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ABSRACT 
 A new type of Bessel-like optical beams, which is distinguished by the dependence on the cone angle from the 
longitudinal coordinate, is investigated. Such beams have the properties of Bessel beams (ring-spatial spatial spectrum) 
as well as Gaussian beams (keeping the transverse profile at any distances). This new type of beams can be obtained in 
optical system composed of lens axicon doublet and conical lens. An experimental set-up for producing such beams is 
realized. It is shown that depending on its parameters the scheme allows one to produce z-dependent Bessel-like beams, 
whose spatial spectra change from Bessel function to shifted Gaussian one. It is establish theoretically and confirmed 
experimentally that on-axial intensity of z-dependent Bessel-like beam could be higher than that of incident Gaussian 
beam. 
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1 INTRODUCTION 
 

The zero-order Bessel beam J0 as a mathematical construction was firstly introduced by Durnin [1]. Such beams 
can be produced by using annulus and a lens [2], a hologram [3], or an axicon [4,5]. Apart of passive methods for 
production of Bessel beams, the intracavity generation can be used [6-9].  

The use of an axicon provides the most efficient method for producing Bessel beam, because the axicon has a 
higher transmittance than an annulus and produces no higher-order diffracted beams as there generated in a holographic 
axicon and axicon gratings. High efficient method for production of Bessel beam can be also based on using anisotropic 
crystals [10,11]. 
 The interest in Bessel light beams is connected, first of all, with the nondiffracting nature of these beams and 
with the effect of self-reconstruction of the transverse profile after shadowing (see, for example, [12]). These properties 
are the advantage of Bessel beams as compared with traditional Gaussian ones. Inside the nondiffracting region the 
Bessel light beam does not change its profile. But at the boundary of this region the beam abruptly transforms into a 
conical field with the characteristic ring-shaped intensity distribution (“double-face” effect). The significant difference of 
the near-field and far-field spatial structure can be considered as the disadvantage of such beams in contrast to Gaussian-
type beams which preserve their profile while propagating in the free space over any distances. 
 The “double-face” effect can be partially weakened when going to Bessel beams with very small cone angle γ as 
the non-diffraction beam length is inversely proportional to the angle γ. There is an elegant possibility to eliminate the 
“double-face” effect for Bessel beams. This includes the generation of beams with a decreased cone angle γ during beam 
propagation. The beams with the decreasing cone angle γ(z) are also more interesting in practice.  
 In so doing, if at z→∞ the limiting value of angle γ(z) at is equal to zero, such beams will hold an intermediate 
position between Bessel and Gaussian beams in respect to their properties. In what follows the optical beams formed in 
such schemes will be referred to as z- dependent Bessel-like beams. To realize such beams, use can be made of a 
modification of linear axicons and various lens systems with spherical aberration and anastigmatic lens axicons with the 
reflecting spherical surfaces [12-16]. Such schemes have been investigated before, mainly with the aim of obtaining the 
maximally uniform an-axis profile and constant diameter of the central spot size at the given focal segment as well as 
with the aim of minimization of astigmatism that is typically large for conical optics [17]. In the papers [18-19] the 
possibility is shown of achieving of a high transverse resolution at large distances in a scheme of a defocused Galilean-
type telescope with negative spherical aberration. However until now there has not been a detailed investigation of the 
transverse structure of z-dependent Bessel beams in the near and far zones of diffraction and the possibility of managing 
the axial intensity of a generated beam by the change of scheme parameters.  
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 In particular, of great practical interest is the study of the possibility of achieving the beam intensity higher than 
that in Gaussian beam which used in the scheme as an input one. This problem is rather comprehensive and can be 
investigated for all the proposed schemes intended for generation of z-dependent Bessel-like beams. 
 In this paper, a scheme is proposed and analyzed which includes aberration free optical elements consisting of 
an lens-axicon doublet and second axicon (Fig.1). It is shown that such a scheme allows one to produce z-Bessel beams 
that have a number of interesting properties, first of all in the far zone of radiation. Also the local spatial-angular spectra 
are investigated which can be obtained by limiting z-Bessel beams with an circular aperture. Main features of z-Bessel 
beams obtained by the theoretical analysis are compared with experimental results. 
 

