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6 [1] In this study, we present a stochastic landscape modeling approach that has the power
7 to transfer and integrate existing information on vegetation dynamics and hydrological
8 processes from the small scale to the landscape scale. To include microscale processes like
9 ecohydrological feedback mechanisms and spatial exchange like surface water flow, we
10 derive transition probabilities from a fine-scale simulation model. We applied two versions
11 of the landscape model, one that includes and one that disregards spatial exchange of
12 water to the situation of a sustainably used research farm and communally used and
13 degraded rangeland in semiarid Namibia. Our simulation experiments show that including
14 spatial exchange of overland flow among vegetation patches into our model is a
15 precondition to reproduce vegetation dynamics, composition, and productivity, as well as
16 hydrological processes at the landscape scale. In the model version that includes spatial
17 exchange of water, biomass production at light grazing intensities increases 2.24-fold
18 compared to the model without overland flow. In contrast, overgrazing destabilizes
19 positive feedbacks through vegetation and hydrology and decreases the number of
20 hydrological sinks in the model with overland flow. The buffer capacity of these
21 hydrological sinks disappears and runoff increases. Here, both models predicted runoff
22 losses from the system and artificial droughts occurring even in years with good
23 precipitation. Overall, our study reveals that a thorough understanding of overland flow is
24 an important precondition for improving the management of semiarid and arid rangelands
25 with distinct topography.

26 Citation: Popp, A., M. Vogel, N. Blaum, and F. Jeltsch (2009), Scaling up ecohydrological processes: Role of surface water flow in

27 water-limited landscapes, J. Geophys. Res., 114, XXXXXX, doi:10.1029/2008JG000910.

29 1. Introduction

30 [2] Decisions for the conservation of biodiversity and
31 sustainable management of natural resources are made for
32 long time periods and at broad spatial scales [Peters et al.,
33 1997; Miller et al., 2004]. In contrast, our understanding of
34 the underlying ecological processes (e.g., local water avail-
35 ability triggering germination rates and plant growth) is
36 high at fine spatial and temporal scales because most
37 empirical data are collected for small areas and over a short
38 duration only [Levin, 1992; Rastetter et al., 2003]. There-
39 fore, the knowledge from short-term and fine-scale studies
40 needs to be projected to regional and global scales that are
41 relevant for decision making [Wessman, 1992].
42 [3] However, extrapolation of information across scales
43 provides difficulties as we do not know to which extent
44 spatial exchange, like the movement of surface water by
45 run-off in water limited environments, affects ecosystem

46dynamics at large scales [Levin, 1992; Tongway and
47Ludwig, 1997; Wootton, 2001; Strayer et al., 2003; Urban,
482005]. Omission of these processes may directly affect the
49accuracy of predictions [Heuvelink, 1998, Weaver and
50Perera, 2004]. Run-off occurs at multiple spatial scales
51if rainfall intensity exceeds soil infiltration capacity
52[Rango et al., 2006]. Local differences in infiltration
53capacity are induced by topography, soil texture and
54positive feedback mechanisms between water and vegeta-
55tion [Wilcox et al., 2003].
56[4] Many arid landscapes are source sink systems, where
57plant productivity is determined by surface run-off from
58bare areas to vegetated patches. Therefore, theoretical [Noy-
59Meir, 1973; Scheffer et al., 2001; Ludwig et al., 2005;
60Urban, 2005; Peters and Havstad, 2006] and model inves-
61tigations [van de Koppel et al., 2002; van de Koppel and
62Rietkerk, 2004] suggest that spatial redistribution of rainfall
63by run-off increases the productivity and resilience of arid
64ecosystems.
65[5] Disturbances like unsustainable grazing can disrupt
66this fundamental process by changing vegetation structure
67and composition [e.g., Ludwig et al., 2005]. The system
68may lose its buffer capacity and become less efficient at
69trapping run-off, leading to a loss of water. Today, some
7020–30% of global drylands [Winand Staring Centre, 1991;
71Reid, 2005; Zika and Erb, 2009] and 30% of drylands in
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72 Sub-Sahara Africa [Zika and Erb, 2009] are already
73 degraded. Maintaining so-called ‘resource conserving’ dry
74 lands [Wilcox et al., 2003] will have profound implications
75 for management of semiarid and arid rangelands especially
76 in the future if climate change will likely lead to a general
77 decrease in the grass resource, increase dryland vulnerabil-
78 ity to degradation and add an additional pressure on these
79 systems already prone to degradation.
80 [6] In the past, spatial transition based models like
81 Markov chains have often been used to explore vegetation
82 dynamics over long time periods and on large scales [e.g.,
83 Baker, 1989; Turner, 1989; Acevedo et al., 1995; Balzter,
84 2000; Logofet and Lesnaya, 2000; Urban, 2005]. They are
85 based on stochastic processes and can be parameterized by
86 estimating transition probabilities between discrete states of
87 the observed system. Most previous studies utilized data
88 sampled from field surveys, existing maps, aerial photo-
89 graphs or satellite images to estimate transition probabilities
90 [e.g., Muller and Middleton, 1994; Brown et al., 2000;
91 Jenerette and Wu, 2001; Weng, 2002], and only very few
92 studies exist that make use of a fine-scale model to drive a
93 landscape model [e.g., Acevedo et al., 1995]. Generally,
94 uncertainty in these studies remains relatively high because
95 spatial exchange data such as surface water run-off are not
96 considered. Furthermore, as very few studies do exist that
97 describe processes at the landscape scale mechanistically
98 [e.g., Acevedo et al., 1995], data is limited and transition
99 probabilities are often derived from short-term data [Baker,
100 1989; Urban, 2005].
101 [7] In this study we developed a method to transfer and
102 integrate existing information on vegetation dynamics and
103 hydrological processes in arid rangelands between spatial
104 scales. We used a small-scale simulation model [Popp et al.,
105 2009], that was developed to investigate the relative impact
106 of small-scale soil-plant interactions on vegetation dynam-
107 ics at the hillslope scale, to derive transition probabilities
108 between different vegetation states, productivity coefficients
109 of different vegetation types, and hydrological parameters
110 for a model operating at the landscape scale. We applied this
111 modeling approach on a dwarf shrub savannah with distinct
112 topography in arid southern Namibia to assess the role of
113 surface water flow at the landscape scale for low and high
114 grazing intensities.

