
Design of an Arbitrary Path-Following Controller for a Non-Ho lonomic
Mobile Platform

Deon G. Sabatta
Mobile Intelligent Autonomous Systems,

Council for Scientific and Industrial Research
Pretoria, South Africa
dsabatta@csir.co.za

Abstract— Before a robot may be classed as an autonomous
system, it must be able to move unaided in an environment.
In a known environment or with pre-recorded trajectories, this
reduces to the problem of path following. In order to follow
an arbitrarily defined path, we are required to calculate the
system inputs to the platform in the form of rotational and
translational velocities to keep the robot on this path.

In this paper we derive an analytical controller for a non-
holonomic mobile platform capable of following an arbitrarily
defined smooth path. To derive an analytical controller, we
require an analytical definition of the path which is not always
available for arbitrary paths. To overcome this problem we
divide the path up into circular and straight segments which
are handled independently. The controller takes as input the
first two derivatives of the arbitrary path at each point and
calculates the desired forward and rotational velocities required
for the platform to asymptotically track the path. The controller
derived in this paper is implemented on the Seekur platform
from Mobile Robots. Results showing the following of a pre-
recorded path from differential GPS are discussed.

I. I NTRODUCTION AND RELATED WORK

When controlling a robot along a desired trajectory, we are
required to provide control inputs to the platform (usually
in the form of forward and rotational velocity) to track the
path. Some path planning algorithms [1], [2] directly provide
the required forward and rotational velocities while others
[3], [4] only provide the path. When only the desired path
is provided, we are required to calculate the desired input
velocities to track the path. For simple paths that have been
defined analytically, this is normally easy to accomplish,
however most path planning algorithms only provide paths
as a set of points.

In theory, path following could be accomplished by using
a set-point controller and constantly moving the reference
along the path at a specified rate. When using a set-point
controller, the forward velocity of the platform is relatedto
the distance between the platform and the reference point.
Therefore, path-following control achieved through moving
the reference point along the path results in movement that is
not smooth. To overcome this problem, we propose a path-
following controller that maintains a fixed forward velocity,
as in [5]. In [5], path following controllers are presented for
simple straight and circular paths. In this paper, we extend
this work to include the ability to follow arbitrarily defined
paths by decomposing the path into simple segments.

Fig. 1. The Seekur platform from Mobile Robots that the proposed
controller was implemented on.

The dynamic control of wheeled platforms poses several
problems due to the non-holonomic constraints imposed by
the wheels. When holonomic constraints are present in a
dynamic system, the total number of generalised coordinates
or states may be reduced by the number of constraints. This
is in general not true for non-holonomic constraints. The
control of such platforms is therefore dependent on the exact
choice of output equations. Several authors have examined
controllers for the various configurations of wheeled mobile
robots. In [6] and [7], controllers are derived for two wheel
mobile robots and in [8] a dynamic model for a three wheeled
cart is derived. While the system in [8] is shown to be
controllable, no dynamic controller is derived.

In the following section we derive a simplified model for
our platform and determine the control laws for following
straight and circular paths. We then develop the framework
for arbitrary path following in Section 3 and present the sim-
ulated and experimental results for our control methodology
in Section 4. Finally in Section 5 we present our conclusions
and future work.

II. D ERIVATION OF CONTROL LAWS

This section covers the derivation of the controllers as
presented in [5] pertaining to our mobile platform. We begin
this section by deriving a simplified model of our robotic
platform. This model is then used to derive the path following
controllers capable of following a few simple analytically
defined paths. Thereafter, we derive the framework to permit
arbitrary path following.

A. Simplified Model of the Platform

The Seekur platform (Figure 1) has four independently
driven and steered wheels. As a result, the platform can
move in any given direction and rotate about any given point.
The platform has internal controllers controlling each of
these wheel’s orientations and velocities and allows the user
to define the forward, translational and rotational velocities
of the platform. Given the rolling constraints imposed by
the wheels, certain configurations of motion first require
the wheels to change orientation before movement may
commence. This delay in motion results in movement of the
platform that is not smooth. To overcome this, we consider
only continuous curvature paths, i.e. paths that result from a
smooth change in forward and rotational velocity. We also
ignore any input to translational velocity.

With these assumptions in mind, and given that we can
control the forward and rotational velocities independently,
we arrive at the following simple kinematic model of the
platform.





