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Abstract. We present a semantic model of typicality of concept membersin de-
scription logics (DLs) that accords well with a binary, globalist cognitive model
of class membership and typicality. We define a general preferential semantic
framework for reasoning with object typicality in DLs. We propose the use of
feature vectors to rank concept members according to their defining and charac-
teristic features, which provides a modelling mechanism tospecify typicality in
composite concepts.

1 Introduction

The study of natural language concepts in cognitive psychology has led to a range of
hypotheses and theories regarding cognitive constructions such as concept inclusion,
composition, and typicality. Description logics (DLs) have been very successful in mod-
elling some of these cognitive constructions, for example IS-A and PART-OF. In this
paper, we focus on the semantic modelling of typicality of concept members in such a
way that it accords well with empirically well-founded cognitive theories of how people
construct and reason about concepts involving typicality.We do not attempt to survey
all models of concept typicality, but briefly outline some aspects of the debate:

According to theunitary modelof concept typicality and class membership, vari-
ations in both graded class membership and typicality of class members reflect differ-
ences in similarity to a concept prototype. Class membership and typicality are deter-
mined by placing some criterion on the similarity of objectsto the concept prototype
[10, 11]. According to thebinary modelof concept typicality and class inclusion, typi-
cality and concept membership reflect essentially different cognitive processes. Con-
cepts havedefining featuresproviding necessary and sufficient conditions for class
membership, as well ascharacteristic featuresindicating typicality within that class [4,
17, 18]. According to thelocalist view of concepts, the meaning of a compound con-
cept is a function of the meanings of its semantic constituents. According to theglob-
alist view, the meanings of concepts are entrenched in our world knowledge, which is
context-dependent and cannot be decomposed into, or composed from, our understand-
ing of basic building blocks [12, 16]. Concept typicality can therefore not be determined

1 A version of this paper will appear in the LNCS series. The original publication will be avail-
able at www.springerlink.com.



from concept definition alone, but requires a world view to provide context relative to
which typicality may be determined.

Description logics cannot resolve any of these debates, butwe can use DLs to model
some aspects of them. In particular, we can model typicalityof concept members based
on their characteristic features. We can also model compositional aspects of typicality.
Other aspects, such as the graded class membership that underpins the unitary model,
and non-compositionality of compound class membership in the globalist view, cannot
be modelled using DLs, or at least not in an intuitively natural way. In [21] a model of
graded concept membership was proposed, but this presenteda marked departure from
classical DL reasoning. We therefore restrict our attention to the binary model, with a
compositional model of class membership, where being a member of a class is an all-or-
nothing affair, and membership of compound concepts are determined by membership
of their atomic constituents or defining features, while characteristic features contribute
to induce degrees of typicality within a class.

DLs have gained wide acceptance as underlying formalism in intelligent knowl-
edge systems over complex structured domains, providing anunambiguous semantics
to ontologies, and balancing expressive power with efficient reasoning mechanisms [1].
The nature of DL reasoning has traditionally beendeductive, but there have been a fair
number of proposals to extend DLs to incorporate some form ofdefeasiblereasoning,
mostly centered around the incorporation of some form of default rules, e.g. [5].

In a previous paper [3], we presented a general preferentialsemantic framework
for defeasible subsumption in DLs, analogous to the KLM preferential semantics for
propositional entailment [2, 13]. We gave a formal semantics of defeasible subsumption,
as well as a translation of defeasible subsumption to classical subsumption within a
suitably rich DL language. This was done by defining a preference order on objects in
a knowledge base, which allowed for defeasible terminological statements of the form
“All the most preferred objects inC are also inD”.

In practice, an ontology may call for different preference orders on objects, and
correspondingly, multiple defeasible subsumption relations within a single knowledge
base. An object may be typical (or preferable) with respect to one property, but not
another. For example, a guppy may be considered a typical petfish, even though it is
neither a typical fish, nor a typical pet [17]. So we may want a pet typicality order on
pets, a fish typicality order on fish, and some way of combiningthese orders, or other
relevant characteristics, into a pet fish typicality order.That is, we want to order objects
in a given class according to their typicality with respect to the chosen features of that
class. The subjective world view adopted in the fish shop may be different from that
adopted in an aquarium, or a pet shop, hence the features deemed relevant may differ in
each case, and this has to be reflected in the respective typicality orders.

