Pattern-Based Approach for Logical Traffic Isolation Forensic Modelling

Ynnocentia DIamini,ZMartin Olivier
(ICSA Group) Department of Computer Science
University of Pretoria
Pretoria, RSA

1id|amini, 2moIivier{@cs.up.ac.za}

Abstract— The use of design patterns usually changes the
approach of software design and makes software ddepment
relatively easy. This paper extends work on a foresic model
for Logical Traffic Isolation (LTI) based on Differ entiated
Services (DiffServ) and designs the LTI model usingifferent
design patterns. Since design patterns add reliality, flexibility
and reusability characteristics to a software systa, this paper
focuses on three design patterns in modeling the LT
architecture to achieve reusability and flexibility of the LTI
model. This model is viewed as a three-tier archétture, which
for experimental purposes is composed of the follang
components: traffic generator, DiffServ network andthe sink
server. The Mediator pattern is used to coordinatehe traffic
generator, sink server and, or preservation compon#s, that is
DiffServ domain is considered as the mediator. Thistudy uses
different design patterns to show how various patt@s can be
used to design the system.

Keywords-Decorator Pattern; Observer Pattern; Mediator
Pattern; Network forensic; Differentiated services

l. INTRODUCTION

Network Forensics involves the capturing of network
traffic by means of scientific and legal procedutieat are
acceptable in a court of law [1]. This disciplitreerefore
entails the gathering, preserving and analysingeifvork
events in order to discover the source of an attackther
network problem [1] [2] [3]. Network Forensics tegs the
isolation of malicious network packets [4]. Thilaion
depends on easy and accurate identification of cinak
packets, as well as on forensically sound evideotection.
Strauss et al. [5]
Differentiated Services (DiffServ) to isolate madies traffic
logically from normal traffic. Since DiffServ is standard
technique, this could well reduce cost. If a Déifé
infrastructure is already in place where an ingegtbn
needs to be performed, evidence collection could b
facilitated with minimal changes to the network. &dhthe
traffic has been identified as malicious, DiffSeses ingress
router as a marking station to mark the detectetgiaThe
marked traffic is furthermore placed in the dedidatiueues
for quick routing, so as to isolate it from thetre$ the
traffic.

The DiffServ approach allows Network Forensic
investigators to attach both their marking stat{omgress

proposed a scheme that utilise

Sihle Sibiya
CCIW, DPSS
Council for Scientific and Industrial Research (BB
Pretoria, RSA
ssibiya@csir.co.za

router) in isolating the suspicious traffic and gaevation
station to a cyber victim's network to investigtte case at
hand [6]. The advantage of this approach is thegquires
minimal network downtime and most importantly miaim
network reconfiguration. This DiffServ-based sclkem
makes provision for a preservation station to stecerds of
the isolated traffic with a view to later analysidowever, in
order to minimise network transmission problemshsas
transmission delays and high network traffic,
preservation station only stores records relatechaicious
network traffic [6].

the

We are currently busy implementing the model to ites
operation empirically. This requires two suppoddules (a
traffic generator and a sink server) that are rat pf the
model per se. However, since patterns are alsfulufeae
these experiment support modules, they are inclinl¢de
discussion below. In this paper we use variouswso#
design patterns [7] to design the Logical Traffolation
(LTI) model based on the DiffServ scheme. The mdel
has three nodes including the support modules, lyame
client side that is the users sending data (we treséic
generator for experimental purposes), DiffServ domand
sink server that is the users receiving data and,
preservation station when there is intrusion thas been
detected [6]. The traffic generator that is for exmentation
processes is set up in an environment where botitiouws
traffic and normal traffic are generated. The éghe paper
is structured as follows: Section 2 introduceslifié model
by presenting it as three-tier architecture. SacBgresents
a design of the LTI model by using various desigtterns,
while Section 4 presents the rule of thumb for the
participating design patterns; and Section 5 caleguthe

gaper.

