
Pattern-Based Approach for Logical Traffic Isolation Forensic Modelling

1Innocentia Dlamini, 2Martin Olivier
 (ICSA Group) Department of Computer Science

University of Pretoria
Pretoria, RSA

1idlamini, 2molivier{@cs.up.ac.za}

Sihle Sibiya
CCIW, DPSS

Council for Scientific and Industrial Research (CSIR)
Pretoria, RSA

ssibiya@csir.co.za

Abstract— The use of design patterns usually changes the
approach of software design and makes software development
relatively easy. This paper extends work on a forensic model
for Logical Traffic Isolation (LTI) based on Differ entiated
Services (DiffServ) and designs the LTI model using different
design patterns. Since design patterns add reliability, flexibility
and reusability characteristics to a software system, this paper
focuses on three design patterns in modeling the LTI
architecture to achieve reusability and flexibility of the LTI
model. This model is viewed as a three-tier architecture, which
for experimental purposes is composed of the following
components: traffic generator, DiffServ network and the sink
server. The Mediator pattern is used to coordinate the traffic
generator, sink server and, or preservation components, that is
DiffServ domain is considered as the mediator. This study uses
different design patterns to show how various patterns can be
used to design the system.

Keywords-Decorator Pattern; Observer Pattern; Mediator
Pattern; Network forensic; Differentiated services

I. INTRODUCTION

Network Forensics involves the capturing of network

traffic by means of scientific and legal procedures that are
acceptable in a court of law [1]. This discipline therefore
entails the gathering, preserving and analysing of network
events in order to discover the source of an attack or other
network problem [1] [2] [3]. Network Forensics requires the
isolation of malicious network packets [4]. This isolation
depends on easy and accurate identification of malicious
packets, as well as on forensically sound evidence collection.
Strauss et al. [5] proposed a scheme that utilises
Differentiated Services (DiffServ) to isolate malicious traffic
logically from normal traffic. Since DiffServ is a standard
technique, this could well reduce cost. If a DiffServ
infrastructure is already in place where an investigation
needs to be performed, evidence collection could be
facilitated with minimal changes to the network. When the
traffic has been identified as malicious, DiffServ uses ingress
router as a marking station to mark the detected packet. The
marked traffic is furthermore placed in the dedicated queues
for quick routing, so as to isolate it from the rest of the
traffic.

 The DiffServ approach allows Network Forensic
investigators to attach both their marking station (ingress

router) in isolating the suspicious traffic and preservation
station to a cyber victim's network to investigate the case at
hand [6]. The advantage of this approach is that it requires
minimal network downtime and most importantly minimal
network reconfiguration. This DiffServ-based scheme
makes provision for a preservation station to store records of
the isolated traffic with a view to later analysis. However, in
order to minimise network transmission problems such as
transmission delays and high network traffic, the
preservation station only stores records related to malicious
network traffic [6].

We are currently busy implementing the model to test its

operation empirically. This requires two support modules (a
traffic generator and a sink server) that are not part of the
model per se. However, since patterns are also useful for
these experiment support modules, they are included in the
discussion below. In this paper we use various software
design patterns [7] to design the Logical Traffic Isolation
(LTI) model based on the DiffServ scheme. The LTI model
has three nodes including the support modules, namely;
client side that is the users sending data (we use traffic
generator for experimental purposes), DiffServ domain, and
sink server that is the users receiving data and, or
preservation station when there is intrusion that has been
detected [6]. The traffic generator that is for experimentation
processes is set up in an environment where both malicious
traffic and normal traffic are generated. The rest of the paper
is structured as follows: Section 2 introduces the LTI model
by presenting it as three-tier architecture. Section 3 presents
a design of the LTI model by using various design patterns,
while Section 4 presents the rule of thumb for the
participating design patterns; and Section 5 concludes the
paper.

II. THE LOGICAL TRAFFIC ISOLATION MODEL

The LTI model can be divided into three components if

we include the two supporting components for
experimentation process, namely the traffic generator and the
sink server. This therefore results into the model having
traffic generator, DiffServ network and the sink server. The
traffic generator constitutes the presentation tier, the
DiffServ symbolises the logic tier (or application processing
tier) and the sink server stands for the data management tier,
as in figure 1. These tiers are logically separated from each

other to ensure that a physical change on any of them does
not affect all tiers. Figure 1 shows the layout of the LTI
model as a three-tier architecture, which is discussed in the
subsections that follow.

