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A general model of operation of vibratory gyroscopes, which is applicable to a broad class of instruments, including
cylindrical, disc and micro-machined gyros, is formulated on the basis of analysis of dynamics and control of a
hemispherical rescnator gyroscope. The foundations of feedback control in the gyroscopes are considered and
classification of the main oparational regimes is given in terms of the integral manifolds and new classes of nonlinear
parametric excitation forces are added. Qualitative effects of different classes of forces are analysed and conclusions
about the structure of nonlincar control forces are proposed. Specific imperfections of the vibratory gyroscopes,
operating in the whole regime, force-to-rebalance, travelling wave and combined regimes, are considered. The
curmulative effects of errors are represented as superposition of the effects of particular classes. A closed set of
integral manifolds is formulated, in terms of which the dynamics of a vibratory gyroscope is considered.

1. Kinematics of the Gyroscope

Location of an element £ on a spherical surface can be characterized by two
angles ¢ and 6; the rule of coordinates transformation is as follows (See Fig.1):

0éng —pm> 0oz, —a> 0wz 6
where O&n¢  is a reference coordinate system, connected with the resonator;

Ox,y,z, is a coordinate system, connected with the resonator and turned with
respectto O attheangle o;

Oxyz is a coordinate system, connected with the resonator and turned with
respectto Oy, attheangle &;

@ isa polar or azimuthal angle of the element dS;

6 is its latitudinal angle (Fig.1).

dS = R*sin@ d6dg

Fig.1.
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Absolute linear velocity:

V=V +7+Qx7 @)
where
0, (Q§ cos@+Q sin qp)cosé?—Qg sin @
0=|Q, |= ~Q, sing+Q, cos (3)
Q, (Qé cosp+£), singp)sin9+Qg cosf
and
ﬁx (I}; cosgo+V~',? sinqp)cos@—ﬁg siné
V= V:J = —V sinp+V, cosg . @)
: V.cosp+V, sing)sin@+V, cosd
5 " ¢
Qé.m§ Vf.n,s’ ;
We suppose that <<l and <<1, where @ is a natural frequency
@ @

of an operational mode. For this case, we neglect the centrifugal forces, and, hence,
vr=(a*+9" +w7 )20, [wv—v(R+w) |+ 20, [u(R+w)~viu |
+2Q, [vu—av]+2[aV, + 97, + WV, | ©
We also assume that »-th mode could be represented as follows:
u,(0,6,)= X, (6)] a,(f)cosnp+b, (¢)sinng ] ,
v,(9,6,0)=7, (9)[—@! (2)sinnp+5, (1) cosngp] , (6)

w {0,6,1)=Z, (Q)Ean (t)cosnp+b,()sin nqo] ;

where _
. 8 (0
X,(6)=-Y,{6)=-sinftan (EJ , Z,(6)=(n+cosf)tan (EJ . (7)
are the Rayleigh inextensional solutions (pseudo-bending).

2, Dynamics of the Gyroscope - 1: Lagrangian of the System

Let us consider a linear model of a particular vibrational mode of a vibratory
gyroscope in terms of Lagrange equations:

dfoL| oL _ o , dfor) o __ &
dt\éa, ) da, o4~ di\ob, ) ob, b,

n "

+0, ; 6))

where a=a,(t), b=b,(1), L=T-P isaLagrangian of n-th vibrational mode, 7 is
a kinetic energy, P is a strain energy, D 1is a Rayleigh damping function, Q

a,

L, isa
generalized forces, including control, noise, etc.

Kinetic energy of the system is as follows:

T = T(hcm) +T{tmcs) , (9)
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where TU*® s a kinetic energy of the hemispherical part of the resonator, 7""*) isa
kinetic energy of the tines assembly:

zﬂ/
e = H (0,0)R* (0,0)h(0,0)V* (0,6,1)sin 0 d6dg |
(1
271' ¥4
Ttmﬁ _ Vz BZ—t R
Zm [f;o. & 2’}’

i=1 t

where p(p,6) is a mass density of the resonator, R(p,8) is a radius of mid surface
of the resonator, h(@,0) is a thickness of the shell, V(,6,t) is a linear velocity, N,
is a number of tines.
Strain energy of the system is:
P = plem) o plecee) 4 plees) 4 plove) (11)

{exc-corr)

is an electric

(sens)

where P"™™) is an energy of the resonator’s hemispherical part, P
is
(ring)

field energy in the gaps between the resonator and exciting-forcing electrodes, P

an electric field energy in the gaps between the resonator and pick-off electrodes, P
is an electric field energy in the gap between the resonator and ring forcer electrode.