ẋ
ẏ

φ̇



 =





v cos φ
v sin φ

ω



 . (1)

In this model, (x, y) represents the 2D location of the
platform,φ its orientation andv andω represent the forward
and rotational velocities respectively.

To design a non-linear controller based on the concept of
Input-Output linearisation, we require the system to be in the
form,

ξ̇ = f(ξ)ξ + G(ξ)Γ, (2)

where ξ is the system state,Γ is the input to the system
andf(ξ) andG(ξ) are the system matrices. To accomplish
this we include the forward velocity of the platform into
the system state and choose the forward acceleration of the
platform as the second input. The final system in the form
of equation (2) is,

d

dt









ξ1

ξ2

ξ3

ξ4









=









ξ4 cos ξ3

ξ4 sin ξ3

0
0









+









0 0
0 0
1 0
0 1









Γ, (3)

where Γ = [ω, a]
T represents the input angular velocity

and forward acceleration to the system. The state vectorξ

represents the system state, as in (1) augmented with the
platform velocity.

B. Simple Path Following Controllers

The path following controller that is developed is based
on similar ideas to those presented in [5]. Since we have two
inputs to the system, we are required to choose two output
equations. Since we are performing input-output linearisa-
tion. The choice of these output equations directly effects
the outcome of the controller design.

To enable smooth path following along a continuous path,
we choose as output equations, the shortest distance between
some point, in the reference frame of the robot, and the
desired path as well as the forward velocity of the robot.
This allows us to maintain a constant forward velocity
and minimise some error related to the distance from the
path. Instinctively, we would like to choose this reference
point as the centre of the platform; however, since, under
our assumptions, the platform cannot move sidewards, this
introduces a non-holonomic constraint at this point and as
such the platform becomes uncontrollable. To counter this
problem, we proceed as in [5] and choose, as a reference
point, a point in front of the robot at a distancel, referred
to as the look-ahead distance.

In order to derive controllers using these two output
equations, we have to be able to calculate the shortest
distance between the look-ahead point and the desired path as
a function of state variables and path parameters. To do this
we are required to specify the path analytically. We begin by
calculating the controllers that keep the robot on a straight
path or a circular path.

1) Straight Line Paths:The first controller that will be
developed is for that of a straight line with equation,

Ax + By + C = 0. (4)

We define the look-ahead point in the robot’s frame of
reference as the pointl metres ahead of the centre of the
platform. This point can be specified as,

pla = (xla, yla) = (ξ1 + l cos ξ3, ξ2 + l sin ξ3). (5)

The shortest distance between this point and the path
specified in (4) may be shown to be,

d =
Axla + Byla + C√

A2 + B2
. (6)

For the purposes of deriving this controller, we define the
two output equations as,

h1(ξ) =
A(ξ1 + l cos ξ3) + B(ξ2 + l sin ξ3) + C√

A2 + B2
, (7)

h2(ξ) = ξ4. (8)

Given that both1 Lg1
h1 6= 0 and Lg2

h2 6= 0, the relative
degrees of both outputs are 1 and the linearised system may
be represented in the form,

ż = Az + E (α(ξ) + ρΓ) , (9)

1HereLgh is the Lie derivative ofh with respect tog defined asLgh ≡

∂h
∂ξ

g andL2
gh = Lg(Lgh).

where, by definition,

A =

[

0 0
0 0

]

, E =

[

1 0
0 1

]

,

α =

[

α1

α2

]

, ρ =

[

ρ11 ρ12

ρ21 ρ22

]

,

and,

z1 = h1 z2 = h2

α1 = Lfh1 α2 = Lfh2 = 0
ρ11 = Lg1

h1 ρ12 = Lg2
h1 = 0

ρ21 = Lg1
h2 = 0 ρ22 = Lg2

h2

Through an additional substitution of the form,

τ = α + ρΓ, (10)

equation (9) reduces to a true linear equation. (10) may then
be rewritten as,

Γ = ρ−1 (τ − α) , (11)

to calculate the required inputs to the platform.
With the substitution of (10), we see that the non-linear

system transforms into two first-order linear systems. One
controlling the minimum distance between the path and the
look-ahead point and the second controlling the velocity.
Since the platform already incorporates a controller to control
the forward velocity, we need only derive a controller for
the minimum distance to path. Sinceρ12 and ρ21 are both
zero, the controllers for the minimum distance to path and
velocities decouple, meaning that we do not have to consider
the inputτ2.

