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Abstract 
 The parametric electrode is normally used in the hemispherical resonator gyroscopes, operating 
in the whole angle regime, for maintaining of amplitudes of vibratory patterns. It is well known that due 
to variation of the gap between the resonator and parametric electrode a drift of the vibrating pattern is 
obtained. This drift is similar to the gyro drift stipulated by the Q-factor imperfections and substantially 
deteriorates the quality of the hemispherical resonator gyroscope. In the present paper we consider the 
methods of compensation of these drifts by means of the special control of the vibrating pattern by the 
sectioned parametric electrode. Compensation of the drifts is achieved through amplitudes of voltage and 
phase manipulations at the sectioned parametric electrodes. The side effect of this control is discussed 
consisting of spurious splitting of frequencies of the vibrating pattern. 

 
Introduction 
 
 Basics of the vibratory gyroscopes are given in [1] and [2]. The principles of operations of the 
hemispherical resonator gyroscopes with electric circuits are explained in [3]. The method of the 
quadrature signal suppression is described in [4]. In [5] the author considered the general ideology of the 
compensation of the difference in the Q-factor. In the present paper we give the detailed analysis of the 
electro-mechanical model of the gyroscope and show that functions of the amplitude stabilization and 
compensation of both the quadrature component and the Q-factor difference could be realized by means 
of the proper control of the discrete parametric drive. 
 
Model of Thin Shell Resonator 
 
 Assume that a thin hemispherical shell with a fixed pole is subjected to simultaneous vibration 
and rotation about its axis of symmetry (Fig. 1). Angular rate of inertial rotation is supposed to be small 
comparison to the lowest eigenvalue ( )minωΩ << . In this case all the dynamical effects proportional to 

the square of the inertial angular rate ( )2 0Ω ≈ , such as centrifugal forces, could be neglected. The mid 

surface radius R  and thickness of the shell h  are supposed to be constant. A particular point on the mid 
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surface of the shell is characterized by the pair of angles ϕ  and θ . Mass density of the shell is not 
constant and for the sake of simplicity suppose that a function of the azimuthal angle ϕ  is given by : 

( ) ( )0
1

cos sinnc ns
n

n nρ ϕ ρ ε ρ ϕ ρ ϕ
∞

=
= + +∑     (1) 

where parameter ε  is small (0 1ε< << ). 
 A similar assumption is made for the damping coefficient distribution: 

( ) ( )0
1

cos sin .nc ns
n

d d d n d nϕ ε ϕ ϕ
∞

=
= + +∑     (2) 

Let a specific vibration, corresponding to the circumferential wave number m  is sustained: 

( ) ( ) ( ) ( ), , cos sinm mu t X a t m b t mθ ϕ θ ϕ ϕ=  +    

( ) ( ) ( ) ( ), , sin cosm mv t Y a t m b t mθ ϕ θ ϕ ϕ= − +         (3) 

( ) ( ) ( ) ( ), , cos sinm mw t Z a t m b t mθ ϕ θ ϕ ϕ=  +    

where ( )mX θ , ( )mY θ , ( )mZ θ - Rayleigh’s inextensional deformations of the shell: 

( ) ( ) ( ) ( )sin tan , sin tan , cos tan
2 2 2

m m m
m m mX X Y Y Z Z m

θ θ θθ θ θ θ θ θ     = = − = = = = +     
     

       (4) 

It is supposed that the vibration is realized in the vicinity of one of eigenvalue ( )ω , corresponding to m , 

and that the effect of parametrical resonance is used for maintaining the amplitude of vibrations. 
The amplitude of the vibration of the shell is maintained by means of the energy delivered through the 
electric field in gaps between the shell and a system of discrete electrodes surrounding the shell. The gaps 
between the shell and electrodes are constant and equal ∆ . 
There exist a constant difference of electric potentials between the shell and electrodes and exiting 
voltage has the form of meander and varies with double frequency of the shell vibrations. By means of 
this driving the effect of parametric resonance excitation is achieved. 
 
