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Abstract

We compare several different classifier combination methods
on a single task, namely speaker age classification. This task
is well suited to combination strategies, since significantly dif-
ferent feature classes are employed. Support vector machines
(SVMs) are trained on two different types of feature classes
to estimate posterior class probabilities. The posteriors from
these classifiers are combined using different combination rules
and functions described in the literature. A novel age classifier
is also developed by using an SVM to predict posterior class
probabilities using two different types of classifier outputs; gen-
der classification results and regression age estimates. We show
that for combining posterior probabilities, simple combination
rules such as the product rule perform surprisingly well as op-
posed to trainable combination strategies that require a signifi-
cant amount of data and training effort.

1. Introduction

There are ample evidence and examples in the literature which
show that classifier combination or fusion can improve on the
accuracy of any one of the individual constituting classifiers [1,
2,3,4,56,7].

The reason for using different classifiers (and hence requir-
ing classifier combination strategies), has changed over the last
couple of years. In the past, classifier combination was neces-
sary, mainly to make the classificalion process more efficient
by using multiple stages of classification. Initial stages could
separate difficult from easier classes, with only the difficult
classes requiring more expensive feature sets or classification
algorithms. On the other hand, successive stages could be used
to gradually reduce the number of possible classes [2], in much
the same way as two class classifiers are used to enable multi-
class classification in support vector machines [8].

Today however, the motivation for multiple classifier com-
bination is mainly the quest for optimal accuracy:

e For many problems, different feature classes exist for
which one may wish to train and optimize different clas-
sifiers (with each individual classifier best suited to its
particular task). A good example of this is short term,
frame-based features as opposed to long-term, higher
level features for speaker verification [9]. It has been ob-
served that classifier combination is particularly effective
when different feature classes are employed [2]

e There are many different classification algorithms avail-
able such as Gaussian mixture models (GMMs), support
vector machines (SVMs) and neural networks (NN), as
well as different ways in which to use them, for exam-
ple K-nearest neighbor (KNN) with different numbers
of neighbors [1, 6, 2]. These algorithms tend 10 err in
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subtly different ways, thus creating an opportunity for
improved performance from their combination.

Several different combination strategies exist; these can be
classified based on a set of criteria set out in [7]. The main dis-
tinction is whether or not a combination strategy needs training
data to estimate parameters for some combination function.

Our goal in this paper is twofold: 1) We wanl to compare
many of these combination strategies on a single problem and
2) we aim to gain insight on how well trainable as opposed to
non-trainable methods perform.

The particular problem that we investigate in order to com-
pare all of these combination strategies, is that of speaker age
classification. This problem is well suited to the classifier com-
bination strategy as outlined in the motivation above, as signif-
icantly different feature classes are employed. Also, it is a hard
problem (with Bayes errors around 50%, as discussed below),
and no single classifier performs very well on this task.

The rest of this paper is organized as follows: in section
2, we give an overview of the different types of strategies for
classifier combination and also of the background and aim of
age classification. The different feature classes used are dis-
cussed in section 3, while the design of the classifiers used in
this study are discussed in section 4. Different classifier com-
bination strategies and their application to the age classification
task are discussed in section 5, with the corresponding results,
discussion and conclusion following in sections 6, 7 and 8 re-
spectively.

2. Background

A general overview of classifier combination is given in section
2.1. Some background on the age classification task is given in
section 2.2, while the corpus that was used for the experiments
reported in this paper is described in section 2,3.

2.1. Classifier combination overview

Combination strategies can be grouped into different categories,
based on specific criteria [7]. One such distinction that is the
focus of the current paper, is between “combination rules” and
“combination functions”, the first indicating simple rules such
as the sum or product rule, while the second includes more com-
plicated functional combinations that require training, such as
support vector machines. Combination strategies used in this
paper will also operate on the “score level” as opposed to the
“feature level”. Furthermore, only “non-ensemble combina-
tions” as opposed to “classifier ensembles™ such as bagging and
boosting, will be considered, since we are focusing on a small,
fixed set of classifiers.