115 2. Material and Methods

116 [8] Two variants of a stochastic and spatially explicit
117 landscape model were implemented on the basis of Mar-
118 kovian modeling that simulates annual biomass production
119 of a dwarf shrub savannah with distinct topography in arid
120 southern Namibia (Karas Region). One version simulates
121 lateral exchange of surface water, whereas explicit consid-
122 eration of overland flow is eliminated in the second version.
123 We used a small-scale simulation model (Topographical
124 Management (TOPMAN)) [Popp et al., 2009], that was
125 developed to investigate the relative impact of small-scale
126 soil-plant interactions on vegetation dynamics at the hill-
127 slope scale, to derive data which is handed over to the
128 landscape model. This mechanistic approach guarantees that
129 data collected and processes estimated at smaller scales are
130 included in our application. Elevation of the landscape’s
131 grid cells was parameterized by remotely sensed digital

132elevation models (DEM). We computed annual productivity
133of the four most abundant vegetation types for two con-
134trasting land management systems: a sustainably used
135research farm (for Karakul sheep breeding) and communal
136farming land, on which livestock grazing pressure is not
137controlled.

1382.1. Study Area

139[9] The study area is located in the Nama Karoo, southern
140Namibia (Figure 1). Vegetation cover and productivity are
141low and depend on erratic and highly variable rainfall
142(annual mean: 150 mm). The main topographical features
143of the study area are flat regions, as well as regions with
144gentle and precipitous slopes [Kuiper and Meadows, 2002].
145Perennial grasses (e.g., Stipagrostis uniplumis) dominate the
146herbaceous vegetation if the rangeland is in good condition
147but are replaced by annual grasses (such as Schmidtia
148kalahariensis) and unpalatable shrubs (like Rhigozum tri-
149chotomum) when rangeland is heavily utilized [Kuiper and
150Meadows, 2002]. The most important land use in the
151communal area (Nabaos) and the Research Station (Gellap
152Ost) is small stock farming. Gellap Ost has 160 purposely
153understocked camps (0.05 SSU – small stock unit ha�1),
154where animals graze in a rotational system. Resting periods
155of camps (no grazing) of at least one year prevent over-
156grazing [Kuiper and Meadows, 2002]. In contrast, Nabaos is
157managed under a communal land tenure system where
158livestock movement in the area is not controlled and over-
159stocking (0.2 SSU ha�1) has a strong impact on the
160rangeland resource.