2 OPTICAL SCHEME AND MECHANISM OF PRODUCTION OF BESSEL-LIKE BEAM WITH Z-
DEPENDENT CONE ANGLE 

 
 One of the possible optical schemes that allows one to obtain the Bessel beam with z - dependent cone angle γ = 
γ(z) is shown on the Fig. 1. The scheme consists of two axicons Ax1 and Ax2 and spherical lens L with the focal length F. 
The axicons Ax1 and Ax2 are characterized with parameters γ1 and γ2 which are cone angles of Bessel beams generated by 
these axicons respectively. 
 The simplified analysis of the scheme can be made within the frame of geometrical optics. Incoming Gaussian 
beam is transformed with the spherical lens and axicon Ax1 into the ring field in the focal plane F. As it is seen from the 
scheme, the ring radius equals to )( 11 γ= tgFR . The ring width is known to be in inverse proportion to the diameter of 
the incoming Gaussian beam, and the angular divergence is directly proportional to the diameter. Thus, if an input 
Gaussian beam is well collimated, the second axicon Ax2 will be illuminated with a ring-like beam with a high 
divergence angle θ. Besides, this annular beam belongs to the conical type with the average cone angle γ1. The second 
axicon refracts the incoming field in the direction of optic axis. Thus, after passing through the axicon Ax2 (see Fig.1) 
this beam is transformed so that its carrier spatial frequency is decreased but the divergence angle is fixed. As a result, 

the region behind the axicon Ax2 will be illuminated with imaginary ring-like light source (IB on Fig.1). This source can 
be also located after the axicon Ax2. That is in the case if an inequality z1 < F takes place. 

As can be seen from Fig. 1, the crossing angle of a light rays on the optical axis will be reduced with the 
distance z. But the crossing angle remains the same at any distances ρ from the optical axis at fixed longitudinal 
coordinate z. Under fulfillment of the approximate equality γ1+ θ ≈ γ2, the maximal crossing angle converges to zero at z. 

Taking into account the cylindrical symmetry of optical scheme, it can be concluded from the above analysis 
that the output field is the Bessel – like optical beam with z – dependent cone angle. 

 
3 ANALYTICAL CALCULATION OF THE DIFFRACTION INTEGRAL AND NUMERICAL ANALYSIS 

 
 To determine the output field in the scheme of Fig.1, a two-stage calculation of the Fresnel diffraction integral 
has been performed. At the first stage the field at the input plane of the second axicon is calculated: 
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Figure 1. The optical scheme of formation of Bessel-like beam with the cone angle reducing along the direction of propagation. 
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, Ra1 – is the radius of the first axicon, w0 – the halfwidth of input Gaussian beam. The 

calculation of integral, using the stationary phase method, gives 
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where 22
000 wkz =  

As it is seen from Eq. (2) the field incident on the second axicon appears to be the shifted Gaussian beam. The wavefront 
curvature is positive at z1 > F and negative in the opposite case z1 < F. 
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Figure 2 Transverse intensity distribution at the entrance plane of axicon 2. focal length F = 0.28m (a); 0.5m (b) 

 Numerical calculation of diffraction integral (1) was performed and compared with analytical results. From Fig. 2 it 
is seen that field incident on second axicon is close to shifted Gaussian beam. Some difference caused by the diffraction 
at sharp tip of first axicon. 
 Further the Eq. (1) is used while calculating the second diffraction integral: 
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On calculating, the following equation for complex amplitude of the output field ),,( 1 zza ρ  is obtained: 
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Using the known asymptotical form for the zeroth order Bessel function of the first kind )4cos(2)(0 π−π≈ zzzJ  
we arrive at 
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As is shown from the numerical calculation, the amplitude function ),,( 1 zzf ρ  in Eq. (8) has only a weak dependence 
on the transverse coordinate ρ. Therefore, the Eq. (8) describes the field with Bessel transverse intensity distribution. The 
dependence of the amplitude function ),,( 1 zzf ρ  on the longitudinal coordinate z is essential here and will be 
investigated below. Quadratic-phase multiplier in Eq. (8) describes the wavefront curvature of the beam. 