According to the Novozhilov’s theory of thin shells:

2% 2
= e (R

z(l_n(gp,e))[sl(w,@,:)52(gp,e,t)-“)2(‘”=9=‘)H+h2(“”9)[(x](¢,9,z)+x2(gp,e,z))2 (12)

4 12
~(1-1(0.8))(ks (0.6.0)x,(0,6.1)-7*(0,6,0)) || sin6 a0y,

where

louw 1 o4 w 1 ov 1 a4, w A 0 A o[ v
—+ ys—; gE——t——2ut+t—;, O=———|— |+——| |
A 08 AAd, 0p R A dp A4, 068 R A op\ A ) A dpl 4

&=

1 ( &w 1 04 6w 1aAZaw+ 1 au 1 84 - 1 dv 1aA,J;
200 A Bp 08 A, 98 e

A4, PRIV VAT 4,00 A4
(13}
and A1=R(G9;9); A2=R(§D=6)Sin9f RI:'RZZR(@’@)'

Other components of the strain energy are as follows:

e [f€(¢,6)+(h(¢,9)+,&m (@,9)%}2

{(exte- con] E,‘o U2 - SlﬂgdeQD ’
Z ‘ )J:. a,ZL) 8,(9.8)-w(0.01)
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_(h(0.6)+8,(0.0)) /T
pl=s) __ 5o Z v )T &) {R(Gﬂﬁ) 4 @ 4}

a () A, {0.0)+w(p,6,1)

2w (@) {R(¢,9)+(h(qo,9)+Ar(Qg)%}z

pls) = _Zogpry
2 (1) ;[ ale) A, (9,6)-w(p,0,1)

where N, is a number of pick-off electrodes, A, (.6), A, (9,0), A, {¢,6) are initial

sinfdfde ,

sin@d@dyp ; (14)

gaps between the resonator and exciting-correcting, pick-off, and ring electrodes
correspondingly,  U_(2),U.(1),U, () is a difference of potentials between the
resonator and exciting-correcting, pick-off, and ring electrodes correspondingly.

Rayleigh damping function is introduced phenomenologically as:

er% -2 2 22 .2
R +b a.-b N
D:D(an,bn):-o[ !‘d(gp,9)|:a"2 o "2 ”cosanp-&—anbnanngp} df8dg ,(15)

where d(p,8) is acoefficient of viscous damping.

3. Dynamics of the Gyroscope - 2: Perfect Gyro

Dynamics of perfect gyro is described by the following system of equations:

22 -2p0()% _p%0 L yazo |
£ dt dt (16)
d’b da  ,dQ(t) o
EE‘;"'ZﬁQ([) o +ﬁ70+(0 (t)b—O "

where Q(r) is a projection of angular rate of inertial rotation of the gyro on its input
axis (input angular rate), £ is a Bryan-Loper-Lynch factor, describing the Bryan-Loper-

Lynch effect, i.e., a rotation of a vibrating pattern with regards to the resonator at
presence of an inertial rotation of the gyro with variable input angular rate.

System (16) could be rewritten as

2 — e
d 4 +w2§=F(29£’tJ ;- (17)

dr’

where Ez(a,b)T =(F, b) _ZF (E ), with particular forces F, from the

following three classes:

1 Class; Gyroscopic forces:

ol du

(18)

dt

where y(f)=pQ(/).
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2 Class: Circular forces:
_ 0 1
F,(Z,1)=n(t) ” H ) (19)

-1 0
where n(1)=pQ(1).

3 Class: Spherical Potential forces:
_ 0o 1
F(2,0)=k(1) 1o Z, (20)

where k(f)}=0(1).