Relative to a particular interpretation of a DL, any conceptC partitions all objects in
the domain according to their class membership into those belonging toC, and those not
belonging toC. This yields a two-level preference order, with all objectsin C preferred
to all those not inC. This order may be refined further to distinguish amongst objects in
C, but even the basic two-level order suffices to define an important class of preferential
subsumption relations, namely those characterising the stereotypical reasoning of [14].



A preference order on objects may be employed to obtain a notion of defeasible
subsumption that relaxes the deductive nature of classicalsubsumption. To this end, we
introduce a parameterised defeasible subsumption relation ⊏

∼j to express terminologi-
cal statements of the formC ⊏

∼jD, whereC andD are arbitrary concepts, and⊏∼j is
induced by a preference order≤j. If ≤j prefers objects inA to objects outside ofA,
we say thatC is preferentially subsumed byD relative toA iff all objects in C that
are typical inA (i.e. preferred by the typicality order corresponding toA), are also in
D. When translated into DL terminology, the proposal of [14] reads as follows: Given
conceptsC, D andS such thatS represents a best stereotype ofC, C is preferentially
subsumed byD relative toS if all stereotypical objects inC also belong toD.

The rest of the paper is structured as follows: We first fix somestandard seman-
tic terminology on DLs that will be useful later on. After giving some background on
rational preference orders, we introduce the notion of an ordered interpretation, and
present a formal semantics of parameterised defeasible subsumption. This is a natural
extension of the work presented in [3], and provides a way of reasoning defeasibly with
the IS-A relationship between concepts relative to a given concept. We then put for-
ward two approaches to the definition of a derived typicalityorder on concepts, namely
atomic compositionandfeature composition. We argue that feature composition is the
more general approach, and is not as vulnerable to argumentsagainst compositionality
as is the case with atomic composition. We show how feature vectors may be used to
determine typicality compositionally, taking into account semantic context.

2 Preliminaries

2.1 DL terminology

In the standard set-theoretic semantics of concept descriptions, concepts are interpreted
as subsets of a domain of interest, and roles as binary relations over this domain. An
interpretationI consists of a non-empty set∆I (the domainof I) and a function·I

(the interpretation functionof I) which maps each atomic conceptA to a subsetAI of
∆I , and each atomic roleR to a subsetRI of ∆I × ∆I . The interpretation function
is extended to arbitrary concept descriptions (and role descriptions, if complex role
descriptions are allowed in the language) in the usual way.

A DL knowledge base consists of aTboxwhich containsterminological axioms,
and anAboxwhich containsassertions, i.e. facts about specific named objects and rela-
tionships between objects in the domain. Depending on the expressive power of the DL,
a knowledge base may also have anRboxwhich containsrole axioms. Tbox statements
areconcept inclusionsof the formC ⊑ D, whereC andD are (possibly complex) con-
cept descriptions.C ⊑ D is also called asubsumption statement, read “C is subsumed
by D”. An interpretationI satisfiesC ⊑ D, writtenI 
 C ⊑ D, iff CI ⊆ DI . C ⊑ D

is valid, written |= C ⊑ D, iff it is satisfied by all interpretations. Rbox statements
includerole inclusionsof the formR ⊑ S, and assertions used to definerole proper-
tiessuch as asymmetry. Objects named in the Abox are referred to by a finite number
of individual names. These names may be used in two types of assertional statements
– concept assertionsof the formC(a) androle assertionsof the formR(a, b), where
C is a concept description,R is a role description, anda andb are individual names.



To provide a semantics for Abox statements it is necessary toadd to every interpreta-
tion adenotation functionwhich satisfies the unique names assumption, mapping each
individual namea to a different elementaI of the domain of interpretation∆I . An inter-
pretationI satisfies the assertionC(a) iff aI ∈ CI ; it satisfiesR(a, b) iff (aI , bI) ∈ RI .
An interpretationI satisfies a DL knowledge baseK iff it satisfies every statement in
K. A DL knowledge baseK entailsa DL statementφ, written asK |= φ, iff every
interpretation that satisfiesK also satisfiesφ.