Il. THELOGICAL TRAFFIC ISOLATION MODEL

e The LTI model can be divided into three componéhts
we include the two supporting components for
experimentation process, namely the traffic gene@td the
sink server. This therefore results into the moldaVving
traffic generator, DiffServ network and the sinkveg. The
traffic generator constitutes the presentation, tidre
DiffServ symbolises the logic tier (or applicatiprocessing
tier) and the sink server stands for the data memagt tier,
as in figure 1. These tiers are logically separdtech each

other to ensure that a physical change on anyeshttoes
not affect all tiers. Figure 1 shows the layouttioé LTI

model as a three-tier architecture, which is disedsin the
subsections that follow.

1. Presentation
Tier

2. Logic Tier 3. Data Tier

Figure 1. The Logical Traffic Isolation Model
A. Presentation Tier as Traffic Generator

This tier allows the user to send and receive détas
called traffic generator for experimental purposks.real
life, these are the users, in other words legitimesers (users
with normal and legal intentions) and/or suspiciasers
(users with malicious and illegal intentions). Téessers
transmit either normal traffic or suspicious traffi he traffic
generator tier is only a viewpoint for our modelisinot our
main concern. Our focus is on the behaviour oftthaffic
that is generated. The main goal of the LTI modeltd
isolate the suspicious traffic and to record it using the
preservation station before it is sent on to itstidation [5].
The traffic generator tier communicates with thgidotier,
composed of DiffServ services tier, during the $raission
process. Below is an overview of the Logic tier as
differentiated service (DiffServ).

B. Differentiated Service as Logic Tier

The DiffServ services tier controls data flow by

performing traffic isolation process. It basicatiiecks the
type of traffic it receives from the traffic gentma tier,
marks it according to its behaviour (either nornaal
suspicious), routes it through the network and Iffna
unmarks the packets before they leave the Diff$iervfor
the data tier. The data tier in the LTI model corgdhe sink
server object. When no suspicious traffic is degcthe sink
server is the only object that is active; otherwike tier also
includes the preservation station. The data tidissussed in
detail in the subsection that follows next.

C. Preservation Sation and Snk Server as Data Tier

Any transmitted traffic that is found to be suspis is
routed via the preservation station to be recotzdre it is
permitted to move on to the sink server. The ainthié

procedure is to preserve evidence for later arglgsid also
to avoid packet loss. Forensic investigators amtiqodarly
interested in all suspicious traffic. When the reéong is
finished, the suspicious traffic is forwarded toe tlink
server. Normal traffic, on the other hand, is eautirectly
from the DiffServ services tier to the sink serviar
processing and storage. When developing the object
architecture, it is good to know about the desigtigons that
are available and that are applicable to the irgensl/stem
[7]. In the next section we show how various degigtierns
are used to implement the LTI model.

Ill. THELTI COMPONENTS WITHDESIGNPATTERNS

Design patterns add reliability, flexibility andusability
characteristics in a software system [8]. This pdperefore
focuses on three design patterns in modelling tfg¢ L
architecture. The decorator pattern is used toaahdwrap
the behaviour of the generated traffic. The obsepattern
[8] [9] is interchangeably used in most of the comgnts of
the LTI model, including the traffic generator, f3érv,
preservation station and sink server. The medjsattern is
used to coordinate the traffic generator with thesprvation
station or the sink server components; the follgwin
subsections explain how the different design pasteare
applied and class diagrams are provided to show the
relationships and interactions.

A. TheDecorator Pattern

One of the main characteristics of the decorattepais
to wrap an object to provide a new behaviour [8].this
work, the decorator pattern is used to randomlypwaiay
traffic generated with either normal or suspicibehaviour.
Figure 2 depicts the use of the traffic generatoriclass
diagram, which involves five or more classes. Tiafit
generated can be used on its own and can be coeide
either as normal traffic or its behaviour can bepped to
form suspicious traffic.

