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Abstract. We present a semantic model of typicality of concept memipeds-
scription logics (DLs) that accords well with a binary, gidit cognitive model
of class membership and typicality. We define a general mefal semantic
framework for reasoning with object typicality in DLs. Weopiose the use of
feature vectors to rank concept members according to teéimidg and charac-
teristic features, which provides a modelling mechanisrapgecify typicality in
composite concepts.

1 Introduction

The study of natural language concepts in cognitive psyhohas led to a range of
hypotheses and theories regarding cognitive constrigsonh as concept inclusion,
composition, and typicality. Description logics (DLS) ledween very successful in mod-
elling some of these cognitive constructions, for examf@l&land PART-OF. In this
paper, we focus on the semantic modelling of typicality aicept members in such a
way that it accords well with empirically well-founded cative theories of how people
construct and reason about concepts involving typicality.do not attempt to survey
all models of concept typicality, but briefly outline somgasts of the debate:
According to theunitary modelof concept typicality and class membership, vari-
ations in both graded class membership and typicality afscraembers reflect differ-
ences in similarity to a concept prototype. Class membpmshd typicality are deter-
mined by placing some criterion on the similarity of objetxishe concept prototype
[10,11]. According to théinary modelbf concept typicality and class inclusion, typi-
cality and concept membership reflect essentially diffecegnitive processes. Con-
cepts havedefining featuregproviding necessary and sufficient conditions for class
membership, as well aharacteristic featuremdicating typicality within that class [4,
17,18]. According to thdocalist view of concepts, the meaning of a compound con-
cept is a function of the meanings of its semantic constitiegkccording to theglob-
alist view, the meanings of concepts are entrenched in our wodavledge, which is
context-dependent and cannot be decomposed into, or ceehfrasn, our understand-
ing of basic building blocks [12, 16]. Concept typicalitydierefore not be determined

1 A version of this paper will appear in the LNCS series. Theiodl publication will be avail-
able at www.springerlink.com.



from concept definition alone, but requires a world view toyide context relative to
which typicality may be determined.

Description logics cannot resolve any of these debatesyéatin use DLs to model
some aspects of them. In particular, we can model typicafiponcept members based
on their characteristic features. We can also model cortippal aspects of typicality.
Other aspects, such as the graded class membership thapinsdee unitary model,
and non-compositionality of compound class membershipérgtobalist view, cannot
be modelled using DLs, or at least not in an intuitively natuvay. In [21] a model of
graded concept membership was proposed, but this presentadked departure from
classical DL reasoning. We therefore restrict our attentiothe binary model, with a
compositional model of class membership, where being a reeofla class is an all-or-
nothing affair, and membership of compound concepts aerahated by membership
of their atomic constituents or defining features, whilerekteristic features contribute
to induce degrees of typicality within a class.

DLs have gained wide acceptance as underlying formalismtglligent knowl-
edge systems over complex structured domains, providinghambiguous semantics
to ontologies, and balancing expressive power with efftaieasoning mechanisms [1].
The nature of DL reasoning has traditionally beleductive but there have been a fair
number of proposals to extend DLs to incorporate some fordeféasibleeasoning,
mostly centered around the incorporation of some form cdudlefules, e.g. [5].

In a previous paper [3], we presented a general preferesgrabantic framework
for defeasible subsumption in DLs, analogous to the KLM @merfitial semantics for
propositional entailment [2, 13]. We gave a formal semartfaefeasible subsumption,
as well as a translation of defeasible subsumption to daksubsumption within a
suitably rich DL language. This was done by defining a prefeeeorder on objects in
a knowledge base, which allowed for defeasible terminalalgitatements of the form
“All the most preferred objects i6v’ are also inD”.