Using a simple proportional controller, the inputτ1 may be
specified as,τ1 = −k1z1. Incorporating this into the relation
in (11), we arrive at an expression forΓ1 of,

Γ1 = ω = − 1

ρ11

(k1z1 + α1) , (12)

where,

α1 =
ξ4 (A cos ξ3 + B sin ξ3)√

A2 + B2
and

ρ11 = − l (A cos ξ3 − B sin ξ3)√
A2 + B2

.

From the form of (12), we may see that the system is only
controllable where the inverse ofρ11 is defined. That is,

A cos ξ3 − B sin ξ3 6= 0 and l 6= 0

or equivalently that,

A

B
6= tan ξ3 and l 6= 0.

These inequalities are satisfied when the desired path is not
at right angles to the current heading of the robot and the
look-ahead point does not lie at the centre of the platform.
The requirement on the heading of the platform arises due
to the fact that no direction was specified with the path.
The requirementl 6= 0, exists because of the non-holonomic
constraints enforced through our definition of the system
equations as mentioned previously.

2) Circular Paths: The derivation of the controller for the
circular path is very similar to the case of the straight line
controller. For this case, we derive a controller to enable the
platform to follow a circular path specified by,

(x − xc)
2 + (y − yc)

2 − R2 = 0, (13)

where (xc, yc) specifies the centre of the circular path and
R the radius.

For this case, the shortest distance between the look-ahead
point and the path is calculated as,

d =
√

(xla − xc)2 + (yla − yc)2 − R. (14)

To simplify the derivation of the controller, we seth1(ξ) to,

h1(ξ) = (ξ1 − xc)
2 + (ξ2 − yc)

2 − R2. (15)

Even although this equation is not proportional to (14), it is
still a valid error function2 for the purposes of designing our
controller. The second output equationh2(ξ) is left as,

h2(ξ) = ξ4.

Once again, we may determine the relative degree of both
outputs to be 1, yielding a linearised equation of the same
form as (9). The control input for the rotational velocity may
once again be expressed as,

Γ1 = ω = − 1

ρ11

(k1z1 + α1) ; (16)

however, the values ofα1 andρ11 are now replaced by,

α1 = 2ξ4 ((ξ1 − xc) cos ξ3 + (ξ2 − yc) sin ξ3 + l) and

ρ11 = 2l ((ξ2 − yc) cos ξ3 − (ξ1 − xc) sin ξ3) .

Once again we requireρ11 6= 0 to ensure that the control
input is finite. This is ensured provided that,

(ξ2 − yc) cos ξ3 6= (ξ1 − xc) sin ξ3 and l 6= 0.

The first inequality above can be rewritten as,

ξ2 − yc

ξ1 − xc

=
sin ξ3

cos ξ3

= tan ξ3,

once again requiring that the heading of the robot is not at
right angles to the desired path for the same reason as in the
straight path case.

III. A RBITRARY PATH-FOLLOWING FRAMEWORK

In the previous section, we derived two path-following
controllers, one for straight paths and the other for circular
paths. In this section, we develop a method whereby an
arbitrary path may be expressed in terms of straight- and
circular-paths for the purposes of controlling the platform.

The input to the arbitrary-path follower takes the form of
a collection of points in the robot reference frame together
with a recommended path velocity at that point. At each time
step, the nearest point in the path to the robot is identified as
(xi, yi). A local straight or circular path is then calculated

2Both functions evaluate to zero at the same locations and havederivatives
of the same sign over corresponding intervals.

that passes through this point and matches the local derivative
information of the arbitrary path. This path information is
then fed to the controller to enable path following.

To calculate the parameters of this path segment, we
begin by determining the first two derivatives inx and y
with respect to the point index of the points specifying the
arbitrary path. These derivatives are calculated using the3-
point centre difference formulae as follows3,

dx =
1

2
(−xi−1 + xi+1), (17)

d2x = xi−1 − 2xi + xi+1, (18)

wherexi represents thex value of the closest point to the
robot. xi−1 andxi+1 denote the neighbouring points of the
closest point. The same relations may be used to calculate the
derivatives of they coordinates of the input path. Derivatives
with respect to coordinate indices, as opposed to each
other, are used to prevent the derivatives from becoming ill
conditioned when the path lies on one axis only4.