<<Interface>>
TrafficGenerator

J—

« The traffic generated
behaviour can be wrapped
to form either normal or
suspicious traffic

route()
getTrafficType()

v v

getTrafficType()

Traflic
TrafficType

_—

«Is the object we are
going to ically add
new behaviour to.

It implements the
TrafficGenerator Interface

Normal Traffic

route()

SuspiciousTraffic

TrafficGenerator
traffic

TrafficG enerator
traffic

route()
getTrafficType(

route)
getTrafficType(

~ 7
+Here are our traffic decorators, they need to implement both the
route() and getTrafficType() methods so that it will be easy to
route each decorated traffic according to its behaviour.

Figure 2. Traffic Generator and Decorator Pattern

The classTraffic is the object to which we are going to
dynamically add new behaviour; it implements
TrafficGenerator interface. Furthermore, the
decorators, i.e. NormalTraffic and SuspiciousTraffic
implement both the route() and getTrafficType() hoels in

These three observers implement two similar metfads
basic routing, namely route() and update(). Bothl tigress

theand theEgress routers have an extra task when compared to
traffic the Interior router. Thelngress router marks the packets

while the Egress router unmarks them before forwarding
them to the next node. All the observers (routstg)uld

order to make it easy to route each decoratedidraff have a pointer to th&rafficGenerator labelled “subject”, as

according to its behaviour. The traffic generatspacts as
a subject of the observer pattern, which is dismdisa the
following subsection.

B. The Observer Pattern

This pattern allows different objects that arerieséed in
the functionality of the subject-object to subserio it, in
order to be notified whenever the state of theextlijhanges
[7]. We apply the observer pattern to each elerottite LTI
model, namely to the traffic generator, DiffSertggervation
station and sink server. Below, each componenissudsed
in detail. For the observer pattern, the subjead #me
observer may agree on the way they communicatee $ive
observers of this system are related, it will lgpoad idea to
use the pull method rather than a push. A pull oek#illows
the observer to request the information that mayobe
interest to each observer [1] [9], while in the Ipumethod
the subject sends all information to all observerbe
observer pattern is discussed below in associatithsome
of the LTI model components.

1) Traffic Generator with the Observer Pattern: In
Figure 3, the Observable class keeps track of fa t
observers (ingress, interior and egress routerd) narifies
them when the state of traffic generated is notmadyri.e.
when it changes to suspicious. The class TraffieGsor, a
subclass of the Observable class, extends Obsereédsds
and inherits its methods. All the observers (ra®)ter
implement the Observer interface; this providesnéerface
to the Observable by means of which to communivatie
observers when it has to update them [9].

/mrs implement
the Observer interface;
this assists the
Observable with an

Observable /
<<Interface>>
Observer
update()

Pl 0

—

« The Observable class
keep tracks of all the
observers and notify
them when the state of
traffic generated is not
normal, i.e. changes to

Observers

registerObserver()
removeObserver()
notifyOhserver()
setChanged()

interface to communicate
with when it has to

.. Update the observers i.e.
“.._routers>

suspicious Ingress Interior Egress
<<extends>> | route() route() route()
update() update() update()
markPacket() UnmarkPacket()
Subject X 1
+These three routers implements a similar method
e for basic routing, route(). Update() method is

«Is a sub-class of the implemented from the observer interface
Observable class
Extends Observable
class and inherit its
methods

+Both ingress and egress routers have extra tasks as
to interior router. Ingress marks the packets while
egress unmark before forwarding them.