In practice, an ontology may call for different preferencdass on objects, and
correspondingly, multiple defeasible subsumption refegiwithin a single knowledge
base. An object may be typical (or preferable) with respeatrie property, but not
another. For example, a guppy may be considered a typicdisheteven though it is
neither a typical fish, nor a typical pet [17]. So we may waneatgpicality order on
pets, a fish typicality order on fish, and some way of combitivege orders, or other
relevant characteristics, into a pet fish typicality ordésat is, we want to order objects
in a given class according to their typicality with respectte chosen features of that
class. The subjective world view adopted in the fish shop neagifferent from that
adopted in an aquarium, or a pet shop, hence the featureedaetavant may differ in
each case, and this has to be reflected in the respectivalijpiarders.

Relative to a particular interpretation of a DL, any conaémartitions all objects in
the domain according to their class membership into tholembang toC', and those not
belonging toC. This yields a two-level preference order, with all objant€’ preferred
to all those notirC. This order may be refined further to distinguish amongstcsjin
C, but even the basic two-level order suffices to define an itapoclass of preferential
subsumption relations, namely those characterising #reatypical reasoning of [14].



A preference order on objects may be employed to obtain @mati defeasible
subsumption that relaxes the deductive nature of classikeumption. To this end, we
introduce a parameterised defeasible subsumption relafioto express terminologi-
cal statements of the fori@ gD, whereC' and D are arbitrary concepts, angj is
induced by a preference ordsey;. If <; prefers objects iM to objects outside oA,
we say thatC' is preferentially subsumed h¥ relative to A iff all objects in C' that
are typical inA (i.e. preferred by the typicality order correspondingdp are also in
D. When translated into DL terminology, the proposal of [1&ds as follows: Given
concepts”, D andS such thatS represents a best stereotypedfC' is preferentially
subsumed by relative toS if all stereotypical objects i@’ also belong taD.

The rest of the paper is structured as follows: We first fix setaadard seman-
tic terminology on DLs that will be useful later on. After gig some background on
rational preference orders, we introduce the notion of alei@d interpretation, and
present a formal semantics of parameterised defeasibfeisuition. This is a natural
extension of the work presented in [3], and provides a wagas$oning defeasibly with
the IS-A relationship between concepts relative to a givamcept. We then put for-
ward two approaches to the definition of a derived typicaligyer on concepts, namely
atomic compositiomndfeature compositionVe argue that feature composition is the
more general approach, and is not as vulnerable to arguragaitsst compositionality
as is the case with atomic composition. We show how featuceove may be used to
determine typicality compositionally, taking into accésemantic context.

2 Preliminaries
2.1 DL terminology

In the standard set-theoretic semantics of concept déiseri concepts are interpreted
as subsets of a domain of interest, and roles as binaryaesativer this domain. An
interpretation/ consists of a non-empty set! (the domainof I) and a function’
(theinterpretation functiorof I) which maps each atomic concepto a subseti’ of
AT, and each atomic rol& to a subset?! of A? x A, The interpretation function
is extended to arbitrary concept descriptions (and rolerg@sons, if complex role
descriptions are allowed in the language) in the usual way.

A DL knowledge base consists ofTdboxwhich containgerminological axioms
and anAboxwhich containsssertionsi.e. facts about specific named objects and rela-
tionships between objects in the domain. Depending on threesgive power of the DL,

a knowledge base may also haveRtmoxwhich containgole axioms Thox statements
areconcept inclusionsf the formC' C D, whereC' andD are (possibly complex) con-
cept descriptiong” C D is also called aubsumption statememéead ‘C is subsumed

by D”. An interpretation/ satisfiesC' C D, written I C C D, iff C! C D'.C T D

is valid, written = C' C D, iff it is satisfied by all interpretations. Rbox statements
includerole inclusionsof the formR C S, and assertions used to defirmée proper-
tiessuch as asymmetry. Objects named in the Abox are referreg &dfibite number

of individual namesThese names may be used in two types of assertional statemen
— concept assertionsf the formC(a) androle assertionf the form R(a, b), where
C'is a concept descriptiorR is a role description, and andb are individual names.



To provide a semantics for Abox statements it is necessaagldioto every interpreta-
tion adenotation functionvhich satisfies the unique names assumption, mapping each
individual namex to a different element’ of the domain of interpretation’. An inter-
pretation/ satisfies the asserti@i(a) iff o’ € C7; it satisfiesR(a, b) iff (a!,b') € RL.