2.2 Preferential semantics

In a preferential semantics for a propositional language, one assumes some order rela-
tion on propositional truth valuations (or on interpretations or worlds or, more generally,
on states) to be given. The intuitive idea captured by the order relation is that interpreta-
tions higher up (greater) in the order are more typical in thecontext under consideration,
than those lower down. For any given classC, we assume that all objects in the appli-
cation domain that are in (the interpretation of)C are more typical ofC than those
not in C. This is a technical construction which allows us to order the entire domain,
instead of only the members ofC. This leads us to take as starting point a finite set of
preference orders{≤j: j ∈ J } on objects in the application domain, with index setJ .
If ≤j prefers any object inC to any object outside ofC, we call≤j aC-order.

To ensure that the subsumption relations generated arerational, i.e. satisfy a weak
form of strengthening on the left, therational monotonicitypostulate (see [6, 15], we
assume the preference orders to bemodular partial orders, i.e. reflexive, transitive, anti-
symmetric relations such that, for alla, b, c in ∆I , if a andb are incomparable anda is
strictly belowc, thenb is also strictly belowc.

Modular partial orders have the effect of stratifying the domain into layers, with any
two elements in the same layer being unrelated to each other,and any two elements in
different layers being related to each other. (We could alsohave taken the preference
order to be a total preorder, i.e. a reflexive, transitive relation such that, for alla, b in
∆I , a andb are comparable. Since there is a bijection between modular partial orders
and total preorders on∆I , it makes no difference here which formalism we choose.)

We further assume that the order relations have no infinite chains (and hence, in
Shoham’s terminology [20, p.75], are bounded, which is the dual of well-founded,
which in turn implies, in the terminology of [13], that the order relations are smooth).
In the presence of transitivity, this implies that, for anyj ∈ J , nonemptyX ⊆ ∆I and
a ∈ X , there is an elementb ∈ X , ≤j-maximal inX , with a ≤j b.

3 Preferential subsumption

We now develop a formal semantics for preferential subsumption in DLs. We assume
a DL language with a finite set of preference orders{�j: j ∈ J } in its signature. We
make the preference orders on the domain of interpretation explicit through the notion
of anordered interpretation: (I, {≤j: j ∈ J }) is the interpretationI with preference
orders{≤j : j ∈ J } on the domain∆I . The preference orders on domain elements may
be constrained by means of role assertions of the forma �j b for j ∈ J , where the
interpretation of�j is≤j , that is,�I

j=≤j:



Definition 1. An ordered interpretation(I, {≤j: j ∈ J }) consists of an interpretation
I and finite, indexed set of modular partial orders{≤j: j ∈ J } without infinite chains
over their domain∆I .

Definition 2. An ordered interpretation(I, {≤j: j ∈ J }) satisfies an assertiona �j b

iff aI ≤j bI .

We do not make any further assumptions about the DL language,but assume that
concept and role assertions and constructors, and classical subsumption are interpreted
in the standard way, ignoring the preference orders of ordered interpretations.

We first introduce the notion of satisfaction by an ordered interpretation, thereafter
we relax the semantics of concept inclusion to arrive at a definition of satisfaction of
a parameterised preferential subsumption relation⊏

∼j by an ordered interpretation. Fi-
nally, we define what it means for a preferential subsumptionstatement to be entailed
by a knowledge base.

3.1 Satisfaction of preferential subsumption statements

Definition 3. An ordered interpretation(I, {≤j: j ∈ J }) satisfiesC ⊑ D, written
(I, {≤j: j ∈ J }) 
 C ⊑ D, iff I satisfiesC ⊑ D.

The preferential semantics of⊏
∼j is then defined as follows:

Definition 4. An ordered interpretation(I, {≤j: j ∈ J }) satisfies the preferential
subsumptionC ⊏

∼jD, written (I, {≤j: j ∈ J }) 
 C ⊏
∼jD, iff CI

j ⊆ DI , where

CI
j = {x ∈ CI : there is noy ∈ CI such thatx ≤j y andx 6= y}.

For brevity, we shall at times write≤J instead of{≤j: j ∈ J }. Preferential subsump-
tion satisfies the following three properties:

Supraclassicality: If(I,≤J ) 
 C ⊑ D then(I,≤J ) 
 C ⊏
∼jD for all j ∈ J .

Nonmonotonicity:(I,≤J ) 
 C ⊏
∼jD does not necessarily imply

(I,≤J ) 
 C ⊓ C′ ⊏
∼jD for anyj ∈ J .