Kinetic, Strain, and Electric Energies of the System 

 
The kinetic energy of the shell is given by  

( ) ( )
22 2

2

0 0

sin
2

shell hR
T V d d

ππ

ρ ϕ θ θ ϕ= =∫ ∫ ( ) ( ) ( ) ( ) ( )
2 2

2 2 2 2 20

0

sin
2 m m m

hR
X Y Z d a t b t

π
πρ θ θ θ θ θ
 
    + + +    
  

∫ &&  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
2 2

2 2 2 2 2
2 2

0

sin 2
4 m m m mc ms

hR
X Y Z d a t b t a t b t

π
π θ θ θ θ θ ρ ρ
 
      + − + − +      
  

∫ & && &  

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2
0

0

2 cos sin sinm m mhR X Z Y d a t b t a t b t

π

πρ θ θ θ θ θ θ θ
 
    − ⋅Ω ⋅ + −   
  

∫ &&         (5) 

where angles ϕ  and θ  define the location of an element on a mid surface of the shell. 

 In the context of the Gol’denveyzer-Novozhilov theory of thin isotropic shells subjected to 
inextensional deformations, the strain energy is as follows: 
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( ) ( )
023 2

2 2 2
1 1 1 22

0 0

2 2 1 sin
24 1

Eh R
P d d

θπ
κ κ η κ κ η τ θ θ ϕ

η
 = + + + − − ∫ ∫    (6) 

where E is the modulus of elasticity, η  Poisson’s ratio, 1κ , 2κ , and τ  are strain components in the 

Gol’denveyzer-Novozhilov theory, which are, by using expressions (3) in the case of a spherical shell, 
given by: 

( )
2

1 2 2

1
cos sin ,

dX d Z
a m b m

dR d
κ ϕ ϕ

θ θ
 

= − + 
 

 

( )
2

2 2 2

1
cot cot cos sin ,

sin sin

m m dZ
X Y Z a m b m

dR
κ θ θ ϕ ϕ

θ θθ
 

= − + − + 
 

  (7) 

( )2

1 cot
cot sin cos

sin sin sin

m m dY m dZ
X Y Z a m b m

d dR

θτ θ ϕ ϕ
θ θ θ θ θ

 = − + + − − + 
 

 

(we omit indexes “m” for the sake of simplification of the notation). 
 Finally, the strain energy of the hemispherical shell (6) is as follows: 

( ) ( )
( ) ( ) ( )

222 2 3
2

2 2
2 3

0

tan1 2
.

6 1 sin

m

hem
m m Eh

P d a t b t
R

π
θ

π
θ

η θ

  
  −    = ⋅ ⋅ +   + 

  

∫   (8) 

 For derivation of the electric energy of the system we assume that the system of N ( 8N m= ⋅ , 
where m - circumferential wave number) electrodes surrounding the shell and equidistantly located from 
the outer side. Every electrode has an angular measure in ϕ  - direction equals to 2 ϕ∆ . Hence, the centres 

of the electrodes are located at the angles 0 , 2
N

π , 4
N

π , ... , ( )2 1N
N

π −
. In the θ - direction, the 

electrodes are restricted by angles 1θ  and 2θ  ( 1 20 2
πθ θ θ< ≤ ≤ ≤ ). Let ( ),iU t ϕ   be the difference of 

electric potentials between the shell and the i - electrode. Gaps between the shell and electrodes are 
homogeneous and equal ∆  and the quasi-electrostatic field is concentrated in these gaps. The electric 
energy of the quasi-electrostatic field is described by the expression: 

( )2 2

1 1

22
0

1

,
sin

2

i

i

N
i

i

U tR
W d d

w

ϕ θ

ϕ θ

ϕε θ θ ϕ
=

=
∆ −∑ ∫ ∫ ( ) ( ){ ( ) ( )2

1

2 22
2 2 2 2 20

1 2 3 43
sin 2

2m

a t b tR
Z d m V V V V

θ

θ

ε θ θ θ ϕ
  +

= ∆ + + + 
∆   

∫  

( ) ( ) ( ) ( )
2 2

2 2 2 2
1 2 3 4

8
sin 2

2

a t b tm
V V V V t

ϕ ω
π

+∆+ ∆ + ∆ + ∆ + ∆ ⋅ ⋅  

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2 2 2
1 3 2 4sin 2

2

a t b t
m V V V V a t b tϕ

 −
+ ∆ − + − 

  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

2 2 2 2
1 3 2 4

4sin 2
sin 2

2

m a t b t
V V V V a t b t t

ϕ
ω

π
 ∆ − + ∆ − ∆ + ∆ − ∆  

    
  (9) 

where 2 1 2i iϕ ϕ ϕ− = ∆ , 0ε  is the absolute di-electric permittivity, ( )1
2R R h= + + ∆ , and 

( ) ( ) ( )0, ,i i iU t U U tϕ ϕ ϕ= + ∆  the difference of the electric potentials between the shell and the i - 
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electrode, where ( )0iU ϕ  is the time independent component of the voltage, and ( ),iU t ϕ∆  is the time 

dependent meander-shaped signal with half-period compare to the shell frequency (parametric excitation). 