«All the routers should have a pointer to
TrafficGenerator labelled “subject”, as shown with
one from ingress router

Figure 3. Traffic Generator with Observer pattern

is the case with the pointer from ingress routee (Eigure
3). The routers, i.e. Ingress, Interior and Egrésem
DiffServ domain) act as observers in Figure 3al also be
a subject when it is related to the preservatiatist and the
sink server. Below, we discuss this option in detai

2) DiffServ with the Observer Pattern: Figure 4 shows
the DiffServ domain acting as a subject and notaas
observer as was the case in Figure 3. Both thepatson
station and the sink server act as observers. Toteservers
subscribe to the DiffServ to be notified about 8iate of
behaviour of traffic that is currently routed. Het traffic
being transmitted is suspicious, DiffServ notifidmth
observers (see Figure 4). The traffic is then @uta the
Preservation station for recording and the presierveof
evidence, before it is sent on to the sink servar f
processing. If the traffic is considered normal,isit sent
straight to the sink server. The Observable clagp tracks
of all the observers and notifies them whether dtate of
traffic that is routed is suspicious or normal. Ttlass
DiffServ is a subclass of the Observable classxténds the
Observable class and thus inherits its methods.

«All routers implement
the Observer ii 5
this assists the
Observable class with an
interface to communicate
- with when it has to
update the observers i.e.
“._preservation station and
sink server

Observable

—

« The Observable class
keep tracks of all the
observers and notify
them when the state of
traffic generated is not
normal, i.e.

<<interface>>
Observer

Observers

registerObserver()
removeObserver()
notifyObserver()
setChanged()

update()
v

SinkServer

processRequest()
Update() update()
record() record()

\ /

+These two components implements a similar
method for basic routing, route(). Update() method is
implemented from the observer interface

<Both Preservation station and Sink server have to

route()

“Is a sub-class of the
Observable class
*Extends Observable
class and inherit its
methods

keep records of all traffic they receive using
record() method.

«Both observer components should have a pointer to
DiffServ labelled “subject”, as shown with one from
Preservation station

Figure 4. DiffServ with Observer Pattern

All the observers RreservationSation and SnkServer)
implement theObserver interface (Figure 5). This provides
the Observable class with an interface by mearnghich to
communicate with observers when it has to updagenth
Most of the methods implemented by these two olessrare
similar. This includes — but is not limited to -etfoute() and
update() methods from the Observer interface. Bbih
preservation station and the sink server keep tohckcords
of all traffic they receive by using the record()etimod.
These observer objects should have a pointer t&ES&i
labelled “subject”, as is the case with the poiritem the
preservation station (see Figure 4). The presenvattation

can also act as the subject of the sink serveshas/n in
Figure 5. This likelihood is discussed in detailtire next
subsection.

/’ <<interface>> | implement the Observer
bservers. Observer interface; this assists
+ The Observable class | registerObserver() the Observable with an
keep tracks of all the removeObserver() update() interface to
observers and notify notifyObserver() i communicate with when
them when the state of | setChanged() | it has to update the
traffic generated is not observer i.e. Sink server
normal, i.e. suspicious — '
ofonde>> SinkServer
Subject
PreservationStation updateq)
route() record()
Update(processRequest()
+Is a sub-class of the | record() T
Observable class
«Extends Observable +This observer implements the Update() method from
class and inherit its the observer interface, and processRequest() methods
methods +Sink server observer keeps records of all traffic they
receive using record() method.
*The Sink server observer has a pointer to Preservation
station labelled “subject”

Figure 5. Preservation Station with the Observer Pattern

3) Preservation Sation with the Observer pattern: The
preservation station as a subject also functiomslady to
the traffic generator and DiffServ objects whenirartas
subjects in the observer pattern, but involvesva figinor
changes concerning the classes. Figure 5 shows t
relationship between the preservation station sugbgect and
the sink server as an observer object. The subofbs$se

between the subject and the observer in the ohspattiern
complies with the design principle for favouringoosition
over inheritance; while the communication betweée t
subject and the observers is kept loosely couplete
mediator pattern also allows its objects to bedbosoupled.
The open-close principle is implemented by the deoo
pattern through allowing the behaviour of the tcaff
generated to be extended without any modificatmrthie
entire code. The client and server objects useDiffServ
object for communication. This reduces the numbgr o
messages sent between the objects in the systdfSBemi
therefore acts as a mediator. The following sedtimmtains a
discussion of the DiffServ with the mediator paiter

C. The DiffServ with the Mediator Pattern

The mediator pattern defines an object (i.e. the
DiffServMediator) that controls the way in which a set of
objects interact [7] [10] [11]. All the other cl&ss are
completely decoupled from each other. This is acdeby
using colleague object to communicate with the atedi
(DiffServ), rather than having these objects communicating
with each other, which results in too much messages
ansmission among the objects.