Classification of forces was first introduced by Thompson & Taight. It was
shown by academicians V. Zhuravlev and D. Klimov that this approach is very
convenient for the analysis of the vibratory gyroscopes dynamics.

4. Dynamics of the Gyroscope - 3: Influence of Imperfections

There are several classes of forces, which are responsible for particular
imperfections.

4 Class: Spherical Viscous Damping forces:
. (d3 1 0| dz

F, ﬂ,t =-20 gz ‘ (21)
dt 0 1| dt

where & is a viscous damping coefficient. These forces describe homogeneous
amplitude decaying effects.

5 Class: Hyperbolic Viscous Damping forces:
= (é) (4} =
. £ £
E d_Z,t —_a5 |5 18 _Cg_z_ ) (1)
at efn —en |

where & is a viscous damping coefficient. These forces describe inhomogeneous
amplitude decaying effects and depends on cosine (sgf)c) and sine (séi)g) 2n-th
harmonics of the viscous damping coefficient d(¢,8) (see (15)).

6 Class: Hyperbolic Potential forces:
{m-5) {m-s)
= &5 £
F(z)=-o0*| ™ 7% (22)
glms) _glms)
20§ e

(m

These forces describe influence of 2n-th cosine (£{".") and sine (£!"-*) mass-

stiffness imperfections on the gyro dynamics. They could also originate from residual
prestress in the structure, as well as from the radius of mid surface and thickness
variations of the resonator.

7 Class: Positional forces:

(23)
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These forces originate from #n-th harmonics of mass density, radius and
thickness imperfections of the resonator subjected to angular vibrations and projection
of linear vibrations on the input axis of the gyroscope. (n-1)-th and (n+1)-th

harmonics of mass density could also stipulate these forces in the resonator subjected to
angular vibrations and projections of linear vibrations on the plane orthogonal to the
input axis. First harmonic of mass imperfection generates these forces if the resonator
the inertial angular rate of rotation does not coincide with the input axis of the
gyroscope. Time dependent control forces could also generate the positional forces. In
all these cases the excitation frequency is close to the resonance frequency of the n-th
vibrational mode.

8 Class: Sphevical forces of Parametric Excitation:
. 10
RE)=p0)], |

These forces are used for excitation of a vibrating pattern in the run regime of the
gyroscope.

z . (24)

9 Class: Hyperbolic forces of Parametric Excitation:
) el

el e

F(z1)=4(1)

(25)

These forces originate from 27-th harmonic of the gap between the resonator and ring
forcer electrode. o

All the above described classes represent the linear forces. They are naturally
generated in the process of operating of the gyroscope. Now we describe some
additional nonlinear forces, which are mainly generated in the process of autonomous
control of the gyro as well as due to presence of nonlinear forces.

10 Class: Autonomous Nonlinear Positional forces:
~ _2 || cosax sine, | _
Fo(F)=hol2|"| . " oz, (26)
—-siney, cosay,
where |7 =a’+5".
11 Class: Autonomous Nonlinear Velocity forces:
2 .
. (d7 dz cosS ¢ sine | dz
F =kl 0 T @)
dit dt | |-sing, cosay| dt
212 .
where lE\ =’ +b.
12 Class: Autonomous Nonlinear Combined forces (1):
2 .
= (dZ . dz | ||cose,, sing,
E |22 7 =k, | ' 1z 12 (28)
dt dt | |~sine,, cosq,
13 Class: Autonomous Nonlinear Combined forces (2):
~ - cosa,, Sineoy,| dz
F, (E, E) _ k]3 |E|2 . 13 3 42 (29)
—sing,; cosa,| di

IS Lk e o iy o QR | AN AT R RN e SR
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14 Class: Autonomous Nonlinear Combined forces (3):

- (dz _ . dz
)it

where (zi—j} =aa+bb is ascalar (dot) product of vectors Z and

cosa,, sing, 50)

—-sing,, cosa,,

tay.