Given the derivatives of the path coordinates, we may
calculate the curvature of the path to determine whether it is
a straight or circular path. From to [9], curvature is defined
as,

κ =

∣

∣

∣

∣

x′y′′ − y′x′′

(x′2 + y′2)
3

2

∣

∣

∣

∣

. (19)

This value represents the inverse of the Radius of Curvature
(RoC) of the path. The inverse quantity is used as the RoC
becomes infinite for a straight path. If this value is near zero,
we may attempt to fit a straight path through the given points,
while, when this value lies away from 0, we will fit a circular
path.

A. Straight Line Segments

To calculate the parameters of a straight line path of the
form (4) we proceed as follows. The derivative of the line
in (4) may be calculated as,

dy

dx
= −A

B
.

From this we may choose the values ofA andB as,

A = dy and B = −dx.

We can then solve forC by substituting the point of interest
(xi, yi) into (4) to obtain,

C = dx yi − dy xi.

In summary, given the closest point to the robot and the
path derivatives at that point, the coefficients of the straight
path defined in (4) may be calculated as,

A = dy, (20)

B = −dx, (21)

C = dx yi − dy xi. (22)

3When at the beginning or end of the path, the forward and backward
difference formulae would have to be used.

4In this case the derivativedy

dx
could become infinite.

B. Circular Path Segments

In order to calculate the parameters for a circular path,
we need to know in which direction the circle is turning.
The relation for curvature in (19) is unsigned, however, if
we remove the absolute value we obtain a signed curvature
that indicates the direction of rotation. Signed curvatureis
defined, using the path derivatives, as,

κ̃ =
dx d2y − dy d2x

(dx2 + dy2)
3

2

. (23)

The signed curvature is positive when the unit tangent rotates
in a counter-clockwise direction and negative when it rotates
clockwise.

If we consider the case wherẽκ > 0, the unit tangent
rotates in a counter-clockwise direction meaning that the
circular path is turning to the left and hence the centre of
the circle lies90◦ to the left of the tangent vector. The unit
tangent vector for the path may be calculated from the path
derivatives as,

t̂ =
dx x̂ + dy ŷ
√

dx2 + dy2
,

wherex̂ andŷ represent thex andy unit vectors respectively.
Since the radius vector lies90◦ to the left of the tangent
vector, we apply a90◦ rotation matrix tot̂ to calculater̂ as,

r̂ = R90◦ t̂ =
−dy x̂ + dx ŷ
√

dx2 + dy2
. (24)

The centre of the circular path then lies at a distance,
R = 1

|κ̃| , away from(xi, yi) along the radius vector̂r. The
centre point of the circle may then be calculated as,

xc = xi − R dy
(

dx2 + dy2
)− 1

2 ,

yc = yi + R dx
(

dx2 + dy2
)− 1

2 .

For the case,̃κ < 0, the required rotation applied to
the unit tangent to obtain the unit radius vector becomes
−90◦. This is equivalent to using the transpose of the rotation
matrix in (24). The effect of this is to alter the sign ofR in
the equations used to calculate the circle centre. These two
cases may be combined by including the sign ofκ̃ in the
computation ofxc andyc or simply by replacingR with 1

κ̃
.

After doing this, the resulting parameters for a circular path
are found as,

R =

∣

∣

∣

∣

1

κ̃

∣

∣

∣

∣

, (25)

xc = xi −
dy

κ̃

(

dx2 + dy2
)− 1

2 , (26)

yc = yi +
dx

κ̃

(

dx2 + dy2
)− 1

2 . (27)

IV. EXPERIMENTAL RESULTS

A. Simulated Results

The simulated results were calculated using a Simulink
implementation of the simplified platform kinematics and
controller. No platform dynamics were included in the
simulation allowing for instantaneous changes in platform
velocity.

−4 −2 0 2 4 6
−1

0

1

2

3

4

5

6

7

8

X [m]

Y
 [m

]

Straight Path Following of a Line at 45° Passing Through (0, 2)

L = 0.5m
L = 1.0m
L = 2.0m
Desired

Fig. 2. Plot of the simulated straight line following controller with various
look-ahead distances.

