilon_{\varphi, i}\right. \tag{8}
\end{equation*}
$$

$\left.128+\tau_{r \varphi, i} \gamma_{r \varphi, i}\right] r d r d \varphi$,
129 where the symbols σ and τ stand for the tensile stress and
shear stress, respectively, and ϵ and γ stand for tensile strain,
130 and shear strain respectively. According to Eqs. (C3) and 131 (C4), the stresses are

$$
\begin{equation*}
\sigma_{r, i}=\frac{E_{i}}{1-\nu_{i}^{2}}\left(\epsilon_{r, i}+\nu_{i} \epsilon_{\varphi, i}\right), \quad \sigma_{\varphi, i}=\frac{E_{i}}{1-\nu_{i}^{2}}\left(\epsilon_{\varphi, i}+\nu_{i} \epsilon_{r, i}\right), \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\tau_{r \varphi, i}=\frac{E_{i}}{2\left(1+\nu_{i}\right)} \gamma_{r \varphi, i} \tag{10}
\end{equation*}
$$

Strains may be calculated as follows (see, for instance, Ref. 135 10 or 11): 136

$$
\begin{align*}
& \epsilon_{r, i}=\frac{\partial u_{i}}{\partial r}, \quad \epsilon_{\varphi, i}=\frac{1}{r}\left(\frac{\partial v_{i}}{\partial \varphi}+u_{i}\right), \tag{11}\\
& \gamma_{r \varphi, i}=\frac{\partial v_{i}}{\partial r}+\frac{1}{r}\left(\frac{\partial u_{i}}{\partial \varphi}-v_{i}\right) . \tag{12}
\end{align*}
$$

Problem 1. Substitute Eqs. (9) and (10) into Eq. (8), and 139 then use Eqs. (11) and (12) to obtain

$$
\begin{align*}
E_{p}= & \frac{1}{2} \sum_{i=1}^{N} \frac{E_{i} h_{i}}{1-\nu_{i}^{2}} \int_{0}^{2 \pi} \int_{a_{i-1}}^{a_{i}}\left\{\left[\frac{\partial u_{i}}{\partial r}\right]^{2}\right. \tag{141}\\
& +\left[\frac{1}{r}\left(\frac{\partial v_{i}}{\partial \varphi}+u_{i}\right)\right]^{2}+\frac{2 \nu_{i}}{r} \frac{\partial u_{i}}{\partial r}\left(\frac{\partial v_{i}}{\partial \varphi}+u_{i}\right) \\
& \left.+\frac{1-\nu_{i}}{2}\left[\frac{\partial v_{i}}{\partial r}+\frac{1}{r}\left(\frac{\partial u_{i}}{\partial \varphi}-v_{i}\right)\right]^{2}\right\} r d r d \varphi \tag{13}
\end{align*}
$$

IV. GYROSCOPIC EFFECTS IN DISTRIBUTED BODIES

Equations of motion for the vibrating particle in the i th 146 body can be obtained by using Eqs. (9)-(12), and the equa- 147 tions of motion discussed by Redwood. ${ }^{8}$ The resulting equa- 148 tions consist of two coupled partial differential equations in- 149 volving terms such as $\partial^{2} u_{i} / \partial t^{2},\left(\partial^{2} v_{i} / \partial t^{2}\right),\left(\partial u_{i} / \partial r\right), \partial v_{i} / \partial \varphi, 150$ $\partial^{2} u_{i} / \partial r \partial \varphi$. Solving this coupled system of partial differential 151 equations is a nontrivial problem that involves finding, for 152 each i, two families of eigenfunctions $U_{i, m}(r)$ and $V_{i, m}(r), 153$ $m=2,3,4, \ldots$. The number m is the vibration mode number 154 or the circumferential wave number. We will not attempt to 155 determine these eigenfunctions here, and we leave this deter- 156 mination for a future paper. We will assume that we can 157 calculate these eigenfunctions and that we can (for each 158 mode of vibration) express the displacements u_{i} and v_{i} of a 159 vibrating particle in the i th layer of the body as follows: 160

$$
\begin{align*}
& u_{i}(r, \varphi, t)=U_{i}(r)[C(t) \cos m \varphi+S(t) \sin m \varphi], \tag{14}\\
& v_{i}(r, \varphi, t)=V_{i}(r)[C(t) \sin m \varphi-S(t) \cos m \varphi], \tag{15}
\end{align*}
$$

$m=2,3,4, \ldots$, where the functions $C(t)$ and $S(t)$ are to be 163 determined. Here, for simplicity, we have suppressed the 164 mode number on the eigenfunctions, that is, $U_{i}(r)=U_{i, m}(r) 165$ and $V_{i}(r)=V_{i, m}(r)$. It is left as an exercise to determine the 166 nature of the functions $C(t)$ and $S(t)$.