It is more convenient to consider the square of ( ) ( ) ( )2 2 2
0, ,i i iU t V V tϕ ϕ ϕ= + ∆ , where the following 

notation is used: ( ) ( ) ( )2 2 2
0 0, ,i i iV t U U tϕ ϕ ϕ= + ∆ , ( ) ( ) ( )2

0, 2 ,i i iV t U U tϕ ϕ ϕ∆ = ⋅ ⋅ ∆ . Hence, 

( ) ( )2 2
0 ,i iV V tϕ ϕ≥ ∆ , and equality is possible in the special case if  ( )0iU ϕ  equals the amplitude of 

( ),iU t ϕ∆ . Furthermore it is supposed that 8N m= ⋅  electrodes are combined in four groups of 2 m⋅  

electrodes and each group form a 2 m⋅  regular polygon. Furthermore, assume that the voltages applied to 

every electrode of a particular group are the same and equal to jV , where 1,2,3,4j =  is the number of the 

corresponding group: 

• For the first group (1 0ϕ = , 2 m
πϕ = , 2

2
m

πϕ = , ... , ( )
2

2 1
m

m
m

πϕ −= ): 

( ) ( ) ( ) ( )
22

2 2 2 1
1

1

4 2 2
, sin 2 sin 2 cos2m

m

i i
i

V m
V V t V t m

ϕϕ ϕ ω ϕ ϕ
π π π=

 ∆ ∆   + ∆ = + + ∆       
∑ , 

• For the second group (2 1 4m m
πϕ + = , 2 4m m

π πϕ = + , 2
2

4m m
π πϕ = + , ... , 

( )
2

2 1
4m

m
m m

ππϕ −= + ): 

( ) ( ) ( ) ( )
24

2 2 2 2
2

2 1

4 2 2
, sin 2 sin 2 sin 2m

m

i i
i m

V m
V V t V t m

ϕϕ ϕ ω ϕ ϕ
π π π= +

 ∆ ∆   + ∆ = + + ∆       
∑ , 

• For the third group (2 1 2m m
πϕ + = , 2 2m m

π πϕ = + , 2
2

2m m
π πϕ = + , ... , 

( )
2

2 1
2m

m
m m

ππϕ −= + ): 

( ) ( ) ( ) ( )
26

2 2 2 3
3

4 1

4 2 2
, sin 2 sin 2 cos2m

m

i i
i m

V m
V V t V t m

ϕϕ ϕ ω ϕ ϕ
π π π= +

 ∆ ∆   + ∆ = + − ∆       
∑ , 

• For the fourth group (2 1
3

4m m
πϕ + = , 2

3
4m m

π πϕ = + , 2
3 2

4m m
π πϕ = + , ... , 

( )
2

2 13
4m

m
m m

ππϕ −= + ): 

( ) ( ) ( ) ( )
28

2 2 2 4
4

6 1

4 2 2
, sin 2 sin 2 sin 2m

m

i i
i m

V m
V V t V t m

ϕϕ ϕ ω ϕ ϕ
π π π= +

 ∆ ∆   + ∆ = + − ∆       
∑ . 

 
Rayleigh Dissipative Function 
 
 Damping effects of the shell are introduced by means of the Rayleigh dissipative function: 

( )( )
22 2

2 2 2

0 0

sin
2

hR
D d u v w d d

ππ
ϕ θ θ ϕ= + +∫ ∫ & & & = ( ) ( ) ( ) ( ) ( )2 22

2 2 2 2
0

0

sin
2m m m

a t b t
hR d X Y Z d

π

π θ θ θ θ θ
  +  + +  
  

∫
&&

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2 22 2

2 2 2
2 2

0

sin
2 2m m m mc ms

a t b thR
X Y Z d d d a t b t

π
π θ θ θ θ θ
  −   + − + +   

    
∫

&&
&&  (10) 
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Lagrangian of the System and Equations of the Vibrating Pattern 
 
 The Lagrangian of the system is as follows: 

( ). , ,L T P W L a b a b= − + = &&      (11) 

where kinetic energy ( )T , potential energy ( )P , and electric energy ( )W are given by expressions (8), 