In Figure 7, the clas®iffServMediator simplifies the
communication between thérafficGenerator classes, the

Observable object is the PreservationStation, witi’reservationSation and theSnkServer, by implementing the

SinkServer as the observer object. This observpleiments
the Update() method from the Observer interfaced an

Mediator interface. These colleague objects all notify the
DiffServMediator object whenever their status changes [10].

employs processRequest() methods. The SinkServ
observer keeps record of all traffic it receivesusyng the
record() method. It also has a pointer to Presenmvatation
labelled “subject”. Figure 6 integrates the threesign
patterns applied above to form the LTI system. S@bgct-
Oriented design principles [9] include the follogin

Observable <<interface>>
Observers Observer
registerObserver() update()
removeObserver() *
notifyObserver() Vo
setChanged() t
—
> L L Egress
<<exténds>> pv— Mntertor gre
Subje: H
oo route()
<<interface>> route() 1| route update()
TrafficGenerator update() iLupdate) | ynmark
markPacket() | ' Packet()
TrafficType H
 ——
route()] H
getTrafficType() Supy, | SinkServer
Subject t
+ " processRequest()
s route
Traffic Upda?c() update(
recard)
recora)
getTrafficType()
NormalTraffic SuspiciousTraffic
TrafficGenerator TrafficGenerator
traffic traffic
route() route()
getTrafficType() getTrafficType()

Figure 6. Integration of design patterns applied to the Lbidel

“... strive for loosely coupled design between otgehat
interact (p. 53) ...open-close principles (p. 86) avdur
composition over inheritance (p. 75)" [9]. The t&aship

L
<<interface>>
Mediator <<interface>>
createCollegue() Collegue
hange() setiViediator()
_ -~ setCollegue(
- T
1
- 1
P '
,,,,,,,,,,,,,,,,,,,,,,,,,,, - H
.- L
>
- TN
TrafficGenerator S NS . Pres
TrafficType - {1 [routeo
generateTraffic() aodler DiffServMediator g update()
route() Methods 7 route() : record()
getTraflicType) [—t . store() :
retrieveQ : SinkServer
~
7777777777777777777777777777 VOt
update()
record()
,,,,,,,,,,,,,,,,,,,,,,,,,, processRequest()

Figure 7. DiffServ as a Mediator

Furthermore, they implement tieslleague interface and
use theDiffServMediator to communicate with each other.
The DiffServMediator object assists in keeping all objects of
the LTI system completely decoupled, which means it
complies with the design principle “strive for |abg
coupled design between objects that interact” [Bhe
DiffServMediator contains the control logic (as discussed in
Figure 1) of the entire system, when a new objecary
necessary logic needs to be added to the system,
DiffServMediator is used to achieve this[7]. The
relationship between theMediator interface and the

Colleague interface is the ‘many to many’ relationships. The

section that follows next covers some general jpies that
can be used to measure the design patterns didcaissee.

IV. RULES OF THUMB FOR THEUSED DESIGN PATTERNS
IN THE LTI MODEL

VI. REFERENCES

[1] Corey, V., Peterman, C., Shearin S., Greenbr&. & Van
Bokkelen, J. 2002, Network Forensics Analysis, rimé
Computing, Volume 6, pp. 60- 66, IEEE.