167
Problem 2. Substitute Eqs. (14) and (15) into Eqs. (7b) 168 and (13). Simplification of these expressions involves a long 169

170 algebraic calculation. The use of a computer algebra system 171 such as Mathematica or Maple yields
$172 E_{k}=\pi\left[I_{0}\left(\dot{C}^{2}+\dot{S}^{2}\right)+2 \Omega I_{1}(\dot{C} S-C \dot{S})\right]$
173 and
$174 \quad E_{p}=\pi I_{2}\left(C^{2}+S^{2}\right)$,
175 where

176

$$
\begin{equation*}
I_{0}=\frac{1}{2} \sum_{i=1}^{N} h_{i} \rho_{i} \int_{a_{i-1}}^{a_{i}}\left(U_{i}^{2}+V_{i}^{2}\right) r d r \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
I_{1}=\sum_{i=1}^{N} h_{i} \rho_{i} \int_{a_{i-1}}^{a_{i}} U_{i} V_{i} r d r \tag{19}
\end{equation*}
$$

$177 \quad I_{1}=\sum_{i=1}^{N} h_{i} \rho_{i} \int_{a_{i-1}}^{a_{i}} U_{i} V_{i} r d r$,
178 and

179

$$
\begin{align*}
I_{2}= & \frac{1}{2} \sum_{i=1}^{N} \frac{E_{i} h_{i}}{1-\nu_{i}^{2}} \int_{a_{i-1}}^{a_{i}}\left\{\left(U_{i}^{\prime}\right)^{2}+2 \nu_{i} U_{i}^{\prime} \frac{U_{i}+m V_{i}}{r}\right. \\
& \left.+\left(\frac{U_{i}+m V_{i}}{r}\right)^{2}+\frac{1-\nu_{i}}{2}\left(V_{i}^{\prime}-\frac{m U_{i}+V_{i}}{r}\right)^{2}\right\} r d r . \tag{20}
\end{align*}
$$

180

181 A. Lagrange's equations

182 The Lagrangian follows from Eqs. (16) and (17):
$183 L(C, S, \dot{C}, \dot{S})=E_{k}-E_{p}=\pi\left[I_{0}\left(\dot{C}^{2}+\dot{S}^{2}\right)-2 \Omega I_{1}(C \dot{S}-\dot{C} S)\right.$
$\left.184-\left(C^{2}+S^{2}\right) I_{2}\right]$.
185 The vibration of the m th mode is governed by Lagrange's 186 equations of motion:
$187 \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{C}}\right)-\frac{\partial L}{\partial C}=0$,
188 and
$189 \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{S}}\right)-\frac{\partial L}{\partial S}=0$.
190 Equations (22) and (23) yield
$191 \quad \ddot{C}+2 \eta \Omega \dot{S}+\omega^{2} C=0$
192 and
$193 \quad \ddot{S}-2 \eta \Omega \dot{C}+\omega^{2} S=0$,
194 respectively, where, for the m th mode of vibration
$195-1 \leq \eta=\frac{I_{1}}{I_{0}} \leq 1$,
196 and ω is given by
$197 \omega=\sqrt{\frac{I_{2}}{I_{0}}}$.

198 B. Bryan's factor

199 We now show that ω is an eigenvalue of the vibrating 200 system and that η in Eq. (26) is Bryan's factor BF in Eq. (1).