Another set of criteria for distinguishing combination
strategies is based on the expected output from classifiers, and



can be divided into 3 main categories [5]:

e Single class labels. The classifier assigns a test vector
to one of IV classes and provides only the assigned class
label as output

e Ranked class labels. The classifier outputs class labels
ranked in the order of likelihood of the test vector origi-
nating from a particular class

o Real valued outputs. The classifier outputs a real value
that somehow denotes the likelihood of the vector be-
longing to a particular class. Posterior probabilities are
often used as real valued outputs.

We investigate combination strategies based on all 3 of the
above mentioned categories.

2.2, Age classification overview

Age and gender classification from speech has been a topic of
interest from as early as the 1950’s [10]. More recently, work-
shops have been organized 10 compare existing approaches to
age and gender classification on a common database (German
SpeechDat II corpus) [11] and the age classification task was
also formalized as the classification of a speaker according to
seven age/gender groups. Approaches that have been employed
successfully include classification based on phone recognition
and direct age classification. For the latter case, two main
classes of features have been most popular: long-term (mostly
prosodic) features and short-term features based on Mel fre-
quency cepstral coefficients (MFCCs). Extensive work has been
done on refining and measuring the significance of the long term
features [12], as well as on ways to optimally combine the two
feature classes [13].

Regression to estimate speaker ages has recently been sug-
gested as an alternative to age-category classification [14].
Since the focus in [14] was to compare different feature types,
the relative performance of regression-based and classification-
based approaches was not investigated. We perform such a
comparison (using support vector machine regression), and also
show how regression can be combined with gender classifica-
tion to perform the standardized 7-class task mentioned above.
In fact, this regression-based approach is somewhat more ac-
curate than 7-class classifiers trained on either of the above-
mentioned feature classes.

2.3. Corpus and classification task

The corpus that was used for the age classification study con-
sisted of speech from approximately 700 German speakers,
recorded at 8000 Hz. There were 18 utterances per session,
with up to 6 sessions per speaker. Ulterances were between 1
and 6 seconds in duration (the distribution of durations is shown
in figure 1), with the total corpus size amounting to 47 hours.

Approximately 90% of the speakers were labeled and sub-
sequently used for the experiment. This set was divided into 3
sets: a training set (40%), a development set (30%) and a test
set (30%), with no speakers being in more than one set.

The age classification task is similar to one formalized at a
workshop organized by Deutsche Telekom [11]. Given a single
utterance, a system needs to classify the speaker as coming from
one of 7 age/gender groups. These groups are 1) children (< 13
years), 2) young female or 3) male (13 — 19), 4) adult female
or 5) male (20 — 64) and 6) senior female or 7) male (> 64).
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3. Feature classes

Two classes of features were used to perform the age classifica-
tion task: long-term (mostly prosodic) features (LTF) and short-
term, supervector features (SPV) derived from MAP adaptation
of Gaussian mixture models (GMMs).

Long-term features consisted of 22 fealures, comprising
pitch, jitter, shimmer and intensity. These particular features
were chosen since they are known to correlate with speaker
age and gender. For example, a high average micro-variation
in voice frequency (jitter) may be due to an age-related deterio-
ration of the glottis. The specific values used included the mean,
minimum, maximum, standard deviation, and deltas of each of
the features. These were extracted using Praat[15] employing a
cross-correlation method for pitch period analysis with a step-
size of 10ms. A detailed description of all features is provided
in [16].

In addition to these features, formants were also extracted
from the voiced sections of the spoken audio. Praat was used to
extract the first four formants using Burg’s algorithm. A sliding
window with a length of 25ms and a stepsize of 20ms was
used. The maximum formant frequency was specified to be
5500 Hz, which is a common choice for adult females. One
would typically choose a lower value for adult males and a
much higher value for young children if the gender was known
beforehand. The mean and standard deviation was then calcu-
lated for each formant, as well as ils first derivative. The pitch
corresponding to the period over which the formants were ex-
tracted was also added to create a 20-dimensional vector.

As short-term features, mel frequency cepstral coeffi-
cients (MFCCs) were extracted from all utterances using the
HTK toolkit with a stepsize of 5m.s, a window length of 30ms,
and a dimension of 12. A 128-mixture Gaussian mixture model
(GMM) was then trained to model the coefficients, with MAP
adaptation applied to update the means and weights for all mix-
tures, given a new utterance. The resulting adapted means were
then concatenated to form a 1, 536 dimensional supervector (12
coefficients * 128 mixtures).