(8), and (9) correspondingly. 
 The Euler-Lagrange equations of motion are 

d L L D

dt a a a

∂ ∂ ∂  − = − ∂ ∂ ∂ & &
,  

d L L D

dt bb b

∂ ∂ ∂  − = −  ∂∂ ∂ & &
   (12) 

where the Rayleigh dissipative function is given by (10). 
 Substituting the corresponding expressions for energies and dissipative function in equations (12) 
we obtain the following system of equations: 

( ) ( ) ( )2 2
1 1 2 2 3 31 2 1 2 1 2C S C S C Sa b a b a b bε ε εδ εδ ω ε ω ε εη+ ∆ + ∆ + + ∆ + ∆ + − ∆ − ∆ − Ω&& & &&& &  

( ) ( ) ( )0 2 2sin 2 sin 2 sin 2 0C Sp a t p a t p b tε ω ε ω ε ω− − − = , 

( ) ( ) ( )2 2
1 1 2 2 3 31 2 2 1 1 2S C S C S Ca b a b a b aε ε εδ εδ ω ε ω ε εη∆ + − ∆ + ∆ + −∆ − ∆ + + ∆ + Ω&& &&& & &  

( ) ( ) ( )0 2 2sin 2 sin 2 sin 2 0S Cp b t p a t p b tε ω ε ω ε ω− − + =         (13) 

where ε is a small parameter characterizing “smallness” of the corresponding effects in the system and 

2 1
1

0 0

mc
C

I

I

ρε
ρ

∆ = , 2 1
1

0 0

ms
S

I

I

ρε
ρ

∆ = , 2

0

2I

I
εη Ω = Ω , 2

0

2 mcd

d
ε δ = , 2 1

2
0 0

2
2

mc
C

d I

I
ε δ

ρ
∆ = , 2 1

2
0 0

2
2

mc
C

d I

I
ε δ

ρ
∆ = , 

( )
( )

22 2 2

2 3 1 4
4 2

0 0 00

1

1

m m h I IE

I IR hR

σω
η ρ π ρ

−
= −

+
, 2 2 4

3 2
00

C

I

IhR

σω ε
π ρ

∆ = , 

2 3 4
3 2

00
S

I

IhR

σω ε
π ρ

∆ = , 1 4
0 2

00

I
p

IhR

σε
π ρ

∆
= , 2 4

2 2
00

C

I
p

IhR

σε
π ρ

∆
= , 3 4

2 2
00

S

I
p

IhR

σε
π ρ

∆
= , 

( ) ( ) ( )
0

2 2 2
1

0

1
sin

2 m m mI X Y Z d
θ

θ θ θ θ θ = − + ∫ , ( ) ( ) ( )
0

2
0

cos sin sinm m mI X Z Y d
θ

θ θ θ θ θ θ θ = + ∫ , 

0

2

3 3
0

tan
1 2
2 sin

m

I d
θ

θ

θ
θ

 
 
 = ∫ ,     ( )

0
2

4
0

sinmI Z d
θ

θ θ θ= ∫ , ( )
2

2 2 2 2 0
1 1 2 3 4 3

2
R

V V V V m
εσ ϕ= + + + ∆

∆
, 

( ) ( )
2

2 2 0
2 1 3 3

sin 2
R

V V m
εσ ϕ= − ∆

∆
, ( ) ( )

2
2 2 0

3 2 4 3
sin 2

R
V V m

εσ ϕ= − ∆
∆

,

( )
2

2 2 2 2 0
1 1 2 3 4 3

8R m
V V V V

ε ϕσ
π
∆∆ = ∆ + ∆ + ∆ + ∆

∆
, ( ) ( )

2
2 2 0

2 1 3 3
sin 2

R
V V m

εσ ϕ∆ = ∆ − ∆ ∆
∆

,   

( ) ( )
2

2 2 0
3 2 4 3

sin 2
R

V V m
εσ ϕ∆ = ∆ − ∆ ∆

∆
. 

 Solving the equations of system (13) with respect to a&& , b&&  and neglecting terms of order ( )2O ε  

we obtain the following system: 
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( )2
1 , , ,a a F a b a bω ε+ = &&& & , ( )2

1 , , ,b b F a b a bω ε+ =&& &&     (14) 

where 

( ) ( )
( ) ( ) ( )

2 2
1 2 2 1 1

0 2 2

, , , 2 2 1 2

sin 2 sin 2 sin 2

C S C S

C S

F a b a b b a b a b

p a t p a t p b t

η δ δ ω ω

ω ω ω

= Ω − + ∆ − ∆ + ∆ + ∆

+ + +

& & && &

 

( ) ( )
( ) ( ) ( )

2 2
2 2 2 1 1

0 2 2

, , , 2 2 2 1

sin 2 sin 2 sin 2

S C S C

S C

F a b a b a a b a b

p b t p a t p b t

η δ δ ω ω

ω ω ω

= − Ω − ∆ − −∆ + ∆ − ∆

+ + −

& && & &

      (15) 

where 2 2C C∆ = ∆ , 2 2S S∆ = ∆ , 1 1 3C C C∆ = ∆ + ∆ , 1 1 3S S S∆ = ∆ + ∆ . 