[2] Solomon, M.G., Barrett, D. & Broom, N. 2005, §Need for
Computer Forensics, in L. Newman and W.G. Kruses)Ed
Computer Forensics Jump Start, pp. 01-20, SYBEX inc

Some general guidelines and reckoning for the dse d3] Kohn, M., Eloff J. & Olivier, M.S. 2006, Frameuk for a

software design patterns that are given below weggested
by the Gang-of-Four [7] and the Head First team T%lese
principles are based on the experience or
knowledge gathered by these groups. Some rulest dgheu
Decorator, Observer and Mediator patterns giventhsy
Gang of Four [7] are as follows:

* Mediator and Observer are competing patterns. Th

difference between them is that an Observer digtib
communication by introducing "observer" and "subljec

commo

Digital Forensic Investigation, in H.S. Venter, PH Eloff, L.

Labuschagne and M.M. Eloff (Eds), Proceedings ef 8SA 2006
om Insight to Foresight Conference, Sandton, BoAfrica
published electronically).

[4] Zantyko, K. 2007, Commentary: Defining Digit&lorensics,

Forensic Magazine, 20, Vicon Publishing, Feb-Ma2€l07 issue,
Online] Available at: http://www.forensicmag.comtieles.asp?

%id=130, as on 12 April 2008.

[5] Strauss, T., Olivier, M.S. & Kourie, D.G. 200Bjfferentiated

Services for Logical Traffic Isolation, in M.S. ®@ier and S.

objects, whereas a Mediator object encapsulates thghenoi (Eds), Advances in Digital Forensics I, pp9-237,
communication between other objects. We have foun&pringer.

it easier to make reusable Observers and Subjeats t
to make reusable Mediators [GoF, p. 346].

* On the other hand, Mediator can leverage Obseorer f
dynamically registering colleagues and communicgtin

with them [GoF, p. 282].

[6] Dlamini, I., Olivier, M.S. & Grobler, M. 20094 Simulation of
Logical Traffic Isolation Using Differentiated Séres, Digital

Forensics & Incident Analysis (WDFIA 2009) unpublished.

[7] [GoF] Gamma, E., Helm, R., Johnson, R. and sitiss, J.
1996, Design Patterns. Elements of Reusable Objgetited
Software. Addison-Wesley. ISBN 0-201-63361-2.

* Mediator gets senders and receivers to referencle ea[g] Shalloway, A. & Trott, J. 2001, Design Patteffigplained: A
other indirectly. Observer defines a very decoupledNew Perspective on Object-Oriented Design, Addigtesley.
interface that allows for multiple receivers to be[9] Freeman, E. & Sierra, K. 2004, Head First DesRptterns,

configured at run-time [GoF, p. 347].

Various other design patterns can also be appécabl
designing the LTI model, for example the Acceptod a

Connector pattern [12] can be used in between th

components; the MVC can be used instead of the ridrse
in that way the controller will allow the analysi select
traffic to observe. The design patterns used is $hidy are
the most relevant to this work. This increasesrétiability

of the software system, which in turn reduces dgrakent
complexity.

V. CONCLUSION

The work in hand demonstrates the use of varioggyde
patterns for constructing the LTI system so astb @ with
a more reliable, reusable, convenient and less kmp
system. The designed system is hope to capturprasdrve
the detected data to its best. We are currentty lith the
implementation of this designed work. In futures #itention
in our research work could well be focused on tidérdxcted
LTI model in DiffServ networks.

Volume 1, O'Reilly Media, Sebastopol (CA), USA.

[10] Bains, K. & Lau, E. 2002, Mediator Design eatt. Available
at:
http://sern.ucalgary.ca/courses/SENG/443/W02/arsigits/Medi
ator/, University of Calgary.

ﬁ.l] Black, S. 2004, Mediator Design Pattern.
http://stevenblack.com/PTN-Mediator.ASP. Steven cBla
Consulting.

[12] Schmidt, D.C. 1997, Acceptor and ConnectorsiDe Patterns
for Initializing Communication Services. The lstr&pean Pattern
Languages of Programming Conference (Washingtorveysity
technical report #WUCS-97-07).