4. Classification design

In order to perform regression, the utterance vectors of both fea-
ture classes were annotated with the true ages of the speakers,
as provided by the speakers during data collection. A support
veclor machine was then trained, with the objective of finding a
function f that predicts the target ages with at most ¢ years devi-
ation, while being as flat as possible [17]. Given these models,
regression was then performed by mapping the test vectors into
a high dimensional feature space, computing dot products with
the transformed training vectors and adding the results using
precomputed weights to obtain the final age estimate. Regres-
sors were trained for both feature classes with LIBSVM, using
the radial basis kernel function (RBF) [18]. It was found that
the performance of these regressors, as well as of the classi-
fiers described below, depends strongly on the parameters em-
ployed during training. For the regressors, these paramsters are
€ (the regression error that is allowed before a particular sam-
ple is penalized), C (which controls the trade-off between mar-
gin width and training-set error) and  (the width of the RBF
kernel), whereas classification involves ' and «y only. Both re-
gressors and classifiers were optimized in terms of ¢, C' and ¥
using 10-fold cross validation and grid searches on the training
set. All folds contained data from distinct speakers and were
balanced based on the number of speakers per fold.



Since the task of age classification in the commonly-used
format requires a distinction between for example young males
and young females, and since the regression estimate is insen-
sitive to the gender of a speaker, it was necessary to train clas-
sifiers for distinguishing children, males and females from each
other. Two gender classifiers were thus trained to estimate the
posterior probabilities of an utterance originating from children,
males or females, using the LTF and SPV feature classes respec-
tively.

A second level of classification was necessary to combine
the outputs from the gender classification and the TEgressors.
The posteriors from the two gender classifiers were multiplied
and together with the two regression outputs, a 5-dimensional
vector was created. These vectors were then used to train a 7-
class classifier.

Since the combination described above entails using the
output of classification and regression results, we had to “gen-
erale”™ training data. This was accomplished by dividing the
training set into 10 folds (having distinct speakers) and then fol-
lowing a round-robin approach to train gender classifiers and re-
gressors on 90% and repeatedly classifying the remaining 10%.
All classifiers used in this round-robin approach used the same
parameters for a particular feature set. Another grid search was
then used to optimize the 7-class classifier using cross valida-
tion.

In order to benchmark our regression-based classifier
against existing techniques, we trained 7-class classifiers on
both feature classes. The SVMs were trained using an RBF
kernel, and grid searches combined with 10-fold cross valida-
tion were again employed to search for the optimal values of C'
and -y for each of the classifiers.

5. Classifier combination strategies

Multiple classifier combination strategies were employed; the
sum, max, min, majority voting, median and product rules, as
well as using an SVM for combination, or weighting the re-
sults based on [4]. Another strategy implemented was a variant
of majority voting, the Borda Count [19]. Behavior Knowl-
edge Space (BKS), first introduced in [20], was also used, both
as an individual classifier combination strategy, as well as an
additional classifier that could provide posterior probabilities.
A description of all but the last four combination strategies,
as well as the corresponding advantages and disadvantages are
well covered in [2].

5.1. Majority voting rule & Borda Count

The majority voting rule was slightly adapted from [2] in order
1o handle cases where no consensus could be reached (in this
case, a 3-way tie). A simple strategy was used where “experts”
were allowed to change their vote based on a cost funclion.
Only one expert was allowed to change their vote at any one
time, with the expert allowed to change their vote being selected
based on the least accumulated cost to change their vote. Cost
was calculated as the difference between the currently selected
posterior probability and their next highest posterior probability.
In this fashion, an expert not sure about a particular choice will
be allowed to change their vote, while an expert that was very
confident in his decision would be much less likely to change
their vote.

The same concept was followed for the case where there
were ties when using Borda Count. The only difference was that
instead of allowing experts to change their votes, the confidence
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in their initial vote was reduced by half.