Let us represent the vibrating pattern ( )Z  of the mode with circumferential wave number m  as follows: 

( ) ( ) ( ) ( )cos sin cos sin sin cosZ a m b m P m Q mϕ ϕ ϕ θ ζ ψ ϕ θ ζ ψ= + = − − + − −   (15) 

where tζ ω= . It follows from this representation that 

( ) ( )cos sin sin cosa P m Q mθ ζ ψ θ ζ ψ= − − − ,   ( ) ( )sin sin cos cosb P m Q mθ ζ ψ θ ζ ψ= − + − ,     (16) 

( ) ( )cos cos sin sina P m Q mω θ ζ ψ θ ζ ψ=  − + −  & ,  ( ) ( )sin cos cos sinb P m Q mω θ ζ ψ θ ζ ψ=  − − −  
&  

 It follows from (36|) that 

( ) ( ){ cos cos sin sina P m Q mω θ ζ ψ θ ζ ψ= − + −&&&& ( ) ( )sin cos cos sinm P m Q mθ θ ζ ψ θ ζ ψ+ − − + −  
&  

( ) ( ) ( ) }cos sin sin cosP m Q mω ψ θ ζ ψ θ ζ ψ+ − − − + −  & , 

( ) ( ){ sin cos cos sinb P m Q mω θ ζ ψ θ ζ ψ= − − −&& && ( ) ( )cos cos sin sinm P m Q mθ θ ζ ψ θ ζ ψ+  − + −  
&  

( ) ( ) ( ) }sin sin cos cosP m Q mω ψ θ ζ ψ θ ζ ψ+ − − − − −  &           (17) 

 Substituting (16) – (17) into (14) and solving the resulting system with respect to , ,P Q mθ& && , and 

ψ& we obtain: 

( )1 2cos sin cosP F m F m
ε θ θ ζ ψ
ω
 = + − 

& ,     ( )1 2sin cos sinQ F m F m
ε θ θ ζ ψ
ω
 = − − 

& , (18) 

( ) ( ) ( ){ }1 2 1 22 2
sin cos cos cos sin sinm F m F m P F m F m Q

P Q

εθ θ θ ζ ψ θ θ ζ ψ
ω

   = − − − − + −   −
& , 

( ) ( ) ( ){ }1 2 1 22 2
sin cos cos cos sin sinF m F m Q F m F m P

P Q

εψ θ θ ζ ψ θ θ ζ ψ
ω

   = − − + + −   −
&  

 where ( )1,2 1,2 , , ,F F P Q θ ψ=  is the result of substitution (16) into (15). 

 
Solution of the system by using the method of averaging 

 
Let us use the method of averaging for the solution of system (18). This method is based on a 

representation of the right hand side of the equation by functions which are averaged with respect to the 
“fast variable” tζ ω= : 

( ) ( ) ( ) ( )
2 2 2 2

0 0 0 0

1 1 1 1
, , ,

2 2 2 2
P P d Q Q d d d

π π π π
ζ ζ θ θ ζ ψ ψ ζ

π π π π
= = = =∫ ∫ ∫ ∫& & & && & & &   (19) 
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The result of the averaging of the right hand side of the principal amplitude derivative of the 
vibrating pattern is as follows: 

[ ] [ ]2 2 1 11 cos2 sin 2 sin 2 cos2
2C S C S

Q
P P m m m m

ωε δ θ θ θ θ= − + ∆ + ∆ − ∆ − ∆


&      (20) 

[ ] [ ]0 2 2cos2 cos2 cos2 sin 2 sin 2 sin 2 cos2 cos2 sin 2
4 4 4

C Sp p p
P P m Q m P m Q mψ θ ψ θ ψ θ ψ θ ψ

ω ω ω
+ + − + + 


 

After averaging, the dynamics of the quadrature amplitude of the vibrating pattern is: 