−2 0 2 4 6 8
−1

0

1

2

3

4

5

6

7

X [m]

Y
 [m

]

Circular Path Following of a Circle with Centre (3,3) and Radius 3m

L = 0.5m
L = 1.0m
L = 2.0m
Desired

Fig. 3. Plot of the simulated circular path following controller with various
look-ahead distances.

1) Simple Path Following:In this section we present the
simulated results for the straight and circular path following
controllers. For the straight path following controller, the
robot was made to follow a straight path at45◦ passing
through the origin. The robots initial state was[2, 0, 0]T. The
simulated results are shown for look-ahead distances of 0.5m,
1.0m and 2.0m in Figure 2.

These paths were followed with a forward velocity ofv =
0.5m/s and a proportional gain ofk = 0.3. From these
results we can see that a larger look-ahead distance results
in smoother paths but longer settling times.

For the circular controller, we start with the platform at
the origin and attempt to navigate a circular path of radius
3m positioned at (3,3). The result of this simulation is shown
in Figure 3.

These paths were also followed with a forward velocity of
v = 0.5m/s and a proportional gain ofk = 0.3. From these
results we can see that increasing the look-ahead distance
causes the actual path of the platform to diverge from the

−40 −30 −20 −10 0 10 20 30 40

−50

−40

−30

−20

−10

0

X [m]

Y
 [m

]

Arbitrary Path Following of a Simulated Path with L = 2.0m

L = 2.0m
Desired

Fig. 4. Plot of the simulated arbitrary path following framework on a
simulated path around the parking lot.

desired path. In the limit, a look ahead distance of 3.0m for
this example would result in the platform remaining in the
centre of the circle and rotating on the spot.

The performance of the arbitrary path following controller
was tested in simulation by implementing a controller to
follow a sample path captured by DGPS in the parking lot
behind building 17a on the CSIR campus. The locations
indicated in the plot of Figure 4 represent the ENU offset of
the path relative to the DGPS base station. The controller was
simulated with a look-ahead distance of 2.0m and a starting
position slightly off the path to demonstrate the ability ofthe
controller to navigate onto the path. The result is presented
in Figure 4.

2) Influence of Look-Ahead Distancel on Path Following:
From the examples above, we may infer that the trade-off
regarding the selection of look-ahead distances is smoothness
of path vs. accuracy of path. It is also worth mentioning that
the deviation from the path is related to the ratio of look-
ahead distance to path radius. Since the angular rotation is
limited and the forward velocity is fixed, this also imposes a
restriction on the smallest radius of curvature that the robot
may follow. With this in mind, it may be pertinent to relate
the look-ahead distance and desired forward velocity of the
platform to the radius of curvature so that as the radius of
curvature decreases, the robot slows down and the look-ahead
distance is reduced. This would allow for more accurate
path following at lower speeds on tighter circles. However,
for paths of meaningful scale, the tracking performance is
reasonable and it becomes evident that the impact of the
look-ahead distance is diminished.

B. Experimental Results

In this section we discuss the experimental results of the
arbitrary path following controller. We attempt to follow a
path recorded in the parking lot of building 17a. This path
was recorded using the DGPS heading unit on the platform,
then converted to the ENU coordinate frame and resampled

−40 −30 −20 −10 0 10 20 30 40
−60

−50

−40

−30

−20

−10

0

10

X [m]

Y
 [m

]

Arbitrary Path Following of a Path with L = 2.0m

GPS Position
Robot Odometry
Desired Path Points

Regions of Poor
GPS Signal

(a) Arbitrary path following with a look-ahead distanceL = 2.0m.

0 50 100 150 200

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time [s]

ω
 [r

ad
.s

ec
−

1]

Comparison of Commanded and Actual Angular Velocity for L = 2.0m

Commanded
Actual

(b) Comparison of commanded and actual rotational velocities.

0 50 100 150 200
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time [s]

G
P

S
 O

do
m

et
ry

 D
iv

er
ge

nc
e

[m
]

Distance Between Fused Pose and Position Reported by GPS

GPS vs Odometry Error
Dilution of Precision

(c) Distance between fused pose location and DGPS location showing
GPS DOP.