Defeasibility:(I,≤J ) 
 C ⊏
∼jD does not necessarily imply(I,≤J ) 
 C ⊑ D for

anyj ∈ J .

It also satisfies the familiar properties of rational preferential entailment [13, 15] (when
expressible in the DL under consideration): Reflexivity, And, Or, Left Logical Equiva-
lence, Left Defeasible Equivalence, Right Weakening, Cautious Monotonicity, Rational
Monotonicity, and Cut.

3.2 Entailment of preferential subsumption statements

Satisfaction for defeasible subsumption is defined relative to a fixed, ordered interpre-
tation. We now take this a step further, and develop a generalsemantic theory of entail-
ment relative to a knowledge base using ordered interpretations. Note that, although the
knowledge base may contain preferential subsumption statements, entailment from the
knowledge base is classical and monotonic.



Definition 5. The preferential subsumption statementC ⊏
∼jD is valid, written|= C ⊏

∼jD,
iff it is satisfied by all ordered interpretations(I, {≤j: j ∈ J }).

Definition 6. A DL knowledge baseK entails the preferential subsumption statement
C ⊏

∼jD, writtenK |= C ⊏
∼jD, iff every ordered interpretation that satisfiesK also sat-

isfiesC ⊏
∼jD.

The following properties of⊏∼j are direct consequences of its corresponding properties
relative to a fixed, ordered interpretation:

⊏
∼j is supraclassical: IfK |= C ⊑ D then alsoK |= C ⊏

∼jD.
⊏
∼j is nonmonotonic:K |= C ⊏

∼jD does not necessarily imply thatK |= C ⊓C′ ⊏
∼jD.

⊏
∼j is defeasible:K |= C ⊏

∼jD does not necessarily imply thatK |= C ⊑ D.
The other properties of⊏∼j mentioned earlier relative to a fixed, ordered interpretation
extend analogously in the context of entailment relative toa knowledge base. For ex-
ample, reflexivity of⊏

∼j relative toK readsK |= C ⊏
∼jC.

4 Derived typicality of concept membership

In the previous section we presented a semantic framework tomodel typicality of con-
cept membership:≤j is a C-order if it ranks any object inC higher than any object
outside ofC. In a DL with value restrictions, we can write this as:C ⊑ ∀�j .C. We
now address the question of derived typicalityC-orders. We distinguish between two
possible approaches to resolve this problem:

1. Atomic composition: Here we use the atomic constituents or defining features of
the compound conceptC as building blocks. We combine their respective typicality
orders recursively, depending on the operators used in the syntactic construction of
C. SayC ≡ A ⊓ B, and typicality orders≤j and≤k are defined such that≤j is
anA-order and≤k is aB-order respectively. We may then form a new typicality
order forC by composing≤j and≤k according to some composition rule for⊓.

2. Feature composition: Here we identify the relevant features of the conceptC. For
each objecta belonging toC, we form a feature vector characterisinga. These
feature vectors are then used to determine the typicality ofa in C.

Irrespective of the composition rules applied, atomic composition is vulnerable to the
same criticisms that have been levied against localist, compositional cognitive models
of typicality of concept membership [16].

Feature composition is also compositional, but, in contrast with atomic composition,
it is not localist. That is, the typicality of a member of a concept may be influenced by
characteristic features that do not constitute part of the definition of the concept. For
example, the diet of penguins may be a relevant characteristic feature in determining
their typicality, but atomic composition cannot take this into account when determining
typicality unless this feature forms part of the definition of a penguin.

Atomic composition may be viewed as a restricted version of feature composition,
since any defining feature may be considered a relevant feature. Hence, we will only
consider feature composition further. We consider the definition of feature vectors, their
normalisation, and their composition.



4.1 Feature vectors

The features of a concept come in two guises: They are eithercharacteristic features,
co-determining typicality of objects in the concept, or they aredefining featuresof the
concept. In a DL extended with suitable preferential subsumption relations, characteris-
tic features may be introduced on the right-hand side of preferential subsumption state-
ments. For example, in the axioms given below, if⊏

∼1 is derived from thePenguin-
order≤1, then∀eats.F ish is a characteristic feature ofPenguin. Defining features
are introduced on the right hand-side of classical subsumption statements. For example,
in the following axioms,Seabird is a defining feature ofPenguin, so areBird and
∃eats.F ish. Similarly, Bird and∃eats.F ish are both defining features ofSeabird:
Seabird ≡ Bird ⊓ ∃eats.F ish; Penguin ⊑ Seabird; Penguin ⊏

∼1
∀eats.F ish.