To interpret what Eqs. (24) and (25) represent we combine 201 the two equations by considering the complex function 202

$$
\begin{equation*}
Z=C+i S \tag{28}
\end{equation*}
$$

to obtain the single equation

$$
\begin{equation*}
\ddot{Z}-i(2 \eta \Omega) \dot{Z}+\omega^{2} Z=0 \tag{29}
\end{equation*}
$$

If we write Z in polar form

$$
\begin{equation*}
Z(t)=r(t) e^{i \theta(t)} \tag{30}
\end{equation*}
$$

and assume that $\theta(t)$ has the linear form $\theta(t)=a t$, we obtain 208

$$
\begin{equation*}
\ddot{r}+2 i(a-\eta \Omega) \dot{r}+\left(2 \eta \Omega a-a^{2}+\omega^{2}\right) r=0 . \tag{31}
\end{equation*}
$$

If we choose $a=\eta \Omega$, the coefficient of \dot{r} is eliminated in Eq. 210 (31), and we obtain the differential equation of a harmonic 211 oscillator:

$$
\begin{equation*}
\ddot{r}+\gamma^{2} r=0, \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma=\sqrt{\omega^{2}+\eta^{2} \Omega^{2}} \tag{33}
\end{equation*}
$$

is an eigenvalue of the vibrating system with eigenfrequency 216 of vibration $f=\gamma / 2 \pi$. According to the assumption made 217 shortly after Eq. (3), $\Omega \ll f$. Consequently,

$$
\begin{equation*}
\gamma \approx \omega \tag{34}
\end{equation*}
$$

and so ω is an eigenvalue of the vibrating system. Equations 220 (24) and (25) can now be viewed in the form

$$
\begin{equation*}
Z(t)=r(t) e^{i \eta \Omega t} \tag{35}
\end{equation*}
$$

Equation (35) shows that Eqs. (24) and (25) represent a "vec- 223 tor" in the complex plane with its magnitude varying like a 224 harmonic oscillator and its position varying at a rate propor- 225 tional to the constant, small rotation rate Ω of the isotropic 226 body. Hence, according to Eq. (1), Bryan's factor 227

$$
\begin{equation*}
\mathrm{BF}=\frac{\eta \Omega}{\Omega}=\eta \tag{36}
\end{equation*}
$$

Consequently, if a gyroscope based on Bryan's effect ${ }^{12}$ is to 229 be calibrated, then, without conducting lengthy experiments, 230 Bryan's factor can be calculated from Eq. (26) once the 231 eigenfunctions of Eqs. (14) and (15) are known. 232

Equations (18)-(20), (26), and (27) show that for the m th 233 mode of vibration, Bryan's factor and the eigenfrequency of 234 vibration depend on physical properties such as the density 235 and geometrical properties such as thickness. The eigenfre- 236 quency also depends on elastic properties such as Young's 237 modulus and Poisson's ratio.

238
Equation (35) defines a precessing wave. The rotating vi- 239 bration pattern lags behind the position of the static vibration 240 pattern if $\eta<0$ and precedes the position of the static vibra- 241 tion pattern if $\eta>0$. A calculation of η for a liquid filled 242 wineglass ${ }^{3}$ and $m=2$ reveals η to be negative. Hence, the 243 rotating vibration pattern should lag behind the static vibra- 244 tion pattern for the wineglass.

245
We note that Eqs. (24) and (25) are obtained with appro- 246 priate values of I_{0}, I_{1}, and I_{2} for isotropic cylindrical or 247 spherical distributed bodies. The definite integrals I_{0}, I_{1}, and 248 I_{2} are far more complicated for a cylinder and sphere. 249

Problem 3. Show that to a good approximation
251

$$
\begin{equation*}
C(t)=\cos \eta \Omega t(A \cos \omega t+B \sin \omega t) \tag{37}
\end{equation*}
$$

$252 S(t)=\sin \eta \Omega t(A \cos \omega t+B \sin \omega t)$
253 (where A and B are arbitrary constants) by solving Eq. (32) 254 for $r(t)$, substituting into Eq. (35), equating real and imagi255 nary parts, and then using Eq. (34).
256 Problem 4. Use the Lagrangian L as given by Eq. (21) and 257 include viscous damping by introducing Rayleigh's dissipa258 tion function $\mathcal{F}=\left(c \dot{C}^{2}+s \dot{S}^{2}\right) / 2$ into Lagrange's equations 259 (see Ref. 9). Assume weak, isotropic, viscous damping, that 260 is, $c=s=\pi D$, with the damping factor $\delta=D /\left(2 I_{0}\right)$ much 261 smaller than the lowest eigenfrequency of the vibrating sys262 tem. Conclude that the introduction of light, viscous, isotro263 pic damping into the considerations does not alter the fact 264 that the damped vibrating pattern rotates at a rate $\eta \Omega$ in the $265 O x y z$ plane, where η is given by Eq. (26). See Ref. 6 for 266 details.

