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Abstract

The parametric electrode is normally used in the hemispherical resonator gyroscopes, operating
in the whole angle regime, for maintaining of amplitudes of vibratory patterns. It is well known that due
to variation of the gap between the resonator and parametric electrode a drift of the vibrating pattern is
obtained. This drift is similar to the gyro drift stipulated by the Q-factor imperfections and substantially
deteriorates the quality of the hemispherical resonator gyroscope. In the present paper we consider the
methods of compensation of these drifts by means of the special control of the vibrating pattern by the
sectioned parametric electrode. Compensation of the drifts is achieved through amplitudes of voltage and
phase manipulations at the sectioned parametric electrodes. The side effect of this control is discussed
consisting of spurious splitting of frequencies of the vibrating pattern.

I ntroduction

Basics of the vibratory gyroscopes are given ingdddl [2]. The principles of operations of the
hemispherical resonator gyroscopes with electricudis are explained in [3]. The method of the
guadrature signal suppression is described inf4p] the author considered the general ideologthe
compensation of the difference in the Q-factorthe present paper we give the detailed analystheof
electro-mechanical model of the gyroscope and sthaw functions of the amplitude stabilization and
compensation of both the quadrature component taa®tfactor difference could be realized by means
of the proper control of the discrete parametrigedr

M odel of Thin Shell Resonator

Assume that a thin hemispherical shell with adiymle is subjected to simultaneous vibration
and rotation about its axis of symmetry (Fig. lpg@lar rate of inertial rotation is supposed tcshwll

comparison to the lowest eigenval@@ << %in)- In this case all the dynamical effects propomiatio

the square of the inertial angular r4@2 =O), such as centrifugal forces, could be neglectée. fid
surface radiusR and thickness of the shédll are supposed to be constant. A particular poirthermid
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surface of the shell is characterized by the phiargles ¢ and 8. Mass density of the shell is not
constant and for the sake of simplicity supposeatanction of the azimuthal angig is given by :

P(8) = 00+ €3 (90 COSNP + 0, SiTNP) (1)
n=1

where parametet is small 0< & <<1).
A similar assumption is made for the damping doigfifit distribution:

d(¢)=d,+ Ei(dm cosng +d,, sinng) )
n=1
Let a specific vibration, corresponding to the girderential wave numben is sustained:
Uy, (t.6.6) = X, (6)[ a(t) cosmg +b(t) sinmg |
Vin(1,6,0) = m( 6)[ -a(t) sinmg +b(t) cosmg | 3)

w,,(t,6,4)=2,(6)[ a(t) cosmg +b(t) sinmg |
where X, (6), Y, (8). Z,,(6) - Rayleigh’s inextensional deformations of the khel

X = X,,(6) = -sing tann(g], Y=Y, (8)= sird taﬁ(gj 222,(0)=(m+ ) tﬁ){%) @)

It is supposed that the vibration is realized ia tictinity of one of eigenvalu(aa)) , corresponding tam,

and that the effect of parametrical resonancead fr maintaining the amplitude of vibrations.

The amplitude of the vibration of the shell is mained by means of the energy delivered through the
electric field in gaps between the shell and aesystf discrete electrodes surrounding the sheb. gdps
between the shell and electrodes are constantcarad & .

There exist a constant difference of electric pidds between the shell and electrodes and exiting
voltage has the form of meander and varies withbtiorequency of the shell vibrations. By means of
this driving the effect of parametric resonancdtetion is achieved.

Kinetic, Strain, and Electric Energies of the System

The kinetic energy of the shell is given by

¥
p(#)V?singdg dg = {@ [[X2(8)+Yz(6) +z;(e)]sinede}[a2(t) +b2(1)]
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{ T i[an(‘”‘Yﬁ(e)+Zé(9)]sined6}{pzm[a2<t>—bz<t>}+zpm[a(t)bm]}

—{zmoth Ko} D]ﬁxm (6) cop+2,,(6) sird|Y,, (6) si® de}[a(t)b(t) ~a(t)b(t)] (5)

where anglegp and @ define the location of an element on a mid surf#dbe shell.