The question arises whether relevant features should be determined algorithmically
through some closure operator, or whether their identification is a modelling decision.
While defining features can easily be derived from the knowledge base, this is not ob-
vious in the case of characteristic features. We therefore view the choice of relevant
features as a modelling decision, in accordance with a globalist view of concepts as
context sensitive. The choice of features relevant for a particular concept, and their re-
spective preference orders, are therefore determined by a subjective world view and
have to be re-evaluated in each new context. The following development assumes a
fixed ordered interpretation, even when some order is definedin terms of others.

Definition 7. A feature vector is an n-tuple of concepts〈CI
1 , . . . , CI

n〉 with correspond-
ing preference vector〈≤1, . . . ,≤n〉 such that≤j is a Cj-order, for 1 ≤ j ≤ n, and
weight vector〈w1, . . . , wn〉 such thatwj ∈ Z, for 1 ≤ j ≤ n.

We do not place any formal relevance restriction on the choice of elements of a
feature vector, as this is a modelling decision. We may even,for example, have two
feature vectors forFish, one for use in the fish shop, and one for the pet shop. We
may also define different preference orders for the same concept, for use in different
contexts. For example, miniature, colourful fish may be typical in a pet shop, but not
even relevant in a fish shop.

Next, we consider the normalisation of preference orders, which paves the way for
their composition.

Definition 8. Let〈CI
1 , . . . , CI

n〉 be a feature vector with corresponding preference vec-
tor 〈≤1, . . . ,≤n〉. The level of an objectx ∈ ∆I relative to preference order≤j, written
levelj(x), is defined recursively as follows:

levelj(x) :=















1 if x is ≤j -minimal inCI
j ;

0 if x is ≤j -maximal in∆I\CI
j ;

max{levelj(y) : y <j x} + 1 for non-minimal objects inCI
j ;

min{levelj(y) : x <j y}) − 1 for non-maximal objects in∆I\CI
j .

Definition 8 maps objects in the domain to integers. We note that the absence of
infinite≤j-chains ensures thatlevelj is defined on the whole of∆I . Given any feature
CI

j in the feature vector, Definition 8 assigns a positive level to all objects inCj , and



a non-positive level to all objects not inCI
j . In the case where≤j is a two-level order,

levelj(x) = 1 for x ∈ CI
j , andlevelj(x) = 0 for x 6∈ CI

j .
It is not difficult to see (given the modularity of the preference orders) that this

mapping preserves the relative order of elements in the corresponding preference order:

Proposition 1. For anyx, y ∈ ∆I , x ≤j y iff levelj(x) ≤ levelj(y).

We now have the required apparatus to compose the chosen preference orders of a
feature vector. We define the typicality of objects relativeto a given concept, based on
its relevant features. The weight vector may be used in two ways – to normalise the
preference orders so that they have the same range, or to adjust the relative importance
of each feature. Normalisation can be done without intervention from the modeller, and
resonates better with the qualitative approach to typicality followed so far in the paper.

The intuition of Definition 9 is that it ranks those objects that conform better to the
features ofC in terms of typicality on a higher level. The functionf first maps each
object in the domain to a non-negative integer. This inducesa modularC-order, say≤k,
on objects in the domain.

Definition 9. Given conceptC with feature vector〈CI
1 , . . . , CI

n〉, preference vector
〈≤1, . . . ,≤n〉 and weight vector〈w1, . . . , wn〉, let f : ∆I → Z

+

0 , such thatf(a) :=
Max{1,

∑n

j=1
(levelj(a) × wj)} if a ∈ CI and 0 otherwise, for any objecta ∈ ∆I .

The associated preference relation≤k on ∆I given by:a ≤k b iff f(a) ≤ f(b), for
somek ∈ J , is the typicalityC-order induced by the features, preferences and weights.

Our choice forf is not arbitrary, but there are alternatives, such as takingthe maxi-
mum of the input preferences instead of their sum. By choosing different functions for
different connectives, atomic composition can be simulated using feature vectors.