1612.2. Landscape Model

162[10] The grid based landscape model simulates vegetation
163dynamics and interlinked hydrological processes of a dwarf
164shrub savannah with distinct topography in arid southern
165Namibia. Data on these dynamics and processes are derived
166from a small-scale (spatial resolution: 3 � 3m cells, 33 � 33
167cells � 1 ha) and spatially explicit simulation model (TOP-
168MAN) [Popp et al., 2009]. The area simulated by the small-
169scale model (1 ha) was used as the spatial resolution (cell
170size) for the landscape model. Each cell is specified by its
171position within the grid, elevation, productivity, vegetation
172composition and water availability (composed of precipita-
173tion and surface run-off). Generally, water availability is
174composed of the interplay of precipitation, overland flow,
175deep percolation and total evapotranspiration, which is
176composed of vegetation interception, evaporation from the
177soil and transpiration by plants [Wilcox et al., 2003].
178However, the landscape model does not consider all of
179these processes explicitly: Recent research suggests that
180deep drainage and groundwater recharge do not occur in
181many arid and semiarid landscapes. This is mainly because
182the potential for increased deep percolation during wet years
183is countered by an increase in the density of plants, a
184concomitant increase in the density of deep roots, and
185possibly an increase in the depth of the root zone as well
186[e.g., Walvoord et al., 2002; Seyfried et al., 2005]. Second,
187we disregarded vegetation interception because, in contrast
188to humid landscapes [e.g., Crockford and Richardson,
1892000], vegetation cover in arid and semiarid regions has
190comparatively little effect on vegetation interception in arid
191environments [Huxman et al., 2005]. Third, we did not
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192 include small-scale soil-plant interactions that affect
193 infiltration and evaporation from the soil because these
194 processes are already brought in via the small-scale model
195 [see Popp et al., 2009].
196 [11] Dynamics of the simulated vegetation types (peren-
197 nial grass, annual forbs, dwarf shrubs and shrubs) on the
198 cell level are based on the concept of state and transition
199 models [Westoby et al., 1989]. These models provide a
200 relatively simple, management-oriented way to classify land
201 condition (state) and to analyze the impact of factors
202 that might cause a shift to another state (transition). The
203 stochastic process of state and transition models and
204 resulting forecasting of land cover change can be projected
205 by Markov chain models [Markov, 1907]. To construct a
206 Markov chain, we first identified vegetation states for the
207 research area jointly with Namibian rangeland experts
208 (including farmers and extension officers). The definition
209 of these six states is related to the percentage cover of
210 shrubs and perennial grasses (Table 1).
211 [12] Subsequently, we calculated annual transition
212 probabilities between these states from simulations using
213 TOPMAN [Popp et al., 2009] for different classes of slope,
214 rainfall and land use. For slope, we defined four classes: flat
215 (<6%), gentle (6–10%), steep (11–15%) and precipitous
216 (>15%). Water availability was classified in four categories,
217 relative to the long-term mean of 150 mm: 1 is poor
218 (<100 mm), 2 is moderate (100–139 mm), 3 is good
219 (140–179 mm), and 4 is very good (>180 mm). Finally,
220 we defined three categories of land use: no grazing, under-
221 stocked grazing (0.05 small stock unit (SSU) ha�1) and
222 overstocked (0.2 SSU ha�1) grazing. In contrast to the
223 communal and ‘overstocked’ land tenure system at Nabaos
224 where livestock movement is not controlled, the grid cells at
225 the purposely understocked and rotationally grazed research
226 farm (Gellap Ost) are alternately treated by ‘no grazing’ and

227‘understocked grazing’. Within each time step (1 year), the
228landscape model calculates the following modules in the
229given order: water availability, vegetation dynamics and
230productivity (Figure 2). Each model is explained below.

2312.3. Model Initialization

232[13] Calculation of the slope (s) of each 1 ha cell is based
233on elevation (ec) and side length (l = 100 m) of the
234respective cell and elevation of the neighboring cells (enc)

s ¼ eC � enc

l
: ð1Þ

235236Elevation was initialized with a digital elevation model
237(DEM), derived by remote sensing based radar data. The
238raster DEM is processed interferometrically from SRTM C
239Band data [Jensen, 2000] with an original spatial resolution
240of 88 m � 88 m in x and y direction and 1 m resolution of
241the altitude (z direction). The data have been preprocessed,
242applying a 3 � 3 kernel low-pass filter to reduce radar
243system inherent errors, caused by signal noise (‘‘salt and
244pepper effect’’), and shadow effects [Lewis, 1976].
245Application of this filter leads to a smoothing of high
246contrast image areas. To fit the 100 � 100 m cell size of the
247landscape model, the DEM subset of the study area has been
248resampled, using a Nearest Neighbor algorithm.
249[14] For initialization of the vegetation, we used the
250vegetation structure of an undisturbed dwarf shrub savan-
251nah. Since little is known about this vegetation structure we
252assumed an undisturbed coexistence of perennial grasses
253and woody vegetation. Thus initial vegetation condition for
254each cell was set to state 3 (compare Table 1).