Figure 1. The Logical Traffic Isolation Model

A. Presentation Tier as Traffic Generator

This tier allows the user to send and receive data. It is

called traffic generator for experimental purposes. In real
life, these are the users, in other words legitimate users (users
with normal and legal intentions) and/or suspicious users
(users with malicious and illegal intentions). These users
transmit either normal traffic or suspicious traffic. The traffic
generator tier is only a viewpoint for our model; it is not our
main concern. Our focus is on the behaviour of the traffic
that is generated. The main goal of the LTI model is to
isolate the suspicious traffic and to record it by using the
preservation station before it is sent on to its destination [5].
The traffic generator tier communicates with the logic tier,
composed of DiffServ services tier, during the transmission
process. Below is an overview of the Logic tier as a
differentiated service (DiffServ).

B. Differentiated Service as Logic Tier

The DiffServ services tier controls data flow by

performing traffic isolation process. It basically checks the
type of traffic it receives from the traffic generator tier,
marks it according to its behaviour (either normal or
suspicious), routes it through the network and finally
unmarks the packets before they leave the DiffServ tier for
the data tier. The data tier in the LTI model contains the sink
server object. When no suspicious traffic is detected, the sink
server is the only object that is active; otherwise, the tier also
includes the preservation station. The data tier is discussed in
detail in the subsection that follows next.

C. Preservation Station and Sink Server as Data Tier

Any transmitted traffic that is found to be suspicious is
routed via the preservation station to be recorded before it is
permitted to move on to the sink server. The aim of this

procedure is to preserve evidence for later analysis, and also
to avoid packet loss. Forensic investigators are particularly
interested in all suspicious traffic. When the recording is
finished, the suspicious traffic is forwarded to the sink
server. Normal traffic, on the other hand, is routed directly
from the DiffServ services tier to the sink server for
processing and storage. When developing the object
architecture, it is good to know about the design patterns that
are available and that are applicable to the intended system
[7]. In the next section we show how various design patterns
are used to implement the LTI model.

III. THE LTI COMPONENTS WITH DESIGN PATTERNS

Design patterns add reliability, flexibility and reusability

characteristics in a software system [8]. This paper therefore
focuses on three design patterns in modelling the LTI
architecture. The decorator pattern is used to randomly wrap
the behaviour of the generated traffic. The observer pattern
[8] [9] is interchangeably used in most of the components of
the LTI model, including the traffic generator, DiffServ,
preservation station and sink server. The mediator pattern is
used to coordinate the traffic generator with the preservation
station or the sink server components; the following
subsections explain how the different design patterns are
applied and class diagrams are provided to show the
relationships and interactions.

A. The Decorator Pattern

One of the main characteristics of the decorator pattern is

to wrap an object to provide a new behaviour [9]. In this
work, the decorator pattern is used to randomly wrap any
traffic generated with either normal or suspicious behaviour.
Figure 2 depicts the use of the traffic generator in a class
diagram, which involves five or more classes. The traffic
generated can be used on its own and can be considered
either as normal traffic or its behaviour can be wrapped to
form suspicious traffic.

Figure 2. Traffic Generator and Decorator Pattern

The class Traffic is the object to which we are going to

dynamically add new behaviour; it implements the
TrafficGenerator interface. Furthermore, the traffic
decorators, i.e. NormalTraffic and SuspiciousTraffic
implement both the route() and getTrafficType() methods in
order to make it easy to route each decorated traffic
according to its behaviour. The traffic generator also acts as
a subject of the observer pattern, which is discussed in the
following subsection.

B. The Observer Pattern

This pattern allows different objects that are interested in

the functionality of the subject-object to subscribe to it, in
order to be notified whenever the state of the subject changes
[7]. We apply the observer pattern to each element of the LTI
model, namely to the traffic generator, DiffServ, preservation
station and sink server. Below, each component is discussed
in detail. For the observer pattern, the subject and the
observer may agree on the way they communicate. Since the
observers of this system are related, it will be a good idea to
use the pull method rather than a push. A pull method allows
the observer to request the information that may be of
interest to each observer [1] [9], while in the push method
the subject sends all information to all observers. The
observer pattern is discussed below in association with some
of the LTI model components.

1) Traffic Generator with the Observer Pattern: In

Figure 3, the Observable class keeps track of all the
observers (ingress, interior and egress routers) and notifies
them when the state of traffic generated is not normal, i.e.
when it changes to suspicious. The class TrafficGenerator, a
subclass of the Observable class, extends Observable class
and inherits its methods. All the observers (routers)
implement the Observer interface; this provides an interface
to the Observable by means of which to communicate with
observers when it has to update them [9].