15 Class: Autonomous Nonlinear Combined forces (4):
= [ dZ dz
F|—,7|=k |- —

s ( dt ] . ( di ]

16 Class: Autonomous Nonlinear Combined forces (5):

5o Ao . dZ
Al )

cosay, sinq| dz 1)
dr

—singt,, COSe;

COs &, sing,
16 16 (32)

—singy, Ccosay,

L dZ ey -
where {z XE} =ab-ab is a modulus of the vector (cross) product of vectors z and
Z.

17 Class: Autonomous Nonlinear Combined forces (6):
. (dz [_ d7 || |cose, sing 3
Fo| 22,8 =k, || 2552 oo 7| 42 (33)
dt dt |} |-sing,, cosay,| df
18 Class: Autonomous Nonlinear Nodal Quadrature Positional forces:
_(d7 . [ g7 | lcose,, sing
Fol —,2 |=k,t| Zx— o ? (34)
dt di || |sincy; —cosay,
19 Class: Non-Autonomous Nonlinear Amplitude forces:
2 .
. (dz _ R L dz cosa,, sing,| .
E| Z2 5t |=ky| 2] +07 | = 0 Pl Zeos(2wt+y,) . (39)
dt dt —sinay, cOsa,
20 Class: Non-Autonomous Nonlinear Sine Rotational forces:

cosa sinc
® 2\ Feos{2at+yy,) , (36)

. (dz k 7Y
B %2 5,0 |= 2 m(27)+ 0™ Im 4z
dt 2 dt

where Z=a+ib isacomplex number, hence Z*=(a’ ~b2)+i(2ab).

SINQ,, —COS,

21 Class: Non-Autonomous Nonlinear Cosine Rotational forces:
: 2 .
. (dZ _ - dz cosy sina,, || _
EEE 51 |=k, Re(Z*)+o7 Re| | =~ o | Zoos(20t+yy, ).
dt dt sina,, —CoSay,

(37)

These forces are efficient at the stage of control laws synthesis for stabilization of
particular operational regimes.
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5. Integral Manifolds and their Normal Vectors

Analysis of vibratory gyroscope’s dynamics on the basis of integral manifolds
was proposed by V., Zhuravlev, In the present chapter we describe the main manifolds,
their normal vectors, and introduce a complete system of manifolds.

Solution of corresponding homogeneous system to system (17) is as follows:
a(t)=z, (f)cost+z,(f)sint,  b(t)=z,(t)cost+z,()sint (38)

(we assume that o =1). Hence, equation of ellipsein a, b are variables is

a (z32 + zf) +b° (zf +z§)—2a.l’)(zlz3 +2,2)=(z2,-2,2). (39)
See Fig.2. 5
W
Q
P

R g
a

Fig.2.

It follows from (39) that if zz,-2z,z,=0 the ellipse becomes the sector of

z,2;t 2,2,

2

straight line b=
& zl+ 2z

a (pure standing wave regime); if zz,4+z,z,=0 and

2z, —2,z, #0 the main axes of the ellipse coincide with Oa, Ob-axes (force-to-rebalance
regime); if zz,+2,2,=0 and =z +z; =1z +z; the ellipse degenerates into the circle

(zl 2,7 B2 )2

(pure travelling wave regime) a° +5° = ~———=
Z, + Z,

Hence, the main operational regimes could be characterized in terms of special
manifolds. :

Let us consider the Friedland-Hutton orthogonal representation of a vibrating
pattern:

w, ((p, o, w,t) = Pcosn(q)—é') cos (t - t,l/) + Qsinn(qo—é’)sin(t —-!;/) =
=a(8,y,t)cosnp+b(8,y,t)sinnp= (40)
= |:zl (9, y/) cost+z, (9, w) sin t:l cosAE -+ [23 (9, W) cost+z, (8, w) sin t:l sinng
where P, are amplitude of principal and quadrature standing waves, 8,y are their

orientation and phase correspondingly. They could be characterized through the
manifolds:

R2=P2+Q2=ZE+Z§+Z32+Z§, N=PQ=zz-2z,, {41)