2552.4. Vegetation Dynamics

256[15] We used a state and transition approach to simulate
257the vegetation dynamics. Transition probabilities between
258the vegetation states were calculated as Markovian sto-
259chastic processes [Markov, 1907]: a state at time t
260depends on the state at time t – 1 and the impact of
261the exogenous factors water availability, slope and present
262land use. A m x m transition matrix (P) contains the
263conditional probabilities pij that a cell in state i at time t
264will transition to state j at time t + 1. P is row
265standardized, such that the sum of transition probabilities
266from a given state is always equal to one. We derived
267transition probabilities by calculating transition probabili-
268ties of the process-based small-scale simulation model. To
269gain these values we ran the small-scale model for 100
270years with 500 repetitions.

Figure 1. Location of the two case studies commercial
research farm Gellap Ost and communal rangeland Nabaos.

t1.1Table 1. Definition of Vegetation States for the Research Areaa

CoverPG (%) CoverW (%) t1.2

State 1 30 – 100 40 – 100 t1.3
State 2 0 – 29 40 – 100 t1.4
State 3 50 – 100 0 – 40 t1.5
State 4 10 – 49 0 – 40 t1.6
State 5 0 – 9 10 – 40 t1.7
State 6 0 – 9 0 – 9 t1.8

aColumns refer to cover of the respective vegetation type (PG is
perennial grass and W is woody vegetation). Rows refer to vegetation state,
enumerated by 1–6. t1.9
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271 [16] Generally, we assume that (1) transition probabilities
272 are constant over time and (2) transitions are spatially
273 independent. An approach to model nonstationarity (i.e.,
274 variability in space and time of transition probabilities) is to
275 switch between different stationary matrices [Rejmanek et
276 al., 1987]. To consider variability in space and time of
277 transition probabilities related to water availability, slope,
278 and land use option, we generated transition matrices for all
279 combinations of these exogenous factors.

280 2.5. Productivity

281 [17] Annual phytomass production of the four vegetation
282 types is dependent on the cells slope, present vegetation
283 state, and water availability. For each vegetation type we
284 calculated productivity coefficients from multiple linear
285 regressions of biomass on slope, vegetation state and water
286 availability simulated by the small scale model.

287 2.6. Water Availability

288 [18] We implemented two versions of the landscape
289 model. One version disregards lateral exchange of surface
290 water, while the other explicitly considers overland flow. In
291 the first version, water availability (WC) is dependent on
292 annual precipitation (pC). In the case of overland flow

293(second version), WC is not only related to annual precip-
294itation (p) but also to run-on (rC) from neighboring cells and
295can be expressed by

Wc ¼ pþ rc; ð2Þ

297where p is homogeneous for all cells, whereas rC is based
298on a cell specific capacity to absorb run-on (irC) and the
299contribution by run-off from neighboring cells (rNC)

rC ¼ rNC � irC : ð3Þ

301We used an iterative algorithm to calculate surface water
302flow for each simulated year: in the first step, each cell’s
303irC,0 and rNC,0, calculated by the small-scale model, are
304based on rain class as well as a cell’s slope class and current
305vegetation state.
306[19] In each following iterative step rNC,i is updated until
307infiltration of a cell is saturated (irC,i = 0) and until no more
308cells pass flow (rNC,i = 0). For the next iterative step irC,i+1
309is actualized by

irC;iþ1 ¼ irC;i � rC;i: ð4Þ

Figure 2. Visualization of mechanistic upscaling approach and simplified flowchart. We used a small-
scale simulation model to derive data for vegetation dynamics, productivity, and linked hydrological
processes of the landscape model. Elevation of the landscape’s grid cells is initialized by remotely sensed
digital elevation models (DEM). For validation, simulated annual biomass production is compared with
remotely sensed estimates of annual biomass production (normalized differential vegetation index
(NDVI)). Solid lines represent processes within the landscape model (flowchart). Dotted lines illustrate
data flow between different disciplines and scales. Numbers refer to basic attributes of the small-scale
model (input) affecting transferred data for the landscape model (output).
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311 We used multiple flow direction methods to estimate surface
312 water flow directions across cells [Quinn et al., 1991;
313 Tarboton, 1997]. Thus, cells with run-off allocate water
314 fractionally to each lower neighbor cell in proportion to the
315 respective slope.