Figure 3. Traffic Generator with Observer pattern

These three observers implement two similar methods for
basic routing, namely route() and update(). Both the Ingress
and the Egress routers have an extra task when compared to
the Interior router. The Ingress router marks the packets
while the Egress router unmarks them before forwarding
them to the next node. All the observers (routers) should
have a pointer to the TrafficGenerator labelled “subject”, as
is the case with the pointer from ingress router (see Figure
3). The routers, i.e. Ingress, Interior and Egress (from
DiffServ domain) act as observers in Figure 3. It can also be
a subject when it is related to the preservation station and the
sink server. Below, we discuss this option in detail.

2) DiffServ with the Observer Pattern: Figure 4 shows

the DiffServ domain acting as a subject and not as an
observer as was the case in Figure 3. Both the preservation
station and the sink server act as observers. These observers
subscribe to the DiffServ to be notified about the state of
behaviour of traffic that is currently routed. If the traffic
being transmitted is suspicious, DiffServ notifies both
observers (see Figure 4). The traffic is then routed via the
Preservation station for recording and the preservation of
evidence, before it is sent on to the sink server for
processing. If the traffic is considered normal, it is sent
straight to the sink server. The Observable class keeps tracks
of all the observers and notifies them whether the state of
traffic that is routed is suspicious or normal. The class
DiffServ is a subclass of the Observable class; it extends the
Observable class and thus inherits its methods.

Figure 4. DiffServ with Observer Pattern

All the observers (PreservationStation and SinkServer)
implement the Observer interface (Figure 5). This provides
the Observable class with an interface by means of which to
communicate with observers when it has to update them.
Most of the methods implemented by these two observers are
similar. This includes – but is not limited to – the route() and
update() methods from the Observer interface. Both the
preservation station and the sink server keep track of records
of all traffic they receive by using the record() method.
These observer objects should have a pointer to DiffServ
labelled “subject”, as is the case with the pointer from the
preservation station (see Figure 4). The preservation station

can also act as the subject of the sink server, as shown in
Figure 5. This likelihood is discussed in detail in the next
subsection.

Figure 5. Preservation Station with the Observer Pattern

3) Preservation Station with the Observer pattern: The

preservation station as a subject also functions similarly to
the traffic generator and DiffServ objects when acting as
subjects in the observer pattern, but involves a few minor
changes concerning the classes. Figure 5 shows the
relationship between the preservation station as a subject and
the sink server as an observer object. The subclass of the
Observable object is the PreservationStation, with
SinkServer as the observer object. This observer implements
the Update() method from the Observer interface, and
employs processRequest() methods. The SinkServer
observer keeps record of all traffic it receives by using the
record() method. It also has a pointer to PreservationStation
labelled “subject”. Figure 6 integrates the three design
patterns applied above to form the LTI system. Some Object-
Oriented design principles [9] include the following:

Figure 6. Integration of design patterns applied to the LTI model

“... strive for loosely coupled design between objects that

interact (p. 53) …open-close principles (p. 86) … favour
composition over inheritance (p. 75)” [9]. The relationship

between the subject and the observer in the observer pattern
complies with the design principle for favouring composition
over inheritance; while the communication between the
subject and the observers is kept loosely coupled. The
mediator pattern also allows its objects to be loosely coupled.
The open-close principle is implemented by the decorator
pattern through allowing the behaviour of the traffic
generated to be extended without any modification to the
entire code. The client and server objects use the DiffServ
object for communication. This reduces the number of
messages sent between the objects in the system. DiffServ
therefore acts as a mediator. The following section contains a
discussion of the DiffServ with the mediator pattern.

C. The DiffServ with the Mediator Pattern

The mediator pattern defines an object (i.e. the

DiffServMediator) that controls the way in which a set of
objects interact [7] [10] [11]. All the other classes are
completely decoupled from each other. This is achieved by
using colleague object to communicate with the mediator
(DiffServ), rather than having these objects communicating
with each other, which results in too much messages
transmission among the objects.

In Figure 7, the class DiffServMediator simplifies the
communication between the TrafficGenerator classes, the
PreservationStation and the SinkServer, by implementing the
Mediator interface. These colleague objects all notify the
DiffServMediator object whenever their status changes [10].

Figure 7. DiffServ as a Mediator

Furthermore, they implement the Colleague interface and

use the DiffServMediator to communicate with each other.
The DiffServMediator object assists in keeping all objects of
the LTI system completely decoupled, which means it
complies with the design principle “strive for loosely
coupled design between objects that interact” [9]. The
DiffServMediator contains the control logic (as discussed in
Figure 1) of the entire system, when a new object or any
necessary logic needs to be added to the system,
DiffServMediator is used to achieve this. [7]. The
relationship between the Mediator interface and the

Colleague interface is the ‘many to many’ relationships. The
section that follows next covers some general principles that
can be used to measure the design patterns discussed above.