5.2. Behavior Knowledge Space

The BKS method was actually designed to combine outputs on
the “single class label” level. In order to adhere Lo this require-
ment, every set of posterior probabilities corresponding to a sin-
gle test vector, was mapped to the class label corresponding to
the maximum posterior probability. This was done for each set
of classifier results independently. Posteriors were then gener-
ated for each combination of the & classifier outputs (z1...78)
by considering the frequency C of the associated combination
vector indicating the current class label, w, [20]:

Clwdzy, . zi) )
Ei C(wilm, sy TR

Plwizr, . zx) =

5.3. Support vector machine combination classifier

An SVM was trained to combine the posteriors of the 3 7-class
classifiers. An RBF kernel was used, with (' and g optimized
using grid searches and cross validation.

6. Results

The accuracies achieved by the three basic classifiers (7-class
classifiers based on the two types of features, as well as the
regression-based classifier) are indicated as a function of the
utterance duration in Figure 1. That figure also shows the accu-
racy for the “product” combination strategy. The overall results
(that is, with all durations combined) from the different combi-
nation strategies described in section 5, are displayed in order
of descending accuracy in table 1.
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Figure 1: Accuracy of the different classifiers vs utterance du-
ration, along with the distribution of utterance durations in the
corpus employed,

6.1. Majority voting rule analysis

The results from the majority voting rule are shown in table
2 and should be investigated for future classifier combination
improvements. One may want lo apply different combination
strategies based on the individual classifier results.



Table 1: Different classifier combination results. The first 3
results'** show the individual classifier performance on both
the T-class problem (columns two and three), as well as the
gender classification task (last column). The remaining results
show different classifier combination strategies for combining
all three systems on the T-class problem (column two), com-
bining systems 1 and 2 on the T-class task (column three) and
combining systems 1 and 2 on the gender task (last column).

Combination Accuracy

L Strategy c7*3 [ cl7*2 [ I3
LTF! 45.67 | 45.67 | 86.38
SPV? 4526 | 45.26 | 83.93

GID/regression® | 48.38 | 48.38 -
Weighted [4] 50.75 | 49.42 | 88.06
Product 50.73 | 49.38 | 88.51
Sum/Average 50.62 | 48.84 | 88.47
BKS mult 50.54 | 49,53 | 88.66
Median 50.44 | 48.84 | 88.47
Borda count 5039 | 48.37 | 88.19

Majority vote 50.29 - -
BKS sum 50.22 | 49.10 | 88.53
Min 49.98 | 49.33 | 88.46
SVM 4942 | 4939 | 87.15
Max 49.06 | 48.18 | 88.39
BKS 48,08 | 43.86 | 86.38

Table 2: Majority voting rule results, showing the number of test
veclors receiving a particular amount of votes, with the corre-
sponding accuracies of the set of vectors receiving at least x
voftes.

[ #of votes | # of test vectors [ Accuracy |
1+ 12735 49.05
2+ 11133 52.49
3 4275 65.92

6.2. GID posteriors & regressions estimates combination

The combining classifier trained to combine GID posteriors and
age eslimates from regression was described in section 4. The
results from this classifier, as well as those of the individual
constituent classifiers, are shown in table 3. A confusion matrix
summarizing the performance of the combined GID systems is
also shown in table 4.

To further analyze this approach, we estimated the posterior
probability of each of the 7 classes, given the regressor and gen-
der ID outputs. This is graphically depicted in figure 2. Looking
at figure 2 (c), one can for example see that when the gender ID
predicted that the speaker is male and the regressor estimate is
66, there is an approximately 50% probability of the speaker
actually being and old male.

7. Discussion

The results from the different classifier combination strategies
on the posteriors will be discussed in section 7.1, while the re-
sults from the SVM combination of the posteriors and regres-
sion estimates will be discussed in section 7.2.