An interpretation/ satisfies a DL knowledge bageiff it satisfies every statement in

K. A DL knowledge bas& entailsa DL statement, written ask = ¢, iff every
interpretation that satisfiés also satisfies.

2.2 Preferential semantics

In a preferential semantics for a propositional language,assumes some order rela-
tion on propositional truth valuations (or on interpregas or worlds or, more generally,
on states) to be given. The intuitive idea captured by thermelation is that interpreta-
tions higher up (greater) in the order are more typical ircthr@ext under consideration,
than those lower down. For any given cl&sswe assume that all objects in the appli-
cation domain that are in (the interpretation 6f)are more typical ofC' than those
not in C. This is a technical construction which allows us to order ¢intire domain,
instead of only the members 6f. This leads us to take as starting point a finite set of
preference order§<;: j € J} on objects in the application domain, with index set

If <; prefers any object i’ to any object outside af’, we call<; aC-order.

To ensure that the subsumption relations generatechiomal, i.e. satisfy a weak
form of strengthening on the left, thrational monotonicitypostulate (see [6,15], we
assume the preference orders toviular partial ordersi.e. reflexive, transitive, anti-
symmetric relations such that, for allb, cin A’ if « andb are incomparable andis
strictly belowc, thenb is also strictly belowe.

Modular partial orders have the effect of stratifying thedon into layers, with any
two elements in the same layer being unrelated to each athérany two elements in
different layers being related to each other. (We could bkee taken the preference
order to be a total preorder, i.e. a reflexive, transitivatieh such that, for alk, b in
A, a andb are comparable. Since there is a bijection between modaltiaporders
and total preorders od’, it makes no difference here which formalism we choose.)

We further assume that the order relations have no infiniténsh(and hence, in
Shoham’s terminology [20, p.75], are bounded, which is tbal ®f well-founded,
which in turn implies, in the terminology of [13], that thedar relations are smooth).
In the presence of transitivity, this implies that, for gihg .7, nonemptyX C A’ and
a € X, there is an elemente X, <;-maximal inX, with a <; b.

3 Preferential subsumption

We now develop a formal semantics for preferential subsiompt DLs. We assume

a DL language with a finite set of preference ordgrs: j € J} in its signature. We
make the preference orders on the domain of interpretatiplicé through the notion

of anordered interpretation(I, {<;: j € J}) is the interpretatiod with preference
orders{<;: j € J} onthe domaim\’. The preference orders on domain elements may
be constrained by means of role assertions of the for®y; b for j € 7, where the
interpretation of<; is <;, that is,jf:gj:



Definition 1. An ordered interpretatioti, {<;: j € J}) consists of an interpretation
I and finite, indexed set of modular partial ord€rs;: j € J} without infinite chains
over their domainA’.

Definition 2. An ordered interpretatio/, {<,: j € J}) satisfies an assertion <; b
Iff al Sj bI.

We do not make any further assumptions about the DL langimgessume that
concept and role assertions and constructors, and clhsslzsumption are interpreted
in the standard way, ignoring the preference orders of edlgrterpretations.

We first introduce the notion of satisfaction by an orderddripretation, thereafter
we relax the semantics of concept inclusion to arrive at aniiefin of satisfaction of
a parameterised preferential subsumption relafigrby an ordered interpretation. Fi-
nally, we define what it means for a preferential subsumpdtatement to be entailed
by a knowledge base.

3.1 Satisfaction of preferential subsumption statements

Definition 3. An ordered interpretatioti/, {<;: j € J}) satisfiesC' C D, written
(I,{<;: j € J}) Ik C C D, iff I satisfiesC C D.

The preferential semantics @j is then defined as follows:

Definition 4. An ordered interpretation(/, {<;: j € J}) satisfies the preferential
subsumptior' &, D, written (I, {<;: j € J}) IF C5; D, iff Cf C D', where

C/ ={x € C" :thereis noy € C' suchthatr <; y andz # y}.