267 V. CONCLUSION

268 By using standard concepts of physics such as kinetic en269 ergy, potential energy, and Lagrange's equations, we have 270 demonstrated how Bryan's effect for a composite disk that is 271 rotating slowly in space can be predicted and Bryan's factor 272 can be calculated. These considerations also demonstrated 273 that Bryan's factor depends on properties such as the density 274 and the thickness of the disk and that the eigenfrequency of 275 vibration of the disk also depends on elastic properties such 276 as Young's modulus and Poisson's ratio.
277 We can now better understand the operation and calibra278 tion of the hemispherical resonator gyroscope of Loper and 279 Lynch. ${ }^{12}$ Roughly speaking, suppose that a vibrating hemi280 sphere is fixed to a vehicle (such as a space shuttle or sub281 marine) moving through three-dimensional space and that a 282 sensor inside the vehicle observes the position of a node of 283 the fundamental vibration of the hemisphere (such vibrations 284 can be observed in the excellent holographic interferograms 285 of a vibrating wineglass in Ref. 13). Suppose the vehicle 286 undergoes a slow rate of rotation Ω with respect to the space 287 through which it is moving and that this rotation rate is too 288 small for the human vestibular system to observe. The sensor 289 will register that the node rotates away from its original po290 sition. From observations within the vehicle the rotation rate 291α of the node can be calculated and, using Bryan's factor η 292 for the fundamental mode of vibration, the rate of rotation of 293 the vehicle $\Omega=\alpha / \eta$ with respect to the space through which 294 it is moving can be calculated.

295 ACKNOWLEDGMENTS

296 The authors would like to thank the Tshwane University of 297 Technology, the National Research Foundation of South Af298 rica (NRF Grant reference No. ICD200607110000607), and 299 the South African CSIR for supporting this work.

Fig. 2. Elastic blocks undergoing tensile deformation (left block) and shear deformation (right block).

APPENDIX A: ELASTIC CONSTANTS

A body will deform when stretching and/or twisting forces 301 are applied to it. We consider as a first approximation a per- 302 fectly elastic body that returns to its original form after 303 stretching and/or twisting forces are removed from it. 304

Consider a length ℓ of an elastic block (Fig. 2) with cross- 305 sectional area A that is subjected to a stretching force $F_{\perp} 306$ (normal to the area A) causing the side length to increase 307 from ℓ to $\ell+\Delta \ell$. The tensile stress σ of the elastic body is 308 given by 309

$$
\begin{equation*}
\sigma=\frac{F_{\perp}}{A}, \tag{A1}
\end{equation*}
$$

and the tensile strain ϵ is given by

$$
\begin{equation*}
\epsilon=\frac{\Delta \ell}{\ell} . \tag{A2}
\end{equation*}
$$

312
Young's modulus (or the modulus of elasticity) E is given by 313

$$
\begin{equation*}
E=\frac{\text { tensile stress }}{\text { tensile strain }}=\frac{\sigma}{\epsilon} . \tag{A3}
\end{equation*}
$$

314
If a length of elastic body is stretched from length ℓ to $\ell 315$ $+\Delta \ell$, its transverse dimensions (its height or breadth) t de- 316 creases from t to $t+\Delta t$ (here $\Delta t<0$). Hence, both longitudi- 317 nal strain $\Delta \ell / \ell$ and transverse strain $\Delta t / t$ are present simul- 318 taneously. (For isotropic substances transverse strain is the 319 same for any transverse dimensions such as height, breadth, 320 or diameter.) Poisson's ratio ν is defined as the positive di- 321 mensionless constant

$$
\begin{equation*}
\nu=-\left(\frac{\text { longitudinal strain }}{\text { transverse strain }}\right)=-\left(\frac{\Delta \ell / \ell}{\Delta t / t}\right) . \tag{A4}
\end{equation*}
$$