4.2 Example

We conclude this section with an illustrative example. Suppose we have the following
terminological statements:

Penguin ⊑ Bird ⊓ Flightless⊓ Aquatic (1)

Penguin ⊏
∼1

∀habitat.Southern (2)

Southern ⊑ ¬Equatorial (3)

GalapagosPenguin ⊑ Penguin (4)

Penguin ⊑ ∀�1 .P enguin (5)

∃habitat.Equatorial ⊑ ∀�2 .∃habitat.Equatorial (6)

Line (2) of the TBox states that the habitat of typical penguins is restricted to the
southern regions. Note that we cannot derive from (2) and (4)that the habitat of typical
Galapagos penguins is restricted to the southern regions. Lines (5-6) ensure that�1 and
�2 are indeed, respectively, aPenguin-order and an∃habitat.Equatorial-order. In
the ordered interpretationI satisfying this Tbox, and where�I

1 partitions objects into
typical penguins, atypical penguins, and non-penguins, wehave that:



level1(a) :=







2 if a is typical inPenguinI;
1 if a is atypical inPenguinI;
0 otherwise.

Suppose further that�I
2 is the modular default∃habitat.Equatorial-order that parti-

tions this concept into two classes. Thenlevel2(a) := 1 if a ∈ ∃habitat.EquatorialI,
0 otherwise.

We now construct a feature vector forGalapagosPenguin. We choosePenguin as
relevant defining feature, and∃habitat.Equatorial as relevant characteristic feature.
That is, a Galapagos penguin is a penguin whose distinctive characteristic is that it
occurs in the equatorial region. The feature vector forGalapagosPenguin is therefore
〈PenguinI, ∃habitat.EquatorialI〉. Its preference vector is〈≤1,≤2〉, and as weight
vector we choose〈1, 2〉 in order to normalise the ranges of≤1 and≤2. The resulting
derivedGalapagosPenguin-order is≤3, obtained from:

f3(a) :=























4 if a is typical inPenguinI anda ∈ ∃habitat.EquatorialI;
3 if a is atypical inPenguinI anda ∈ ∃habitat.EquatorialI;
2 if a is typical inPenguinI anda ∈ ∀habitat.(¬Equatorial)I ;
1 if a is atypical inPenguinI anda ∈ ∀habitat.(¬Equatorial)I ;
0 otherwise.

Note that the first case, i.e. wheref3(a) = 4, does not hold for any objecta, as it
contradicts terminological axiom (2) in the knowledge base. The following preferential
subsumption statement holds inI: GalapagosPenguin ⊏

∼3∃habitat.Equatorial.
So, typically, Galapagos penguins are found in the equatorial region, not exclusively

in the southern regions. Of course, in this example we could simply have stated this, but
the point is that defining and characteristic features may beused to derive composition-
ally the typicality of objects in a class based on chosen relevant features. Our example
gives a simple illustration of this claim.

5 Related work

Notions of typicality have been studied in a wide variety of contexts, most of them
beyond the scope of this paper. In the context of ontologies,Yeung and Leung [21]
proposed a model of graded membership, but their representation is not directly in terms
of DLs. Giordano et al. [7, 8] define a nonmonotonic extensionof the description logic
ALC to reason about typicality, while Grossi et al. [9] use contexts, modelled as sets of
DL models, to describe a version of typicality. In order to beable to determine similarity
between objects, Sheremet et al. [19] extend a DL with the constructors of the similarity
logic SL.

6 Conclusion

We presented a semantic framework for modelling object typicality in description log-
ics. In [3] we showed how reasoning with a single typicality order on the domain of



interpretation (and the induced defeasible subsumption relation) can be reduced to rea-
soning in a sufficiently expressive DL. This translation is also applicable when reason-
ing with typicality of individual concept members, as presented in this paper.

We also presented a proposal for deriving new typicality orders from existing ones
using feature vectors. Our proposal is compositional, and rooted in a globalist cognitive
stance on the semantics of typicality. The determination ofcompositional rules is there-
fore a modelling decision, unlike compound class membership, the meaning of which
can be completely determined from the meanings of its atomicconstituents. Implemen-
tation of feature vectors in a DL setting is a topic for further research.
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