For brevity, we shall at times writg 7 instead of{ <,: j € J}. Preferential subsump-
tion satisfies the following three properties:

Supraclassicality: If/,<7) IF C € Dthen(l,<7) |- CE,Dforall j € J.
Nonmonotonicity(, <7) IF C 5, D does not necessarily imply
(I,<z)FCnc'g;Dforanyje J .
Defeasibility: (1, <) I C £, D does not necessarily imply,<7) I- C T D for
anyj € J.
It also satisfies the familiar properties of rational prefeial entailment [13, 15] (when
expressible in the DL under consideration): ReflexivitydA®r, Left Logical Equiva-
lence, Left Defeasible Equivalence, Right Weakening, dastMonotonicity, Rational
Monotonicity, and Cut.

3.2 Entailment of preferential subsumption statements

Satisfaction for defeasible subsumption is defined redativa fixed, ordered interpre-
tation. We now take this a step further, and develop a gesemahntic theory of entail-
ment relative to a knowledge base using ordered interpoetatNote that, although the
knowledge base may contain preferential subsumptionmstates, entailment from the
knowledge base is classical and monotonic.



Definition 5. The preferential subsumption statem@rEjD is valid, writtenf= C 5D,
iff it is satisfied by all ordered interpretatior($, {<;: j € J}).

Definition 6. A DL knowledge bask entails the preferential subsumption statement
CC,;D,written K = C' 5, D, iff every ordered interpretation that satisfiksalso sat-
isfiesC g,D.

The following properties of; are direct consequences of its corresponding properties
relative to a fixed, ordered interpretation:

S, is supraclassical: I€ = C C D then alsoC = C g,;D.

L. is nonmonotonicK = C c,;D does not necessarily imply thigt = C' 1 ¢’ g;D.

g, is defeasibleC = C g,D does not necessarily imply thit= C C D.
The other properties of ; mentioned earlier relative to a fixed, ordered interpretati
extend analogously in the context of entailment relativa tanowledge base. For ex-
ample, reflexivity oij relative tokC reads = C E]C.

4 Derived typicality of concept membership

In the previous section we presented a semantic framewarlotiel typicality of con-
cept memberships; is a C-order if it ranks any object il higher than any object
outside ofC'. In a DL with value restrictions, we can write this &:C V <; .C. We
now address the question of derived typicatityorders. We distinguish between two
possible approaches to resolve this problem:

1. Atomic compositionHere we use the atomic constituents or defining features of
the compound concept as building blocks. We combine their respective typicality
orders recursively, depending on the operators used irytitactic construction of
C. SayC = A B, and typicality orders<; and <, are defined such that; is
an A-order and<;, is a B-order respectively. We may then form a new typicality
order forC' by composing<; and<;, according to some composition rule for

2. Feature compositiorHere we identify the relevant features of the cona@pfor
each objectz belonging toC, we form a feature vector characterisingThese
feature vectors are then used to determine the typicalityinfC.

Irrespective of the composition rules applied, atomic cosifion is vulnerable to the
same criticisms that have been levied against localist pomitional cognitive models
of typicality of concept membership [16].

Feature composition is also compositional, but, in comt@h atomic composition,
it is not localist. That is, the typicality of a member of a cept may be influenced by
characteristic features that do not constitute part of #fndion of the concept. For
example, the diet of penguins may be a relevant charadtefiéstture in determining
their typicality, but atomic composition cannot take thitoiaccount when determining
typicality unless this feature forms part of the definitidragpenguin.

Atomic composition may be viewed as a restricted versioreafifre composition,
since any defining feature may be considered a relevantréedience, we will only
consider feature composition further. We consider the diefimof feature vectors, their
normalisation, and their composition.