Suppose that an elastic block (Fig. 2) is subjected to a 324 shearing or twisting force $F_{\| \mid}$(parallel to the area A) that 325 twists the body through a small angle ϕ (in Fig. 2, $\phi 326$ $\approx \Delta s / \ell$). The shear stress τ of the body is given by

$$
\begin{equation*}
\tau=\frac{F_{\|}}{A} \tag{A5}
\end{equation*}
$$

and the shear strain γ is given by

$$
\begin{equation*}
\gamma=\phi . \tag{A6}
\end{equation*}
$$

The shear modulus G is given by

$$
\begin{equation*}
G=\frac{\text { shear stress }}{\text { shear strain }}=\frac{\tau}{\gamma} \tag{A7}
\end{equation*}
$$

It can be shown (see Ref. 10) that

Fig. 3. Volume element $d V=r d r d \varphi d z$ in polar coordinates before deformation (thick lines) and after deformation (thin lines).
$334 \quad G=\frac{E}{2(1+\nu)}$,
335 and so
$336 \quad \gamma=\frac{2(1+\nu)}{E} \tau$.
337 Equations (A3) and (A7) are forms of Hooke's law. For in338 stance, from Eq. (A3), we deduce the well known law for 339 elastic elongation w (usually referred to as Hooke's law):
$340 F=k w$,
341 with $k=A E / \ell, w=\Delta \ell$, and $F=F_{\perp}$.

342 APPENDIX B: POTENTIAL ENERGY

343 When a tensile extension w occurs, work has been done by 344 the force $F=F_{\perp}$. This work is stored as potential energy. 345 According to the tensile form of Hooke's law given by Eq. 346 (A10), this tensile potential energy (also called tensile strain 347 energy) is given by

$$
\begin{equation*}
\int_{0}^{u} F d w=k \int_{0}^{u} w d w=\frac{1}{2}(k w)[w]=\frac{1}{2}\left(F_{\perp}\right) \times[\Delta \ell] \tag{B1a}
\end{equation*}
$$

348

349

$$
\begin{equation*}
=\frac{1}{2}(\text { tensile force }) \times[\text { tensile extension }] . \tag{B1b}
\end{equation*}
$$

350 A similar formula holds for shear potential energy. In an 351 elastic solid disk with distributed parameters as depicted in 352 Fig. 1, suppose that we have an elastic volume element $d V$ at 353 the point P,
354

$$
\begin{equation*}
d V=d r d z r d \varphi=r d r d \varphi d z \tag{B2}
\end{equation*}
$$

355 as depicted in Fig. 3. Here the thickness of the disk at point $356 P$ is $h=\int_{0}^{h} d z$.
357 Tensile stresses σ_{r} in the radial direction and σ_{φ} in the 358 tangential direction exist, but there are no tensile stresses on 359 faces (areas) parallel to the area $r d \varphi d r$ in the $r \varphi$-plane. There 360 are no shear stresses parallel to the areas $d r d z$ or $r d \varphi d z$, but
there is a shear stress $\tau_{r \varphi}$ parallel to the $r \varphi$-plane. Suppose ${ }^{361}$ that the volume element $d V$ is subjected to a shear force 362 $\tau_{r \varphi} r d \varphi d r$ which produces a shear extension $\gamma_{r \varphi} d z$. According 363 to the shear version of Eq. (B1b), the work done by the shear 364 force to produce this shear extension is

$$
\begin{equation*}
\frac{1}{2}(\text { shear force })[\text { shear extension }]=\frac{1}{2}\left(\tau_{r \varphi} r d \varphi d r\right)\left[\gamma_{r \varphi} d z\right] \tag{B3}
\end{equation*}
$$

There are two similar expressions for the work done by the 367 radial and tangential tensile forces. We sum the three expres- 368 sions to obtain the total potential (or strain) energy of the 369 volume element:

370

$$
\begin{equation*}
d W=\frac{1}{2}\left(\sigma_{r} \epsilon_{r}+\sigma_{\varphi} \epsilon_{\varphi}+\tau_{r \varphi} \gamma_{r \varphi}\right) r d r d \varphi d z \tag{B4}
\end{equation*}
$$