316 2.7. Small-Scale Simulation Model

317 [20] Transition probabilities and phytomass production
318 are derived from a small-scale simulation model [Popp
319 et al., 2009]. The spatially explicit and individual based
320 model simulates the vegetation dynamics of a 1 ha area
321 (100 � 100 m, 33 � 33 cells). Cell size is 3 m � 3 m, which
322 corresponds to the maximum observed diameter of a shrub.
323 Herbaceous vegetation (perennial grass and annuals) are
324 treated as matrix plants, and a cell is either occupied or not.
325 Woody plants are simulated individually and each cell
326 contains a list of woody plant individuals. Slope angle is
327 included by decreasing elevation values of the cells toward
328 one side of the landscape. For each cell, water availability,
329 establishment, aboveground biomass production, grazing
330 and mortality are simulated in annual time steps.
331 2.7.1. Water Availability
332 [21] Cell-specific water availability in the various
333 vegetation types is influenced by rainfall, run-off, run-on,
334 evapotranspiration and competition. Surface run-off in
335 semiarid and arid regions occurs primarily as infiltration
336 excess overland flow from higher to lower areas controlled
337 by infiltration characteristics of the soil surface rather than
338 the storage capacity of the soil [Wilcox et al., 2003].
339 Therefore, infiltration rates are related to the cell’s soil
340 texture [Bergkamp, 1998], vegetation cover [Puigdefabregas,
341 2005] and slope [Chaplot and Le Bissonnais, 2000]. Surface
342 run-off occurring at cells with lowest elevation values at
343 the edge of the simulated landscape leaves the system.
344 Moreover, soil texture and vegetation cover have an impact
345 on evaporation [LeHouerou, 1984; Snyman, 2000], reducing
346 soil water content in the upper soil layer. Competitive effects
347 of vegetation (i.e., vegetation-specific transpiration) reduce
348 the water availability for establishment and, in cells with
349 overlapping root systems, vegetation has a competitive effect
350 on the neighboring vegetation types [Callaway and Walker,
351 1997]. To simplify the hydrological processes in our
352 modeling approach we assume that all infiltrated water is
353 evaporated or transpirated.
354 2.7.2. Establishment
355 [22] In arid and semiarid environments, sufficient
356 moisture [O’Connor, 1994] and the availability of seeds
357 [O’Connor and Pickett, 1992] are the main conditions for
358 successful plant establishment. Furthermore, limited food
359 for livestock increases the probability that livestock will
360 feed on seedlings [Carrick, 2003]. Therefore, the cells’
361 probability of successful establishment of perennial vegeta-
362 tion (woody plants and perennial grasses) is determined by
363 site-specific probabilities of seed and water availability, as
364 well as the probability to survive grazing. Annuals, produc-
365 ing large numbers of seeds and persistent seed banks
366 [Veenendaal et al., 1996] are only restricted by water
367 availability and grazing pressure.
368 2.7.3. Growth
369 [23] Biomass production of the herbaceous vegetation is
370 related to annual water availability for the two matrix plant
371 types: annual and perennial grasses. For both vegetation

372types, we use a growth coefficient derived from rainfall-
373grass production relationships of various southern African
374savannah regions [Higgins et al., 2000]. In contrast, annual
375biomass production of woody plant individuals depends on
376the impacts of water availability and is related to current
377height performance.
3782.7.4. Grazing
379[24] The model simulates grazing and browsing on
380herbaceous and woody vegetation. Vegetation types differ
381in their palatability for grazers and browsers. What and to
382which amount a plant’s biomass will be consumed depends
383on its specific palatability as well as the relation of available
384biomass in the landscape and that necessary for forage.
3852.7.5. Mortality
386[25] Survival of perennial plants is environmentally
387determined by the availability of water and the impact of
388grazing by livestock [Milton and Dean, 2000]. We related
389the survival probability to these factors (water and grazing),
390since disturbances such as drought or overgrazing strongly
391influence productivity. Within the group of perennial plants,
392differences among species in disturbance tolerance are
393associated with physiological adaptations to disturbance.

3942.8. Simulation Analysis

395[26] We used the landscape model to simulate vegetation
396dynamics and productivity of perennial grass, annuals,
397dwarf shrubs and shrubs for 150 years. Effects of connec-
398tivity and spatial explicitness of overland flow on dynamics
399and productivity of the most abundant vegetation types
400was assessed for a purposely understocked and rotationally
401grazed research farm (Gellap Ost) (0.05 SSU ha�1) and
402a communal and overstocked range land (Nabaos)
403(0.2 SSU ha�1). For model analysis, we used the years
4041985 to 2000, as remotely sensed data is available only for
405this time period, and initialization effects could be excluded.
406Due to the stochastic processes in the model, no single run
407is representative. Therefore, we initiated 50 repeats for each
408model type and scenario.