The dependence of cone angle γ on the longitudinal coordinates z1 and z can be represented in the form 
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As is seen from Eq. (9), the cone angle always decreases when increasing z. 
 

4 NUMERICAL CALCULATION OF TRANSVERSE STRUCTURE OF Z-DEPENDENT BESSEL-
LIKE BEAMS 

 

 The numerical analysis of the diffraction integral (3) has been made. The following set of parameters has been 
used: wavelength λ = 0.63mkm; cone angles γ1 = 0.5deg.; γ2 = 0.92deg.; half-width w0 = 1mm; length z1 = 1.9F. The 
focal distance F was varied.  
 In the Fig. 3 the dependence of the axial beam intensity on the distance to the second axicon is shown. As is 
seen, it is a one-picked curve typical for Bessel beams. But the intensity oscillation here is rather weaker than in the 
scheme with one axicon. Further, it follows from the comparison of Fig. 3a and 3b that a decrease in the focal length F 
leads to an increase of the region with a high intensity or the focal beam length.  
 When z increases up to several meters and more, there occurs a slow monotonous, decrease in the intensity, 
which is typical for Gaussian beams.  
 The study of the transverse intensity distribution, as well as of the spatial (angular) spatial spectrum of the 
generated beam, is of a great interest. For calculating the spatial spectrum, the known lens scheme (the focal length of 
the lens is 0,5 m) was used.  
 It follows from the graphs comparison that the profiles of the intensity distribution of the field and spatial 
spectrum coincide here. This points to the fact that at this distance the far zone of the formed beam is realized. The 
novelty here is that the field in the far zone is not the annular one, which is typical for usual schemes with axicon. The 
oscillating beam, which has the intensity distribution similar to the Bessel one, is observed instead of an annular field. 
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Figure 3. Dependence of the intensity on the beam axis from the transverse coordinate z. Focal length F = 0.5m (a); 
0.2m (b) 
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 In Fig. 4 are presented the dependences of the field and spatial spectrum intensity for a scheme containing a lens 
with a relative short-focal length (F=18 cm). 
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Figure 4. Calculated intensity distribution (a, b) and spatial spectrum intensity (c, d) in the scheme with the short-
focal length lens at the distance z = 15m. The full-range graphs are a, c; their near-axial parts are b, d.  

 When z increases, the spatial spectrum shape is retained, whereas the oscillation frequency in the intensity 
distribution diminishes (Fig. 5). 
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Figure 5. Variation of the frequency of intensity oscillations when the propagation length increases. z = 25m (а) and 
50 m (b). 

This confirms the above analytical result (Eq. (8)) on the formation in this scheme of the local Bessel beam, 
whose cone angle decreases with distance. At that the absence of the annular spatial spectrum, which is typical for Bessel 
beams, can be explained by a strong quadratic phase modulation of a beam (Eq. (8)). In particularly, it follows from Eqs. 
(6), (7) that the role of phase modulation becomes greater, when the F decreases, which is related to a decrease in the 
radius of curvature of the wave front.  

 When the focal length F increases, the field and spectra structures change essentially (Fig. 6). It follows from 
Fig.6 that as the focal distance increases, the far field structure changes smoothly from Bessel to annular one. The 
annular component of the total field is characterized here by a large width, which is the result of a relatively high 
divergence of the annular field incident upon the second axicon. 
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 Here in the near-axial region the quasi-Bessel oscillations are retained for all time, and their intensity decreases 
while increasing the focal length F. Here and further, in accordance with existing literature (see, for example, [20]), the 
term “quasi-Bessel beam” denotes some approximation to idealized J0-beam.  