General Problems of Dynamics and Control of Vibratory Gyroscopes 37

sin 2nd 2(7'1 23 +zzz4) sin 2y 2(21 2, +2324)
= = 7 ta.n2!// = =

tan 2ng T2 2 2 2 2 2 2
cos2nf  z/ +z; -z, -z, COS2y zy—z,+2z, —z,

Hence, for characterization of these values, it is enough to have six manifolds:
1
S:E(zf+z§+z§+z§-l), N=zz,-2,2,,

AC=%(ZE_Z§+Z§—23_]‘)J AS=22,+2z,,

RCz%(zf+z§—z32—zj—1), RS=zz,+z,2, . (43)
Of course, these manifolds are not independent:
4(N?+RS*)+(2RC+1)" = 4[N+ 4S*)+(24C +1)" = (25 +1)" . (a9)

A complete set of integral manifolds, which is enough for characterization of the
main operational regimes, is given in the table.

In this table, the normal to integral manifolds vectors are introduced as follows:

T
- oS oS oS of : T
= dS: —_———— e — = ,
s [azl "0z, Oz, Oz, i| (22222
T
~ ON 6N oN oN T
= dl\‘ = 3 > 3 = T 33T 2as 4 Ic. 45
fv =S [azl 0z, 0z, 624} Fotmma], e 4

Completeness of the manifold’s set means that the scalar products of two
arbitrary normal vectors results in a new manifold, which is linearly dependent on the
integral manifolds given in the table (Zhuravlev’s manifolds).

Table.
Number Integral Manifold Normal Vector
1 -
1. S=E(Zf+z§+z32+zj-l) esz[z],zz,z3,z4]T
- T
2, N=zz,-z,z, €, = [24,—23,—22,21]
- T
3. A=AS=zz,+zz, B =221, 24,2, |
1 - T
4, AC:E(“"}Z‘_ZQZ"'z:_zi_I) €4 :[z,,—zz,zb—zd]
- T
5. R=RS=zz +z,z2, Ers =23, 245 20,2,
1 .. T
6. RCZE(Z?"'ZE—Z;"_Z:—l) eﬁcz[zl,zz,—zy—zq]

. T
7. Tl=zz,~2,2, €r) =[23’_z4=21:_22]

CERRIRIER S ets
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1

_ 2 2 2 2 = T
8. 3’"2—5(21 —Zy = Z; +z4—1) €, =[z],-zz,-z3,z4]
— T
9, Ml=zz,+z,z, e =24, 25,25, 2]
- T
10. M2=z2z -2z, €2 = [22; 2y, _24:_23]

6. Classification of Main Operational Regimes

A. Whole Angle Standing Wave in Broad Sense (WA-SW-BS) Regime:
S—-0, N—>0, (46)
B. Whole Angle Standing Wauve in the Proper Sense (WA-SW-PS) Regime:
-0, N0, A—>0, (47)
C. Force-to-Rebalance in the Broad Sense (FIR-BS} Regime:
§—o0, R§ >0, (2RC+1=20). (48)
D. Force-to-Rebalance Standing Wave in the Proper Sense (FIR-SW-PS) Reginte:
§—>0, RS =0, N0, 49) -
E. Force-to-Rebalance Standing Wave in the Strict Sense (FTR-SW-SS) Regime:
S—0, RS >0, N->o, AS -0, (50
E. Traveling Wave (TW) Regime:
S—o0, RS 50, RC —>0. (51)

7. Stabilization of the Main Operational Regimes

In what follows we will use the method of stabilization of the main operational
regimes, proposed by V. Zhuravlev. That is why we will refer to the described methods
as to the Zhuravlev’s autonomous stabilization methods.

A. Whole Angle Standing Wave in Broad Sense (WA-SW-BS) Regime

This regime was originally considered by V. Zhuravlev. To ensure (46) we add
the following stabilization force to the right part of equation (17):

E,(3,6)=-8,S-&,N . (32)
It means that

as =(£§_.%J:(grad5.]7c):ES(—ESS—é'NN)=—S(25+1)—2N2,

dt\ dF
%= [g.%} = (grad N-F.) =, (&S ~,N)=-N (45 +1) . (53)
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There are four equilibrium points (% = % =0) for equation (53) (Fig.3):

1) S=0 N=0 (stable node);

2) S= —%, N=0 (unstable node) :
1 1
3,4) S= 7 N = iz (saddle points) . (54)

(-1/4,-1/4 (1/4, -1/4)

Complex values 0, -1/2)

Fig.3.