4092.9. Model Validation

410[27] We compared simulation results of annual phytomass
411production for both study sites (low grazing impact versus
412high grazing impact) with remotely sensed Normalized
413Difference Vegetation Index (NDVI) as an indicator for
414interannual variability. Because NDVI indicates relative
415values we also compared our model results with field data
416on biomass production and cover for perennial grasses.
417[28] Remotely sensed NDVI is strongly correlated with
418phytomass production [e.g., Tucker et al., 1986; Prince and
419Goward, 1996; Yang and Prince, 2000; Wessels et al.,
4202006]. NDVI is calculated from the red and near-infrared
421channels from multispectral remote sensing imagery [Tucker
422and Choudhury, 1987]

NDVI ¼ NIR� R

NIRþ R
; ð5Þ

424where NIR is the reflectance in the near infrared band
425(0,72 – 1,10 mm) and R the reflectance in the red band
426(0,58–0,68 mm). NDVI time series data for 1985 to 2001
427were obtained from NOAA/NASA Pathfinder Land data
428archive (PAL). However, due to the failure of NOAA-11, no
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429 NDVI data were available between July and December
430 1994 (http://www2.ncdc.noaa.gov/docs/gviug/html/c2/
431 sec2–0.htm).
432 [29] We have used the seasonal integral or accumulated
433 NDVI (I-NDVI) that was calculated for each sampling
434 domain from seasonal summations (October to September)
435 of differences between NDVI and minimum NDVI from the
436 seasons 1985–1986 to 2000–2001 [Holm et al., 2003].
437 Reference values of NDVI have been calculated for both
438 study sites over an area of 8 km2 each.

440 3. Results

441 3.1. Annual Total Phytomass

442 [30] Annual total phytomass simulated by the model
443 without overland flow ranged from 475 t per ha at the
444 scenario with low grazing intensity (Gellap Ost, Figure 3a)
445 in 2000 to 79 t per ha at the scenario with high grazing
446 intensity (Nabaos, Figure 3b) in 1992. In contrast, in all
447 simulations using the model including overland flow,
448 annual total phytomass ranged from 983 t per ha at low

449grazing intensity in 2000 (Figure 3a) to 112 t per ha at high
450grazing intensity in 1992 (Figure 3b).
451[31] Averaged over a period of 15 years in the model
452without overland flow, total phytomass production simulat-
453ed by the scenario with low grazing intensity exceeds total
454phytomass production simulated by the scenario with high
455grazing intensity 1.32-fold. In the model including overland
456flow, the 15 year average of total phytomass production for
457low grazing intensity exceeds the total phytomass produc-
458tion for the high grazing intensity scenario 2.24-fold.
459[32] Linear regression analysis for the model without
460overland flow indicated that total phytomass at the scenario
461with low grazing intensity (R2 = 0.97, p < 0.001) and the
462scenario with high grazing intensity (R2 = 0.99, p < 0.001)
463increased with annual precipitation. In the model that
464includes overland flow, total phytomass equally increased
465with annual precipitation for the scenario with low grazing
466intensity and for high grazing intensity (both R2 = 0.98, p <
4670.001). In the model that includes overland flow, total
468phytomass production is 2.61-fold higher at the scenario
469with low grazing intensity and 1.54-fold higher at the
470scenario with high grazing intensity, than that of the model
471without overland flow.

4723.2. Productivity of Vegetation Types

473[33] In the model without overland flow, productivity of
474annuals contributed 45% to the mean total productivity,
475followed by perennial grass (31%), shrubs (18%) and dwarf
476shrubs (6%) for the scenario with low grazing intensity
477(Figure 4a). At the scenario with high grazing intensity
478(Figure 4c), the proportion in mean annual total productivity
479was clearly decreased for perennial grasses (19%) and dwarf
480shrubs (3%), and dominance was shifted toward annuals
481(57%) and shrubs (22%).
482[34] In the model that includes overland flow, it is not
483only total annual phytomass production that is affected by
484spatial exchange of surface water, precipitation and land
485use; it is also productivity of the four most abundant
486vegetation types (perennial grass, annuals, dwarf shrubs
487and shrubs). Including overland flow in simulating dynamics
488and productivity of these vegetation types has the strongest
489impact at the scenario with low grazing intensity (Figure 4b):
490perennial grass contributes with 47% most to the mean total
491productivity, followed by annuals (28%), shrubs (19%) and
492dwarf shrubs (6%). At the scenario with high grazing
493intensity (Figure 4d), no effect of overland flow on the
494proportion of vegetation types in mean total productivity
495could be identified. However, the model excluding overland
496flow clearly indicates a decrease in the proportion in mean
497annual total productivity for perennial grasses (19%) and
498dwarf shrubs (3%), and dominance was shifted toward
499annuals (60%) and shrubs (18%).

5003.3. Disturbance and Overland Flow

501[35] Disturbance in the form of overgrazing can have a
502strong impact on lateral exchange of surface water
503(Figure 5). Light grazing intensities lead to 83% of run-on
504cells in the total number of cells (% of area) as well as high
505mean run-on in these cells (85%) for the years 1985 to
5062000. In contrast, the proportion of run-on cells to total area
507decreases to 63% with low mean run-on of 40% at the
508scenario with high grazing intensity.