In the context of the Gol'denveyzer-Novozhilov dhe of thin isotropic shells subjected to
inextensional deformations, the strain energy i®bows:



p-_EMR 2".”?[/(12+/(12+2/7/(1K2+2(1—/7)T2:| sind dé dg (6)
24(1—/72) 00

where E is the modulus of elasticityy Poisson’s ratiok; , «,, and 7 are strain components in the

Gol'denveyzer-Novozhilov theory, which are, by siexpressions (3) in the case of a spherical shell,
given by:

1(dx d?z _
= —- acosmg +b sirmg
! (dé? dé’zj( i )
Ky = L lcotox ——M oy M m zZ- coté’OI (a cosng +b simg) (7
R sing sin’@ dé
1 mcoté dY m dz
T=—|——X-cotédY + a sinmg +b cosng
Rz( ng sing d¢9 sirg dej( mg )

(we omit indexesrh” for the sake of simplification of the notation).
Finally, the strain energy of the hemisphericallls{®) is as follows:

7]
2( 2 1\ o3 7 tan®™
(hem) _ m (m —1) Eh® 72 (2) ,
s 6(1+7)R? D'([ sirt g de Eﬁa t)+b ()J ®

For derivation of the electric energy of the syst@e assume that the system 9f( N =8[n,
where m- circumferential wave number) electrodes surrongdhe shell and equidistantly located from
the outer side. Every electrode has an angularume@sg - direction equals t@A¢ . Hence, the centres

/A 2r(N _:y - directi
of the electrodes are located at the an@lesz%\l, %\l U N In the @- direction, the

electrodes are restricted by angigsand 8, (0<f, <8<6,< 772). Let U, (t,¢) be the difference of

electric potentials between the shell and theelectrode. Gaps between the shell and electrades
homogeneous and equAl and the quasi-electrostatic field is concentratethese gaps. The electric
energy of the quasi-electrostatic field is desaibg the expression:

EORZE‘ZEU sing do dg = T} z; SianH}{ m¢(v12+v22+v32+v42)w
+ S8 (82 + 07 + AV + AV )M@n(&m)
sain(anag) u2v2) S0z v)atot)
+w{(w -av3) TP, —AVf)a(t)b(t)}sin( 2wt)} ©

where ¢, —¢, =20¢, & is the absolute di-electric permittivity,ﬁ=R+%(h+A), and

U, (t.¢)=Ugy (¢)+AU; (t.¢) the difference of the electric potentials betweka shell and thei -



electrode, wherdJ,, (¢) is the time independent component of the voltagel AU, (t,#) is the time
dependent meander-shaped signal with half-periatbaoe to the shell frequency (parametric excitation
It is more convenient to consider the squareUgf(t,¢) =V, (¢)+AV,*(t,#), where the following
notation is used: Vg (t,¢)=Uj(4)+AU (@), AVZ(t,¢)=20,(¢)AU, (t,¢). Hence,
Vi (¢)=AV%(t,¢), and equality is possible in the special caseUf, (¢#) equals the amplitude of
AU; (t,¢). Furthermore it is supposed thBt=8[in electrodes are combined in four groups2iin

electrodes and each group forn2&n regular polygon. Furthermore, assume that theagek applied to
every electrode of a particular group are the santeequal td/;, where j =1,2,3,4is the number of the

corresponding group:

«  For the first group$, =0, @, = / ¢2—27Tm _(2m- 1/)
Ve (0) o2 (9)] = o 224 SIn(w)}{z”,‘f¢ +Zsi 2uag) cos2a],

i=1
«  For the second groumgm+1=%m, &, :%m"']%n’ &, =%m+ 27Tm, s
2m-1
A ARG L/

4Zm: |:Viz(¢)+AViz(t,¢):| ={V22+£7?sin(w)}{2n:¢ 2 = sin( 2nAg) sin Zm}

i=2m+1

« For the third group g()2m+1=%m, ¢2=%m+%' ¢2=%m+2%’
¢2m:/2m+(2m_1)%):

% |:Viz (#) +Aviz(t,¢)] - {V?,2 + 4A7\T/32 sin( M)}{erfqé 2 = sin( 2nAg) cos Zm}

i=4m+1

« For the fourth group ¢22m+1:3%m, ¢2:37T4 +77 ¢2:3ﬂ4m+27%n’ o

¢2m_3r[ + 2m 1/)

Sf I:Viz (¢) +A\/iz(t,¢)] ={V42+ 4A]\T/42 sin( Zwt)}{zrr:¢ 2 = sin( 2nAg) sin 2n¢}

i=6m+1

Rayleigh Dissipative Function

Damping effects of the shell are introduced by mseaf the Rayleigh dissipative function:

o= fotwr v evehinsascs=| me [0 2] snose U0

+{”h2R2 }z[x;(e) ~Y2(8) +22(6)sing d0}{d2mw+dma(t)b(t)} (10)



L agrangian of the System and Equations of the Vibrating Pattern

The Lagrangian of the system is as follows:
L=T-P+W=L(aba,b) (11)
where kinetic energyT), potential energyP), and electric energfW)are given by expressions (8),
(8), and (9) correspondingly.
The Euler-Lagrange equations of motion are
d4a) o, o g(a) o, o
di\oa) oa oda’ dt\ob) ob  ab
where the Rayleigh dissipative function is given(bg).