[ ] [ ]2 2 1 11 cos2 sin 2 sin 2 cos2
2C S C S

P
Q Q m m m m

ωε δ θ θ θ θ= − − ∆ − ∆ + ∆ − ∆


&      (21) 

[ ] [ ]0 2 2cos2 sin 2 sin 2 cos2 cos2 cos2 sin 2 sin 2 cos2
4 4 4

C Sp p p
Q P m Q m P m Q mψ θ ψ θ ψ θ ψ θ ψ

ω ω ω
− + − + + + 


 

 The result of averaging of the precession rate of the vibrating pattern is as follows: 

[ ] [ ]
2 2

2 2 1 12 2 2 2
sin 2 cos2 cos2 sin 2C S C S

P Q PQ
m m m m m

P Q P Q
θ ε η δ θ θ ω θ θ

 += − Ω + ∆ − ∆ − ∆ + ∆ − −

&  

[ ]0
2 22 2

1
sin 2 sin 2 cos2 cos2 .

2 4 C S

p PQ
p m p m

P Q
ψ θ θ ψ

ω ω


+ + − + − 
     (22) 

Finally the dynamics of the phase shift of the vibrating pattern is described by the following 
averaging expression: 

[ ] [ ]
2 2

2 2 1 12 2 2 2

2
sin 2 cos2 cos2 sin 2

2C S C S

PQ P Q
m m m m

P Q P Q

ωψ ε δ θ θ θ θ
 += − ∆ − ∆ + ∆ + ∆ − −

&  

2 2
2 2

0 2 2

1
cos2 sin2 sin 2 .

4 4 4
C Sp pP Q

p m m
P Q

θ θ ψ
ω ω ω

 + − + +  −   
      (23) 

 Let us assume that the gyro control system guarantee smallness of the quadrature amplitude ( )Q  

and the phase shift ( )ψ . In this case equations (20) – (23) could be simplified to: 

[ ] [ ]2 2 0 2 2

1
1 cos2 sin 2 cos2 sin 2

4C S C SP P m m p p m p mε δ θ θ θ θ
ω

 ≈ − + ∆ + ∆ + + + 
 

& , 

[ ]1 1sin 2 cos2
2 C S

P
Q m m

ωε θ θ ≈ ∆ − ∆ 
 

& , 

[ ] [ ]2 2 2 2

1
sin 2 cos2 sin 2 cos2

4C S C Sm m m p m p mθ ε η δ θ θ θ θ
ω

 ≈ − Ω + ∆ − ∆ + − + 
 

& , 

[ ]1 1cos2 sin 2 .
2 C Sm m
ωψ ε θ θ ≈ ∆ + ∆ 
 

&    (24) 

 It follows from the first equation of (24) that the damping effects of the resonator could be 

compensated by means of proper control of the vibrating pattern: angle ( )θ , is the independent decay of 

the principal amplitude and is compensated by the averaged parametric excitation, hence 0 0
4

pδ
ω

− + → . 

Furthermore the angle dependent decay of the principal amplitude is compensated by the asymmetric 
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parametric excitation, i.e. 2
2 0

4
C

C

pδ
ω

− ∆ + →  and 2
2 0

4
S

S

pδ
ω

− ∆ + → . Keep in mind that in this case the 

angle-dependent drift is compensated as it follows from the third equation of (24) and mθ εη→ − Ω&  

which corresponds to the pure Bryan effect. For the suppression of the quadrature component ( )Q , it is 

possible to manipulate with the components 3C∆ , 3S∆  so that 

( ) ( )2 2
3 2 1 3 sin 2C V V Q mσ θ∆ ∆ − ∆ −� � � , ( ) ( )2 2

3 3 2 4 cos 2S V V Q mσ θ∆ ∆ − ∆� � �     (25) 

and hence, 

( )3 sin 2C kQ mθ∆ = − ,  ( )3 cos 2S kQ mθ∆ =    (26) 

where k is coefficient of proportionality. In this case, as it follows from (21) and (24): 

0 0
2 2

p P
Q k Q

ωε
ω

 ≈ − + → 
 

&      (27) 

All other terms in (21) could be considered as perturbing terms. 
For the realization of the control 0ψ →  it is possible to use a reference phase generator which generates 

the reference excitation signals so that 0ψ ≈ . 

 
Conclusions 
  

The electromechanical model of the hemispherical resonator gyroscope is considered. It is shown 
that the main control functions of maintaining the vibration amplitude, compensation of the quadrature 
signal, and the suppression of the gyro drift due to the difference in the Q-factor could be realized by the 
discrete electrodes parametric drive. 
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