Figure 3. Time series of annual total productivity.
Medians of 500 simulation replicates are shown. Annual
total productivity at (a) low grazing intensity (Gellap) is
strongly affected by overland flow. Low impact of overland
flow can be found at the scenario with (b) high grazing
intensity (Nabaos). Black circles represent scenarios without
overland flow, and white circles represent scenarios with
overland flow.
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509 3.4. Validation of Simulated Phytomass Production

510 3.4.1. Estimated I-NDVI
511 [36] Vegetation at the communal rangelands (Nabaos) had
512 lower I-NDVI than vegetation at the research farm (Gellap
513 Ost) across all growth seasons (Figure 6). The lowest value
514 of 0.5 at the communal rangelands in 1987 contrasts with
515 the highest value of 1.6 at the research farm in 2000.
516 Averaged over the time span of 15 years, I-NDVI measured
517 at the research farm exceeds I-NDVI measured at the
518 communal rangelands 1.27-fold. Linear regression analysis
519 indicated that I-NDVI is correlated with annual precipitation
520 at the research farm (R2 = 0.81, p < 0.001) and the
521 communal rangelands (R2 = 0.91, p < 0.001).

522 3.4.2. Comparison of Simulated Phytomass
523 and Estimated I-NDVI
524 [37] We compared simulated total annual phytomass with
525 remotely sensed estimates of annual phytomass production
526 (I-NDVI) to test if the landscape model displays vegetation
527 dynamics in a simplified but realistic way. The linear
528 regression relationship between simulated total phytomass
529 and I-NDVI (Figure 7) accounted for little more variance at
530 the model with overland flow (R2 = 0.79, p < 0.001) than
531 for the model version without overland flow (R2 = 0.69, p <
532 0.001). However, the slopes of the linear regression rela-
533 tionship indicate that total productivity simulated by the
534 model with overland flow (y = �308 + x * 978) exceeds

Figure 4. Time series of annual productivity for the simulated vegetation types. Medians of 500
simulation replicates are shown. Different management scenarios ((a and c) Gellap and (b and d) Nabaos)
are shown. Figures 4a and 4b show results for simulation models without overland flow, and Figures 4c
and 4d refer to simulation models including overland flow. Black circles refer to perennial grass, white
circles refer to annual forbs, black triangles refer to dwarf shrubs, and white triangles refer to shrubs.

Figure 5. Importance of overland flow under different
grazing intensities. At the scenario with low grazing
intensity (left side) overland flow leads to high proportion
of run-on cells to total area (white box plots) and high
values of mean run-on (gray box plots). Mean run-on is
given as a percent in total annual rain. In contrast,
proportion of run-on cells as well as mean proportion of
run-on at the scenario with high grazing intensity (right
side) display low values.
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535 productivity simulated by the model without overland flow
536 (y = �129 + x * 460).
537 3.4.3. Comparison of Simulated Phytomass
538 and Cover With Measured Field Data
539 [38] Perennial grass cover and biomass production simu-
540 lated by the model with overland flow for the year 2001
541 matched the field observations [Prinsloo and Bester, 2003;
542 Wolkenhauer, 2004] more effectively than simulation results
543 from the model version without overland flow (Table 2).

545 4. Discussion

546 [39] The aim of our study was to present a method to
547 transfer and integrate existing information on vegetation
548 dynamics and hydrological processes between spatial
549 scales. Combining technologies of remote sensing technol-
550 ogy and stochastic modeling, we are able to successful
551 extrapolate vegetation dynamics, composition and produc-
552 tivity to an order of magnitude one hundred times greater
553 than the original scale. Using a small-scaled simulation
554 model, the influence of exogenous and endogenous varia-
555 bles (vegetation state, precipitation, management and
556 topography) on transition probabilities and phytomass
557 production were estimated.
558 [40] In the past, transition probabilities of stochastic
559 landscape models were mainly estimated by using data
560 from observations, and measured from empirical studies,
561 aerial photography and satellite images [e.g., Muller and
562 Middleton, 1994; Brown et al., 2000; Jenerette and Wu,
563 2001; Weng, 2002]. Uncertainty in these studies remained
564 relatively high because data was limited, i.e., transition
565 probabilities were derived from short-term data [Baker,
566 1989]. The few studies that use a fine-scale model to drive
567 a landscape model [e.g., Acevedo et al., 1995] did not
568 include microscale processes like ecohydrological feedback
569 mechanisms and spatial exchange like surface water flow.