4.1 Feature vectors

The features of a concept come in two guises: They are aitiaacteristic features
co-determining typicality of objects in the concept, ontlaeedefining featuresf the
concept. In a DL extended with suitable preferential sulystion relations, characteris-
tic features may be introduced on the right-hand side ofgpegitial subsumption state-
ments. For example, in the axioms given belowCif is derived from thePenguin-
order<;, thenVeats.Fish is a characteristic feature d?enguin. Defining features
are introduced on the right hand-side of classical subsiamptatements. For example,
in the following axioms,Seabird is a defining feature oPenguin, so areBird and
Jeats.Fish. Similarly, Bird and3Jeats.Fish are both defining features &feabird:
Seabird = Bird M Jeats.Fish; Penguin C Seabird; Penguin £, Veats.Fish.

The question arises whether relevant features should eendieed algorithmically
through some closure operator, or whether their identiioas a modelling decision.
While defining features can easily be derived from the kndgéebase, this is not ob-
vious in the case of characteristic features. We therefaaw the choice of relevant
features as a modelling decision, in accordance with a g&thdew of concepts as
context sensitive. The choice of features relevant for equaar concept, and their re-
spective preference orders, are therefore determined lopjadive world view and
have to be re-evaluated in each new context. The followingldpment assumes a
fixed ordered interpretation, even when some order is defineims of others.

Definition 7. A feature vector is an n-tuple of concepy/ , . . ., CL) with correspond-
ing preference vectof{<i, ..., <,) such that<; is a C;-order, forl1 < j < n, and
weight vectofwn, . . ., wy) such thatw; € Z,for1 < j <n.

We do not place any formal relevance restriction on the @oicelements of a
feature vector, as this is a modelling decision. We may ef@nexample, have two
feature vectors fofish, one for use in the fish shop, and one for the pet shop. We
may also define different preference orders for the sameeginfor use in different
contexts. For example, miniature, colourful fish may bedgpin a pet shop, but not
even relevant in a fish shop.

Next, we consider the normalisation of preference ordehg;mpaves the way for
their composition.

Definition 8. Let(CY,...,C!) be a feature vector with corresponding preference vec-
tor (<4,...,<,). The level of an objeat € A’ relative to preference ordex ;, written
level;(x), is defined recursively as follows:

Lif zis <; -minimalinC/;

0if zis <; -maximal inAI\Cf;

maz{level;(y) : y <; x} + 1 for non-minimal objects i/ ;
min{level;(y) :  <; y}) — 1 for non-maximal objects i\ \C; .

level(x) :=

Definition 8 maps objects in the domain to integers. We noa¢ tifre absence of
infinite <,-chains ensures thatvel; is defined on the whole of’. Given any feature
C’f in the feature vector, Definition 8 assigns a positive lewadlt objects inC;, and



a non-positive level to all objects not (ﬁf In the case wherg ; is a two-level order,
levelj(x) = 1forxz € Cf, andlevel;(x) = 0 forz & C.

It is not difficult to see (given the modularity of the prefece orders) that this
mapping preserves the relative order of elements in thespanding preference order:

Proposition 1. Foranyz,y € AL, x <; yiff levelj(x) < level;(y).

We now have the required apparatus to compose the chosemeaeé orders of a
feature vector. We define the typicality of objects relative given concept, based on
its relevant features. The weight vector may be used in twgswato normalise the
preference orders so that they have the same range, or & #tjuelative importance
of each feature. Normalisation can be done without intefgarirom the modeller, and
resonates better with the qualitative approach to tygictdilowed so far in the paper.

The intuition of Definition 9 is that it ranks those objectattbonform better to the
features ofC' in terms of typicality on a higher level. The functighfirst maps each
object in the domain to a non-negative integer. This indagesdularC'-order, say<y,
on objects in the domain.

Definition 9. Given conceptC' with feature vector(C{, ..., CL), preference vector
(<1,...,<,) and weight vectokws, ..., w,), let f : AT — Z&, such thaf(a) =
Maz{1,377_ (levelj(a) x w;)} if a € CT and 0 otherwise, for any objeate A’.

The associated preference relatish, on A’ given by:a < biff f(a) < f(b), for
somek € 7, is the typicalityC-order induced by the features, preferences and weights.

Our choice forf is not arbitrary, but there are alternatives, such as tatkiagnaxi-
mum of the input preferences instead of their sum. By chapdgiffierent functions for
different connectives, atomic composition can be simdlatgng feature vectors.