Explicit solution of system (53) with initial conditions S(7= 0)=S,, N{t=0)=N,

is:
s{t)= [5’0+2(S§—N§)(1_e-,)]e_t -
148, (1-e")+4($2 - NE) (1-¢7) -
N(!) Noe—x

) 1+48, (1-¢7)+4(S; —Ng)(l—e-’)2

For realization of this regime it is necessary to use the autonomous nonlinear
combined forces (2) of the 13t Class with k,=4, @, =0 and forces of negative

damping:

f:? +a={1—4(a1.+b2)]d—a ,

o p 6
_li_ 2, 12| 2
o~ +b=[1-4(a*+2)] ~
B. Whole Angle Standing Wave in the Proper Sense (WA-SW-PS) Regime
Using the analogy with the Case A, we assume:
E(20)=-8S-§N-¢,4 . (57)

In this case, the dynamics of the gyro in terms of integral manifolds is described
by the system:
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ds dN dA i
E=—S(25+1)—2(N2+A2); —d[—=—N(4S+I); E:—A(4S+1). (58)

The equilibrium points and lines in this case are (Fig.4):

) $=0, N=0, A=0 (stablenode) ;

2) §= _%, N=0, A4=0 (unstable node);

3 8= —%, N+ 4= % (saddle circle) . (59)

Fig4.

Exact solution of the initial problem S§{r=0)=S§,, N(r=0)=N,, A(r=0)=4, could
be obtained in a similar way as (55):

S(0)= [SO+2(S§——N§—Aﬁ)(l—e")]e"
1448, (1-e )+ 4(82 - N2 - £ (1-e)’

r

N,e™
1+48, (1-¢™)+4(S: - N; ~A§)(1—e-')2

N(n)= ,
A,

Al =
g 1+4So(l—e")+4(S§—Nj—Aﬁ)(l—e")z

(60)

C. Force-to-Rebalance in the Broad Sense (FTR-BS) Regime
To stabilize regime (48) we apply the following correcting force:
F(3,0)=-8,S-&R . (61)
The analysis is similar to (52)-(56).
D. Force-to-Rebalance Standing Wave in the Proper Sense (FTR-SW-PS) Regime
This regime (49) is stabilized by force:
F,(Z,0)=~&;S — & R—-eyN 2)
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and the analysis is similar to (57)-(59).
E. Force-to-Rebalance Standing Wave in the Strict Sense (FIR-SW-55) Regime
This regime (50) is stabilized by force:
F.(2,1)=-8S-&R-é,N-E€A . (63)
In this case, the manifold’s evolution is described by the system:

dS dN
E=—S(28+1)—2(N2+A2+R"), — =N (s+1),

a
dt

=—A(45+1)-2MR , %:—R(4S+1)—2M; (64)

where manifold M =z,z, +z,z, isnotindependenton S§-, N-, 4- and R-manifolds:

[(25+1) —4N° Jar? —4AR(ZS+1)M+{4N“ +[4(£+R7)- (25 +1)" | W7 +4A3R2} 0. (65)

E. Traveling Wave (TW) Regime
Regime (51) is stabilized by the following control force:
F.(2,1)=—€; S —&; RS~ &, RC , (66)

and analysis is similar to (57)-(59).

8. CONCLUSIONS
1. Tt is shown that the main operational regimes of vibratory gyroscopes could be
formulated in terms of the integral manifolds.

2. This approach substantially simplifies synthesis of the corresponding correction
laws, which stabilize vibrating patterns in particular operational regimes.

3. The main advantage of the above-mentioned correction-stabilization laws is that
they ensure the global stability of the operational regimes.

4. Qualitative behavior as well as the explicit solutions of nonlinear system of
equations describing particular operational regimes is obtained.

5. The main results discussed in the present paper are applicable to a broad range of
vibratory gyroscopes.