 Note, that in these calculations the distance between axicons was taken as 1.9F. That is why when the focal 
distance F increases, the divergence of the beam incident upon the second axicon decreases. This leads to the domination 
of the annular component in the spatial spectrum of the output beam.  
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Figure 6. Dependence of the field intensity distribution in the far zone on the change of the focal length of lens. F = 
25cm (а, b); 28 cm (c, d); 30сm (e). also shown the spatial spectrum intensity at F =50 cm (f). 

 It should be pointed out that the behavior of the far zone profile shown in Fig.6 is similar to the known scenario 
of changing the intensity in the scheme with a single axicon in the transition region between Bessel and conical beams. 
 Thus, when the focal length F and correspondingly the distance z1 in the scheme in Fig. 1 increases, the far-field 
generated by this scheme changes from the quasi-Bessel beam to an annular field. 

 

5 LOCAL SPATIAL SPECTRA OF Z-DEPENDENT BESSEL-LIKE BEAMS 
 

Also of a great interest is the investigation of local spatial spectrum of z-dependent Bessel-like beams, which 
are obtained when using the limiting circular apertures. It should be noted that when measuring at large distances, the 
aperture limitation is practically inevitable as a result of the increasing beam diameter.  

Proc. of SPIE Vol. 7430  74300E-6



0 1 2 3 4 5 6
0.00

0.02

0.04

0.06

F = 0.5m
z = 1.2m
r0 = 0.83mm

In
te

ns
ity

 sp
ec

tru
m

, r
.u

.

ρ, mm
а 

0 1 2 3 4
0.00

0.01

0.02

0.03

0.04

F = 0.5m
z = 2m
r0 = 0.83mm

in
te

ns
ity

 sp
ec

tru
m

, r
.u

.

ρ, mm
b 

Figure 7. Local spectra of z-Bessel beams obtained in the scheme with F = 0,5 m at the distances z = 1.2 m (а) and z 
= 2m (b) with the annular diaphragm  with the radius of 0.83 mm.  

 In Fig. 7 is given an example of computing the scheme with F=0,5 m (annular far zone) at two different 
distances z. When comparing with Fig. 6f, it is seen that the transverse beam limitation leads to the narrowing of the 
annular spatial spectrum. This phenomenon, at first sight, contradicts the wave theory, according to which the beam 
limitation causes the spatial spectrum broadening. However there is no contradiction here, because the narrowing of the 
annular region of spatial spectrum is accompanied by the appearing of the axial component, which can be explained as 
the broadening of the total spatial spectrum of the beam. Moreover, while removing the limiting aperture (increasing z) 
there takes place a shift of local spatial spectrum towards the region of low frequencies (Fig. 7b), which is indicative of 
the decrease in the efficient cone angle. It should be pointed out that the local spectra in Fig. 7 are obtained in the near 
diffraction zone where the light intensity distribution is the quasi-Bessel one. 
 A similar calculation has been made for small values of F where the field of the far zone is the quasi-Bessel one 
(Fig. 8).  
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Figure 8. Local spectra of quasi-Bessel beams obtained in the scheme with F = 0.2 m at the distance z = 0.67 m with 
the use of annular diaphragm with the radius of 4.2 mm (a) and 3.3 mm (b). 

 In this case, as the diaphragm established in the near beam zone is narrowed down, the enhancement of the 
annular component of spatial spectrum is observed. Therefore, the conical field is mainly concentrated in the central 
region of such beams.  

Also the influence of diaphragm placed in the far zone of beam on its spatial spectrum has been investigated for 
schemes with the quasi-Bessel total spatial spectrum. It is shown that in this case the selection of some zone of the beam 
by the annular diaphragm leads to the filtration of the analogical zone in the spatial spectrum. This allows one to 
synthesize quasi-Bessel beams with a different spatial-angular structure due to the use of the corresponding spatial 
filters.  