570[41] The simulation results of our landscape model show
571that the explicit consideration of surface water flow can
572have a strong impact on vegetation dynamics, composition
573and productivity at the landscape scale. At low grazing
574intensity, a high number of run-on cells with high infiltra-
575tion capacities serve as sinks for input by surface water
576flow. Spatial exchange of surface water among vegetation
577patches increases biomass production when compared to
578simulations where overland flow was not considered. In
579contrast, disturbance in the form of overgrazing reduces
580positive feedbacks through vegetation and hydrology and
581therefore decreases infiltration capacity of potential run-on
582cells. The buffer capacity of these hydrological sinks is
583reduced, run-off increases and biomass production remains
584low. The consideration of overland flow causes water to
585flow downstream out of the simulated system and artificial
586droughts can occur even in years with good precipitation.
587[42] This general process has been observed in other
588semiarid and arid areas where the spatial exchange between
589patches of vegetation affects the resilience of ecosystems
590[van de Koppel and Rietkerk, 2004; Ludwig et al., 2005].
591Ecosystems heterogeneous in space and linked by spatial
592feedback mechanisms provide potential for buffering posi-
593tive feedback. Coarse-scale catastrophic shifts are more
594likely in systems that have little spatial heterogeneity or

Figure 6. Time series of integrated normalized differential
vegetation index (I-NDVI). I-NDVI was calculated for each
sampling domain from seasonal summations (October–
September) of differences between NDVI and minimum
NDVI from the seasons 1985–1986 to 2000–2001. Black
circles represent the scenario with low grazing intensity
(Gellap), and white circles represent the scenario with high
grazing intensity (Nabaos).

Figure 7. Comparison of simulated phytomass and
measured I-NDVI. For both simulation methods and both
management methods modeled total phytomass in each year
from 1985 to 2000 were compared with remotely sensed
indices of phytomass (I-NDVI). I-NDVI images cover 8km2

of both the research farm with low grazing intensity
(Gellap) and communal rangeland with high grazing
intensity (Nabaos).

t2.1Table 2. Comparison of Model Output With Field Data on

Percentage Coverage and Biomass Production of Perennial Grasses

for the Research Area With High and Low Grazing Pressurea

Field Data Overland Flow No Overland Flow t2.2

CovL (%) 50 44 (2.2) 12 (0.9) t2.3
CovH (%) 1 6 (1.0) 5 (0.6) t2.4
ProdL (t dry matter/ha) 258 262 (5.6) 48 (3.1) t2.5

aHere Cov is coverage and Prod is biomass production, and H is high and
L is low grazing pressure. Standard deviations for the model output are
given in the parentheses. t2.6
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595 no spatial feedback mechanisms to compensate for positive
596 feedback. Taking these conclusions into account, our model
597 results provide additional insights into the impact of spatial
598 exchange of water on ecosystem service and the functioning
599 of arid rangelands. Overland flow not only decreases total
600 annual productivity but also affects vegetation composition.
601 At low grazing intensities, the explicit consideration of
602 overland flow favors high abundance of vegetation states
603 with high cover of perennial grasses, whereas vegetation
604 states with annual vegetation were frequent where overland
605 flow was excluded. In contrast, only low effects of overland
606 flow on vegetation composition could be observed at high
607 grazing intensities (Nabaos). Here, vegetation states consist
608 mainly of bare ground, shrubs and, in years of high
609 precipitation, annuals, which dominate the simulated land-
610 scape at both model versions. Although our results demon-
611 strate the high relevance of the explicit inclusion of
612 overland flow at landscape scale for vegetation dynamics,
613 until now it has seldom been recognized, quantified and
614 incorporated into management decisions [Rastetter et al.,
615 2003; van de Koppel and Rietkerk, 2004].
616 [43] Generally, rotational grazing strategies have been
617 proposed to increase stocking capacity, improve animal
618 gains, and improve forage production and range condition
619 [e.g., Fynn and O’Connor, 2000]. In this paper, we have
620 demonstrated that in semiarid and arid rangelands with
621 distinct topography, the rotation of livestock between
622 different paddocks combined with moderate stocking rates
623 becomes even more important, as nondegraded paddocks
624 serve as hydrological sinks which catch and conserve
625 surface run-off from degraded paddocks with low vegeta-
626 tion cover. A thorough understanding of overland flow is an
627 important precondition for improving the management of
628 semiarid and arid rangelands with distinct topography.

629 [44] Acknowledgments. We gratefully acknowledge support from
630 the German Ministry of Education and Research (BMBF) through the
631 framework of BIOTA southern Africa (01LC0024A) and the German
632 BMBF project ‘‘Preis des Wassers.’’ Furthermore we are grateful to our
633 CSIR colleague Russell Main who invested his time in making our
634 German-English less painful for the native English audience.
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