Substituting the corresponding expressions forgeéeg and dissipative function in equations (12)
we obtain the following system of equations:

(1+£B,)a+enh+260(1+A  )a+ 208 b+ (1-ehg)a-w’eh gh~ 27 Qb
—¢€ ppasin( 2ut) — £ pyeasin ) — € pyb sif at)=
eDi+(1- Dy )0+ 2600 a+ 265(1-B . )b-weDga+ o’ (1A g )b+ 27Qa

(12)

—& pobsin(2ut) — & psasin( 2ut) + & pcb sif 2t) = | (13)
where ¢ is a small parameter characterizing “smallnessthef corresponding effects in the system and
N = Pom —1, £le:p2”si, 5/7Q—2|ZQ 26 5= Jame : 25&2C:—d2mci, 25&2C:d2mci,

P 1o b o lo ) Po 1o 20 1o
2 2
wz:m(m 1) h E Lo L P __ 0, L
R* (1+7)po 1o 7R py 14" R p, 1
FeN.. = s la __Ag 1, __ Ao, 1, _ Aoy |,
B Rl 1, 0 mhRPpy 1, mhRPp, I 2 nhRPp, 1,
90 90
|1=%j[x;(e)—vr§(e)+zni(e) sin6de, 1, = [[ X, (8)cost +2,(6) sind | ¥,,(6) sirdde,
0 0
o tar?™ L g 52
_1y 2)46, | —JQZZ(Q) sinddé, o (V2 +V7+VZ+V )gOR 2mAg
| -\ a4 - ’ - m ’ ’
3 ZJ(; sin®@ al ! A®
—[\/2 _\s2 50R2 2 _\y2 foﬁz
= (v -v2) o 5-sin(amag) o s =(V2-vd) 25-sin(2mag),
P2
Ag, =(AV7 +AVZ +AVE +AV )SOAR smAg Ad, =(8V;? - AvZ) 27 sin( 2mag)
T

_ 2 2\ &R
g, =(AV] -avy) o (2mag).

Solving the equations of system (13) with respeci, b and neglecting terms of ordé](sz)
we obtain the following system:



éi+wza=£Fl(a,b,a,b), 6+wzb=£Fl(a,b,a,b) (14)
where
F(abab) = 20b-25(10,c)a- BAb+aP Aga+wAgh
+ poasin( 2at) + pcasin( 2ut) + p,gb sif 2t)
F(abab) = -27Qa- 250,08~ B(FA,)b+aPAga-wAgh
+ pobsin( 2ut) + p,sa sin( 2ut) - pcb sif 2t)
where A, =0,c, Dos =Dog, Do =D +D 4y, Dg =D +D

(15)

Let us represent the vibrating patte(tz‘r_‘n) of the mode with circumferential wave numbmaras follows:

Z =acosmg +b sirmg =P cos(¢-6) sifid -¢)+Q sim(¢-6) c¢§ -y) (15)

where { = at . It follows from this representation that
a=Pcosmd sin{ —¢)-Q simd cofl —¢), b=Psinmdsin({ -¢)+Q cosnd cofl -¢),  (16)
a=cf Pcosmd cod ~¢)+Q simé sif¢ -¢)], b=cf Psinmdcod{ -¢)-Q cosd sifd ~y)]
It follows from (36]) that
a:a){PcosmH co$d ~)+Q simd sif —y) +mb[ ~Psinmd co{{ ~) +Q cos¥ sif¢ -y |
+(w-y)[-Pcosm sif({ -y) +Q simé col -¢) |}
b = Psinmd co{¢ -y) -Q cos® si(¢ —) +mé Pcosmb co§ ~) +Q simd sify -¢) ]
+(w-y)[-Psinmdsin({ —y¢) - Q cosd cofl —(//)]} (17)

Substituting (16) — (17) into (14) and solving tlesulting system with respect #,Q, md, and
{ we obtain:

P=S)[Elcosm9+€ simd)| cobl ~4), Q=§[Esinm€—€ cosmd | sif¢ ~¢), (18)
nﬂ:ﬁ{—[ﬁsinnﬂ—ﬁcomﬂ}P co(;(—g!/)—[E1 cosd +F, SW}Q S(’O"l//)}’
£

W= {[Elsian—EzcosmHJQ coéd —1//)+[E1 casd +F, SW‘H]P s{g “//)}

w( p2 _Qz)
whereF, , =F, ,(P,Q,8,¢) is the result of substitution (16) into (15).
Solution of the system by using the method of averaging

Let us use the method of averaging for the solutibeystem (18). This method is based on a
representation of the right hand side of the equaly functions which are averaged with respe¢héo
“fast variable” =t :

(B)=5n (Pl ()=

n
0'—‘:1

(Qoe. (8=5,[(9ec. W= wiee 09



The result of the averaging of the right hand siflehe principal amplitude derivative of the
vibrating pattern is as follows:

<P>:g{—5P[1+AZC COS G + A, sinm?]—%[A]C sin@9-A cos (20)

Py Pac ; ; Pas i ;
+—Pcos2y+—==[P cosB¥ cog2-Q sim¥ sig2+—==(P sim2 cgs? and2 2
. Y [ 92 w3 A [ ¢s2Q mf}

After averaging, the dynamics of the quadraturelémue of the vibrating pattern is:

<Q>=£{—JQ[1—AZC cos 8 - A sin E\H]+%[A1¢ sin@@-A cosd (21)

Po Pac ; ; Pas ; . Q@H
-—QcosY +—=|-P sin@ sing +Q cosd cog@+— P cos2 ghP sing2 2
4wQ 4w[ 2+Q 4a)[ Q
The result of averaging of the precession rath@¥ibrating pattern is as follows:

2
<m6'> {—/79+5 *Q [AZCstnH A, cOS Y| — a)ﬂ[A]c cosd +A g simdd]

B PQ
2wP?-Q°

Finally the dynamics of the phase shift of the athrg pattern is described by the following
averaging expression:

+

sin2//+i[—pzc SiN2G + p,g cos@V] cos/Z} (22)

2
<¢/>:€{—5P2PQ2[A2CSIHZTIH A, cos Y| + wP +Q2[A1C cosd + A Sind]
2 2
~Lin, P2+Q2+@coszme+% sin2¥ | sing 23)
40| °P?-Q?  dw 4w

Let us assume that the gyro control system guagasttaliness of the quadrature amplitlﬁtte
and the phase shi(w) . In this case equations (20) — (23) could be simeplto:

<P> = gP{—5[1+ A, cos2nd + A,g sin m9] +%}[ Po+ P COSIRI+ P sima9]} ,
<Q> ~ 5{%[Am sin2md - A5 cos Y] } :
<m€> = 5{—l7§_2 + 8D ye SIN2AMG — A 5 COS ] +%}[— P SINBG+py CcOTH) } ,

(W) =£{%)[Alc cos 2@+ A sin M]} (24)
It follows from the first equation of (24) thatetdamping effects of the resonator could be

compensated by means of proper control of the #itggattern: angle(e), is the independent decay of

the principal amplitude and is compensated by tregaed parametric excitation, heneé + fo - 0.
w

Furthermore the angle dependent decay of the pah@mplitude is compensated by the asymmetric



parametric excitation, i.ec0A, +% - 0 and -JA 4 +% - 0. Keep in mind that in this case the
w w

angle-dependent drift is compensated as it follnem the third equation of (24) an<dn€> ~ -enQ

which corresponds to the pure Bryan effect. Forstingpression of the quadrature compor(@l), it is

possible to manipulate with the componeats , A,¢ so that

By U 0,0 (AVE -AVZ) 0 -Qsin(2m6), Bys U oy0 (AVZ -AVZ)0 Qeos( an6)  (25)
and hence,
Ay =-kQsin(2m4), Ays = kQcog( a8) (26)
where k is coefficient of proportionality. In this case,iafllows from (21) and (24):
; Po wP
= —E —+ k— — 0 27
(Q)=-¢( 2 +kT o @7

All other terms in (21) could be considered asyréitg terms.
For the realization of the contrgl - 0 it is possible to use a reference phase genessiich generates

the reference excitation signals so tiet 0.

Conclusions

The electromechanical model of the hemisphericsdmator gyroscope is considered. It is shown
that the main control functions of maintaining thbration amplitude, compensation of the quadrature
signal, and the suppression of the gyro drift duthe difference in the Q-factor could be realibgdhe
discrete electrodes parametric drive.
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