 
6 ON-AXIAL INTENSITY OF Z-DEPENDENT BESSEL-LIKE BEAMS IN FAR-FIELD REGION 

 
 The influence is studied of the ratio of the cone angles of axicons 1 and 2 (Fig. 1) on the intensity distribution in 
focal region of z-Bessel beam. In the Fig. 9 the intensity dependences on the beam axis from the longitudinal distance are 
depicted. For the comparison there we have used the input Gaussian beam in the scheme in Fig. 1 on the condition of its 
further free propagation.  
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Figure 9. Axial intensity dependence of z-Bessel beam and the equivalent Gaussian beams in the scheme in Fig. 1. 
It is seen in Fig. 9 that the intensity of the z-Bessel beam near the axicon is rather higher than the intensity of the 

Gaussian one. Such a behavior is known to take place for the usual scheme with one axicon as well. But far from axicon 
the intensity of z-dependent Bessel-like beam may be both smaller (Fig. 9a, b) and larger (Fig. 9c, d) than the intensity of 
Gaussian one. This fact differs considerably this scheme (Fig.1) from the traditional scheme with single axicon. At that 
the intensity of the z-Bessel beam turns out to be higher if the difference of the cone angles decreases (Fig. 9 c, d).  
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Figure 10. The dependence of axial intensity of z- 
Bessel and Gaussian beams at different distances z from 
the second axicon: z = 50m (a); 300m (b); 700m (c). F = 
0.5m.  

A special investigation has been made of the axial intensity at a given distance z, depending on the ratio of the 
cone angles of two axicons in scheme Fig. 1. In Fig. 10 such dependences on the cone angle γ2 are shown at the given 
angle γ1 = 0.5 deg. It is seen that there is the limited range of angles γ2 within which the axial intensity of z-Bessel beam 
is higher. This range is located near the angle γ1 in the region of large angles (γ2 > γ1). At that, for example, the Gaussian 
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beam intensity at the curve maximum in Fig. 10 amounts approximately to 26 per cent from the intensity of z-Bessel 
beam.  

Of importance is the problem of influence of the diameter of the input Gaussian beam on the ratio of axial 
intensities in the far zone. It should be pointed out that the above results have been obtained at w0 = 1mm (Fig. 11).  

From Fig. 11 it is seen that at z = 50m the far zone is realized. Here the field with high accuracy is described by 
the Bessel beam (the comparison showed that for Fig. 11 c the cone angle of this beam equals to 1.6 deg.). At a distance 
of 15m (Fig.11a) the field does not coincide with its spatial spectrum and has the pedestal that is typical for the transition 
zone from Bessel to conical field. The equality z1 = F provides the small size of the annular beam on the second axicon 
(ring width is 1 mm from 13.5mm up to 14.5mm). The comparison with Fig. 2 shows that the increase of half-width w0 
leads to the increase of the radius of the annular field, at a high axial intensity of the formed beam is achieved. Thus, at 
further increasing w0, instead of whole axicon 2, it is desirable to use only the annular fragment of axicon. At that the 
change of the scheme in Fig. 1 is possible with replacing refraction the axicon by a reflected conical mirror.  
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Figure 11. Main properties of the field at the radius of 
the input Gaussian beam of 2 mm. The intensity 
distribution at z = 15m (a) and z = 50m (b); Fourier-
spectrum (c); on-axis intensity distribution (d); angular 
dependence of the axial intensity (e). Parameters: F = 
1m; γ1 = 0.8deg, γ2 = 0.85deg (for Fig.11a-d); distance 
z1 = F. 

Thus, for achieving the inequality IBs(ρ = 0)> IGs(ρ = 0), the second axicon is necessary to have a little larger 
cone angle. In this case the field of the formed beam in the far zone is the quasi-Bessel one, and a relatively high 
intensity of the axial maxima is explained by slowing down its diffraction divergence due to the presence of side maxima 
of the beam. Unlikely the usual Bessel beam, in this case the property of the partial suppression of diffraction in the axial 
region becomes apparent at any distance. Note, that for providing high axial intensity of a beam reflecting axicons can 
also be used. 
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7 EXPERIMENTAL RESULTS 
 

The scheme shown in Fig. 1 is experimentally tested, its parameters being: the cone angles of two axicons are γ1 
= 0.89 and γ2 = 0.98 deg. respectively, focal distance is F = 0.5m, distance between two axicons is z1 = 0.75m. An input 
Gaussian beam from a He-Ne laser after the preliminary spatial filtration has the halfwidth w0 = 2.5mm (see Eq. (1)). 
The spatial spectra were formed by a spherical lens having a focal length of 0.5m. Images of output beams were captured 
with CCD-camera. 