IV. RULES OF THUMB FOR THE USED DESIGN PATTERNS

IN THE LTI MODEL

Some general guidelines and reckoning for the use of

software design patterns that are given below were suggested
by the Gang-of-Four [7] and the Head First team [9]. These
principles are based on the experience or common
knowledge gathered by these groups. Some rules about the
Decorator, Observer and Mediator patterns given by the
Gang of Four [7] are as follows:
• Mediator and Observer are competing patterns. The

difference between them is that an Observer distributes
communication by introducing "observer" and "subject"
objects, whereas a Mediator object encapsulates the
communication between other objects. We have found
it easier to make reusable Observers and Subjects than
to make reusable Mediators [GoF, p. 346].

• On the other hand, Mediator can leverage Observer for
dynamically registering colleagues and communicating
with them [GoF, p. 282].

• Mediator gets senders and receivers to reference each
other indirectly. Observer defines a very decoupled
interface that allows for multiple receivers to be
configured at run-time [GoF, p. 347].

Various other design patterns can also be applicable in

designing the LTI model, for example the Acceptor and
Connector pattern [12] can be used in between the
components; the MVC can be used instead of the Observer-
in that way the controller will allow the analyst to select
traffic to observe. The design patterns used in this study are
the most relevant to this work. This increases the reliability
of the software system, which in turn reduces development
complexity.

V. CONCLUSION

The work in hand demonstrates the use of various design

patterns for constructing the LTI system so as to end up with
a more reliable, reusable, convenient and less complex
system. The designed system is hope to capture and preserve
the detected data to its best. We are currently busy with the
implementation of this designed work. In future, the attention
in our research work could well be focused on the bidirected
LTI model in DiffServ networks.

VI. REFERENCES

[1] Corey, V., Peterman, C., Shearin S., Greenberg, M.S. & Van
Bokkelen, J. 2002, Network Forensics Analysis, Internet
Computing, Volume 6, pp. 60- 66, IEEE.
[2] Solomon, M.G., Barrett, D. & Broom, N. 2005, The Need for
Computer Forensics, in L. Newman and W.G. Kruse (Eds),
Computer Forensics Jump Start, pp. 01-20, SYBEX inc.
[3] Kohn, M., Eloff J. & Olivier, M.S. 2006, Framework for a
Digital Forensic Investigation, in H.S. Venter, J.H.P. Eloff, L.
Labuschagne and M.M. Eloff (Eds), Proceedings of the ISSA 2006
from Insight to Foresight Conference, Sandton, South Africa
(published electronically).
[4] Zantyko, K. 2007, Commentary: Defining Digital Forensics,
Forensic Magazine, 20, Vicon Publishing, Feb-March 2007 issue,
[Online] Available at: http://www.forensicmag.com/articles.asp?
pid=130, as on 12 April 2008.
[5] Strauss, T., Olivier, M.S. & Kourie, D.G. 2006, Differentiated
Services for Logical Traffic Isolation, in M.S. Olivier and S.
Shenoi (Eds), Advances in Digital Forensics II, pp. 229-237,
Springer.
[6] Dlamini, I., Olivier, M.S. & Grobler, M. 2009, A Simulation of
Logical Traffic Isolation Using Differentiated Services, Digital
Forensics & Incident Analysis (WDFIA 2009) unpublished.
[7] [GoF] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.
1996, Design Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley. ISBN 0-201-63361-2.
[8] Shalloway, A. & Trott, J. 2001, Design Patterns Explained: A
New Perspective on Object-Oriented Design, Addison-Wesley.
[9] Freeman, E. & Sierra, K. 2004, Head First Design Patterns,
Volume 1, O’Reilly Media, Sebastopol (CA), USA.
[10] Bains, K. & Lau, E. 2002, Mediator Design Pattern. Available
at:
http://sern.ucalgary.ca/courses/SENG/443/W02/assignments/Medi
ator/, University of Calgary.
[11] Black, S. 2004, Mediator Design Pattern.
http://stevenblack.com/PTN-Mediator.ASP. Steven Black
Consulting.
[12] Schmidt, D.C. 1997, Acceptor and Connector: Design Patterns
for Initializing Communication Services. The 1st European Pattern
Languages of Programming Conference (Washington University
technical report #WUCS-97-07).