4.2 Example

We conclude this section with an illustrative example. Siggowe have the following
terminological statements:

Penguin C Bird M Flightless N Aquatic Q)
Penguin £, Yhabitat.Southern (2)
Southern C ~Equatorial 3)
GalapagosPenguin E Penguin 4)
Penguin C V=1 .Penguin (5)
Jhabitat. Equatorial C ¥V <5 .3habitat. Equatorial (6)

Line (2) of the TBox states that the habitat of typical pengus restricted to the
southern regions. Note that we cannot derive from (2) anth@t)the habitat of typical
Galapagos penguins is restricted to the southern regiamss [(5-6) ensure that; and
=<9 are indeed, respectively, Benguin-order and ardhabitat. Equatorial-order. In
the ordered interpretatiohsatisfying this Tbox, and wherg! partitions objects into
typical penguins, atypical penguins, and non-penguind)ave that:



2 if a is typical in Penguin’;
levely(a) := { 1if ais atypical inPenguin’;
0 otherwise

Suppose further that? is the modular defaulfhabitat. Equatorial-order that parti-
tions this concept into two classes. THenelx(a) := 1 if a € Jhabitat. Equatorial?,
0 otherwise.

We now construct a feature vector f@ulapagos Penguin. We choos&Penguin as
relevant defining feature, anthabitat. Equatorial as relevant characteristic feature.
That is, a Galapagos penguin is a penguin whose distinchigeacteristic is that it
occurs in the equatorial region. The feature vectoGatapagos Penguin is therefore
(Penguin®, Ihabitat. Equatorial®). Its preference vector i<, <,), and as weight
vector we choosél, 2) in order to normalise the ranges gf and<,. The resulting
derivedGalapagos Penguin-order is<s, obtained from:

4 if a is typical in Penguin’ anda € 3habitat. Equatoriall;
3if a is atypical inPenguin’ anda € Jhabitat. Equatorial’;

f3(a) := { 2if aistypical in Penguin! anda € Vhabitat.(—=Equatorial)!;
1if a is atypical inPenguin! anda € Yhabitat.(~Equatorial)’;
0 otherwise

Note that the first case, i.e. whefg(a) = 4, does not hold for any objeet, as it
contradicts terminological axiom (2) in the knowledge basee following preferential
subsumption statement holdsinGalapagos Penguin Ss3habitat. Equatorial.

So, typically, Galapagos penguins are found in the equat@gion, not exclusively
in the southern regions. Of course, in this example we caaoldly have stated this, but
the point is that defining and characteristic features maysed to derive composition-
ally the typicality of objects in a class based on choservagiefeatures. Our example
gives a simple illustration of this claim.

5 Related work

Notions of typicality have been studied in a wide variety ofitexts, most of them
beyond the scope of this paper. In the context of ontologfeang and Leung [21]

proposed a model of graded membership, but their reprasamignot directly in terms

of DLs. Giordano et al. [7, 8] define a nonmonotonic extensibiine description logic

ALC to reason about typicality, while Grossi et al. [9] use catgemodelled as sets of
DL models, to describe a version of typicality. In order tcdlide to determine similarity
between objects, Sheremet et al. [19] extend a DL with thstcoctors of the similarity

logic SL.

6 Conclusion

We presented a semantic framework for modelling objectjfiy in description log-
ics. In [3] we showed how reasoning with a single typicalitder on the domain of



interpretation (and the induced defeasible subsumptiatioa) can be reduced to rea-
soning in a sufficiently expressive DL. This translationlsoaapplicable when reason-
ing with typicality of individual concept members, as pnetsal in this paper.

We also presented a proposal for deriving new typicalityeosdrom existing ones

using feature vectors. Our proposal is compositional, apted in a globalist cognitive
stance on the semantics of typicality. The determinaticzoafipositional rules is there-
fore a modelling decision, unlike compound class membprshé meaning of which
can be completely determined from the meanings of its ateomstituents. Implemen-
tation of feature vectors in a DL setting is a topic for furthesearch.
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