0 50 100 150 200
−6

−4

−2

0

2

4

6

Time [s]

G
P

S
 H

ea
di

ng
 D

iv
er

ge
nc

e
[d

eg
]

Difference Between Fused Pose Heading and GPS Heading

GPS vs Odometry Error
Dilution of Precision

(d) Distance between fused pose heading and DGPS heading showing
GPS DOP.

Fig. 5. Experimental results pertaining to the arbitrary path following controller.

so that the points along the path are not too close. This is
necessary to prevent excessive jerkiness of the path during
following as the controller continually adjusts the path.

The results of the arbitrary-path following controller are
presented in Figure IV-A.2. Figure 5(a) shows the fused
robot odometry together with the position returned by the
GPS unit. Initially, the path following algorithm performs
satisfactorily as the number of visible satellites is largeand
the signal quality is good. As the robot moves towards the
end of the path we see two anomalies. The first at around
(-10, -40) where the GPS signal quality was reduced due to
the presence of an urban canyon. This anomaly occurred at
around 120s as may be seen in Figures 5(c) and 5(d). The
DOP at this point rose above 2.0 and the position solution
of the GPS was deemed inaccurate. The robot continued
to follow the path by extrapolating the last position using
internal odometry. When the GPS signal was reacquired, the
error in the odometry was recovered and the internal pose of
the robot was set to the GPS location. The controller then
recovered steering the platform back onto the path. As no
absolute ground truth is available, it is difficult to decide

which input was more accurate. While it would appear that
the platform odometry estimate diverged from the path, this
is only because the controller strives to keep this estimated
position on the path. The second anomaly present in the
GPS signal occurred from around 160s to 195s where the
GPS signal was lost for a significantly longer time.

Figure 5(b) shows the differences between the commanded
and actual rotational velocities and Figures 5(c) and 5(d)
show the errors between the fused estimates and the GPS
positions and heading respectively. Figures 5(c) and 5(d)
also show the HDOP superimposed on the results. In these
figures, loss of signal on the GPS is indicated by missing
data in the plots.

V. CONCLUSIONS

This paper presents a method whereby complex arbitrary
paths may be decomposed into simpler sub-components for
which non-linear controllers may be designed. The perfor-
mance of this method when tracking an arbitrary paths has
been shown to be acceptable with most of the error attributed
to problems with GPS signal quality. These problems could

be mitigated through the use of a statistical fusion framework
to improve the results.

One problem with the above approach is the inability to
specify direction together with the path information. As a
result, the robot will follow the path in whichever direction
is closest to its current heading. To overcome this problem,
an additional controller would have to be developed to ensure
that the platform heading was within90◦ of the desired path
heading at the start of the path.

REFERENCES

[1] J. Borenstein and Y. Koren. The vector field histogram – fast obstacle
avoidance for mobile robots. IEEE Transactions on Robotics and
Automation, 7(3):278–288, June 1991.

[2] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to
collision avoidance.IEEE Robotics and Automation Magazine, 4:23–
33, 1997.

[3] O. Khatib and S. Quinlan. Elastic bands: Connecting, path planning and
control. InIEEE International Conference on Robotics and Automation,
May 1993.

[4] R. Jacobs and J. Canny. Planning smooth paths for mobile robots. In
IEEE International Conference on Robotics and Automation, pages 2–7,
1989.

[5] N. Sarkar, X. Yun, and V. Kumar. Control of mechanical systems with
rolling constraints: Application to dynamic control of mobile robots.
International Journal of Robotics Research, 13(1):55–69, 1994.

[6] C. Canudas de Wit and R. Roskam. Path following of a 2-dof
wheeled mobile robot under path and input torque constraints. In IEEE
International Conference on Robotics and Automation, pages 1142–
1147, 1991.

[7] C. Samson and K. Ait-Abderrahim. Feedback control of a non-
holonomic wheeled cart in cartesian space. InIEEE International
Conference on Robotics and Automation, pages 1136–1141, 1991.

[8] B. d’Andrea Novel, G. Bastin, and G. Campion. Modelling and
control of non-holonomic wheeled mobile robots. InIEEE International
Conference on Robotics and Automation, pages 1130–1135, 1991.

[9] Salas, E. Hille, and G. J. Etgen.Calculus: One and Several Variables.
Wiley, 8th edition, 1999.