The evolution of the spatial beam profile with distance form axicon 2 is shown in Fig. 12. It is seen that the 
beam as a whole contains axial and annular components similar to the calculation graphs. Here, when the distance 
increases, the contribution of the annular component diminishes. And the field as a whole becomes similar to z-
dependent Bessel-like beam in its structure. In this case in the central region of the beam there exists the Bessel field 
(Fig. 12 d, e, f), whose cone angle decreases with distance (as the period of the interference structure increases). Note 
that some azimuthal modulation of the beam intensity in Fig.12 is conditioned by astigmatism of the optical system 
containing two axicons.  

 

a b c 

d e f 
Figure 12. Experimentally measured transverse intensity distribution of the beam as a whole at different distances 
from the axicon 2: z = 0.9m (a); 5.2m (b); 6.4m (c) and the central part of the beam at the distances z = 6.4m (d); 
8.6m (e); 25m (f) 

 
The spatial Furrier- spectrum of the beam as a whole is shown in Fig. 13. It is described with high accuracy by 

Bessel function. 
 

 

Figure 13. Experimentally measured spatial spectrum of 
the whole beam formed by the scheme in Fig. 1. 
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Also the spatial Fourier-spectra are experimentally obtained of the beam local regions limited by the circular 
diaphragm (Fig.13). Unlike the spatial spectrum of the total beam (Fig.12), local spectra are annular ones. These findings 
lend support to the view that the central region of z-dependent Bessel-like beams, with a high degree of accuracy, is a 
usual J0 – Bessel beam. 

 

a b 

c d 
Figure 14. Images of near-axial regions of z- dependent Bessel-like beam taken at the distances z = 6.2m (a) and 
9.2m (b). Images of near-axial regions obtained at the beam limitation by the circular diaphragm and their spatial 
spectra (c,d) respectively. The diaphragm diameter is d=2,9 mm in the case (a) and d =2.6mm in the case (b). 
 
The comparison of axial intensities of the z-dependent Bessel-like beam and input Gaussian beam has been 

made at a distance of 25m from axicon 2. The measurement has shown that the axial intensity of Gaussian beam is ≈ 2.5 
times smaller, which approximately corresponds to the calculated value that is equal to 2.7. The difference may be 
caused, first of all, by inaccuracy of measurement of the cone angle of the axicons. 
 

8 CONCLUSION 
 

In conclusion, in this paper a study is made of the spatial-angular structure of z-dependent Bessel-like light 
beams formed by the system containing lens-axicon doublet and second conical lens. It is shown that in the far field such 
a scheme generates Bessel-like beams, whose cone angle depends on the longitudinal coordinate. Here the change of 
geometrical parameters of the scheme influences essentially the field in the far zone, which can extended from quasi-
Bessel field to annular one. Therefore the generated light beams belong to the intermediate type ones spatial spectrum of 
which includes both axial and annular components. 

It is shown that the spatial truncation of beams can also considerably influence their spatial spectrum, which 
provides a possibility of managing the spatial-angular structure of the formed light beams. It has been found that the 
beam axial intensity can be adjusted by changing the ratio of the cone angles of two axicons. At that in the case of the 
almost coincided cone angles the z-Bessel beam can have considerably higher axial intensity than the incident Gaussian 
beam. Thus, the investigation shows that z-Bessel beams posses a rich number of properties and can be of practical 
interest in the area of laser diagnostics, medicine, for example, for creation of more universal laser tweezers [21], and 
also in optical location [19]. 
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