Table 3: Accuracies and parameters of all classifiers, where the
results are MSE and SCC respectively Jor the regressors. Sys-
tems B and D are results reported on the same Jfeature classes
Jor a similar task {11]

L [ C T g [eps[ Acc |
[ LTFreg 31.623 ] 0.316 | 10 | 363.3/0.226
SPV reg 5.580 | 0.032 | 8 | 338.6/0.251
LTF cl7 3162.278 | 0.003 45.67
SPV cl7 5.667 0.01 45.26
LTF cl3 3.162 0.316 86.38
SPV cl3 3.162 0.01 83.93
Reg+GID 1 10 48.38
3 class combined 88.51
7 class combined 50.73
System B (LTF) 40
System D (SPV) 42

Table 4: 3-class confusion matrix Jor the combined (product
rule) LTF and SPV feature classes

CTCcF ™

832 | 705 171
F 184 | 5244 | 257
M 11 135 | 5196

7.1. Combining similar classifier outputs

The results in table 1 show that simple combination rules per-
form surprisingly well compared to combination functions that
require parameters to be estimated in a separate training pro-
cess. In particular, the product rule performs better than any
of the simple combination rules and better than all but 1 com-
bination function when combining the three 7-class classifiers.
The weighted sum, with weights calculated on training data, ac-
cording to the algorithm proposed in [4], performs marginally
better than the product rule on that task. The BKS combination
strategy on the other hand, performs significantly worse lhan
the other combination strategies on the 7-class tasks. This can
be attributed to the fact that almost all the other combination
strategies effectively utilize the additional information inherent
in the posterior probabilities available from each of the classi-
fiers, while BKS requires hard decisions to start off with. The
posteriors generated from the BKS combination strategy seem
to be very promising though. These additional posteriors were
combined with the existing classifier outputs using the sum and
product rules, with the results shown in table 1. For both the
7-class classifier combination problems, these posteriors, com-
bined with the existing classifier posteriors using the product
rule, perform better than any other approach. The fact that the
3 7-class classifier combination approach does not seem to ben-
efit, can probably be attributed to the fact that BKS requires a
significant amount of training data to reliably estimate the pos-
teriors in this particular case. This is evident from the number
of posteriors Py that have to be estimated:

Py = KC+ @)

where K’ is the number of classes and C is the number of clas-
sifiers being combined. From equation 2, one can see that rel-
atively few posteriors need to be estimated for the two 7 -class
and 3-class combination problems (343 and 27 posteriors re-
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spectively). For the 3 7-class combination problem, 2401 pos-
teriors need to be estimated.

7.2. Gender ID and regression estimate combination

The results from the svm combined gid and regression estimates
confirm that one can effectively fuse different types of classifier
results. This combined classifier performs better than any of
the two direct 7-class classifiers, Figure 2 gives some insight
as to how this classifier performs and which classes are easily
confused. Looking at figure 2 (b) for example, one can clearly
see that children and young women will often be confused when
the regressor estimate is less than 24 years. This is also reflected
in table 4, where it is clear that children and women are the
two most confusable classes. We also see that senior males and
females are accurately indicated for regression estimates above
about 56 years, and that middle-aged men are particularly hard
to classify.

8. Conclusion

This paper compared different classifier combination strategies
for the age classification task. This task is well suited to classi-
fier combination because of the significantly different feature
classes that were employed. The feature classes used were
long term prosodic features and short term (frame-based) su-
pervector features. Support vector machines were trained to
obtain both 7-class and 3-class (gender) classification results
from each feature class respectively, in the form of posterior
probabilities. SVM regressors were also trained to obtain age
estimates for each test vector from each of the feature classes.
A novel 7-class classifier was then created by combining two
different types of real valued classifier outputs; GID posterior
probabilities and age estimates from the regressors, A combi-
nation classifier (SVM) was trained for this purpose, giving real
valued decisions in the form of 7-class posterior probabilities.

Several combination strategies which are well covered in
literature [5, 2] were then implemented to combine the 3 7-
class classifier outputs: the product rule, the sum/average rule,
the median rule, the max rule, the min rule, the majority vot-
ing rule, a simple weighting rule [4], Borda count, BKS and the
use of a combination classifier (SVM). The results showed that
combination functions that don’t require any training, such as
the product rule, performs almost just as well, if not better then
many of the trainable combination functions. It was also inter-
esting to observe that even though SVMs perform exceedingly
well on the individual feature classes, they perform significantly
worse on the posterior combination task when compared to sim-
ple combination rules such as the sum or product rules.,
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Figure 2: Posterior probability of each class given the gender
classifier result together with the LTF TERTessor age estimate.
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