APPENDIX C: SUPERPOSITION

Consider the tensile and shear strains of the volume ele- 373 ment $d V$ of Eq. (B2). A radial (tangential) strain $\sigma_{r} / E\left(\sigma_{\varphi} / E\right) 374$ is accompanied by a lateral contraction per unit length or a 375 lateral strain in the tangential (radial) direction $-\nu \sigma_{r} / E 376$ $\left(-\nu \sigma_{\varphi} / E\right)$, where ν is Poisson's ratio. Shear stresses do not 377 cause lateral stresses. Hence, by superposition, the net strains 378 are 379

$$
\begin{align*}
& \epsilon_{r}=\frac{1}{E}\left(\sigma_{r}-\nu \sigma_{\varphi}\right), \quad \epsilon_{\varphi}=\frac{1}{E}\left(\sigma_{\varphi}-\nu \sigma_{r}\right), \tag{C1}\\
& \gamma_{r \varphi}=\frac{1}{G} \tau_{r \varphi}=\frac{2(1+\nu)}{E} \tau_{r \varphi} \tag{C2}
\end{align*}
$$

Problem 5. Solve Eq. (C1) simultaneously and manipulate 382 Eq. (C2) to show that stresses are given in terms of strains as 383

$$
\begin{align*}
& \sigma_{r}=\frac{E}{1-\nu^{2}}\left(\epsilon_{r}+\nu \epsilon_{\varphi}\right), \quad \sigma_{\varphi}=\frac{E}{1-\nu^{2}}\left(\epsilon_{\varphi}+\nu \epsilon_{r}\right), \tag{C3}\\
& \tau_{r \varphi}=\frac{E}{2(1+\nu)} \gamma_{r \varphi} . \tag{C4}
\end{align*}
$$

[^0]$409{ }^{10}$ S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 410 Auckland, 1970), pp. 8-11, 75-77, 244-245.
$411{ }^{11}$ P. P. Benham and R. J. Crawford, Mechanics of Engineering Materials
412 (Longman Scientific, Harlow, 1991), p. 381.
${ }^{12}$ E. J. Loper, Jr. and D. D. Lynch, "Hemispherical resonator gyroscope," 413 U.S. Patent No. 4,951,508.
${ }^{13}$ T. D. Rossing, "Acoustics of the glass harmonica," J. Acoust. Soc. Am. 415 95 (2), 1106-1111 (1994).
\#1 Au: Please update Ref. 6, if possible.

[^0]: ${ }^{\text {a) }}$ Electronic mail: joubertsv@tut.ac.za386
 ${ }^{\text {b) }}$ Permanent address: CSIR, Material Science and Manufacturing, Sensor 387 Science and Technology, P. O. Box 395, Pretoria 0001, South Africa. 388
 ${ }^{1}$ G. H. Bryan, "On the beats in the vibrations of a revolving cylinder or 389 bell," Proc. Cambridge Philos. Soc. Math. Phys. Sci. 7, 101-114 (1890). 390
 ${ }^{2}$ R. E. Apfel, "'Whispering waves' in a wineglass," Am. J. Phys. 53(11), 391 1070-1073 (1985). 392
 ${ }^{3}$ S. V. Joubert, T. H. Fay, and E. L. Voges, "A storm in a wineglass," Am. 393 J. Phys. 75(7), 647-651 (2007). 394
 ${ }^{4}$ V. Zhuravlev and D. Klimov, Applied Methods in the Theory of Oscilla- 395 tions (Nauka, Moscow, 1988) (in Russian). 396
 ${ }^{5}$ P. W. Loveday and C. A. Rogers, "Free vibrations of elastically supported 397 thin cylinders including gyroscopic effects," J. Sound Vib. 217(3), 547- 398 562 (1998).

 399
 ${ }^{6}$ M. Y. Shatalov, S. V. Joubert, C. E. Coetzee, and I. A. Fedotov, "Free 400 AQ: vibration of rotating hollow spheres containing acoustic media," J. Sound 401 \#1 Vib., to be published. 402
 ${ }^{7}$ M. R. Spiegel, Theoretical Mechanics (McGraw-Hill, New York, 1967), 403 pp. 148, 284.
 ${ }^{8}$ M. Redwood, Mechanical Waveguides (Pergamon, Oxford, 1960), pp. 9, 405 268.
 ${ }^{9}$ H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd ed. 407 (Addison-Wesley, Reading, MA, 2001), pp. 21, 23.

