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Abstract— Before a robot may be classed as an autonomous
system, it must be able to move unaided in an environment.
In a known environment or with pre-recorded trajectories, this
reduces to the problem of path following. In order to follow
an arbitrarily defined path, we are required to calculate the
system inputs to the platform in the form of rotational and
translational velocities to keep the robot on this path.

In this paper we derive an analytical controller for a non-
holonomic mobile platform capable of following an arbitrarily
defined smooth path. To derive an analytical controller, we
require an analytical definition of the path which is not always
available for arbitrary paths. To overcome this problem we
divide the path up into circular and straight segments which
are handled independently. The controller takes as input the
first two derivatives of the arbitrary path at each point and
calculates the desired forward and rotational velocities required
for the platform to asymptotically track the path. The controller
derived in this paper is implemented on the Seekur platform
from Mobile Robots. Results showing the following of a pre-
recorded path from differential GPS are discussed.

Fig. 1. The Seekur platform from Mobile Robots that the pegzb
I. INTRODUCTION AND RELATED WORK controller was implemented on.

When controlling a robot along a desired trajectory, we are
required to provide control inputs to the platform (usually
in the form of forward and rotational velocity) to track the

path. Some path planning algorithms [1], [2] directly pd®i  The dynamic control of wheeled platforms poses several
the required forward and rotational velocities while Omerpromems due to the non-holonomic constraints imposed by
[3], [4] only provide the path. When only the desired pathhe wheels. When holonomic constraints are present in a
is provided, we are required to calculate the desired inpdlynamic system, the total number of generalised coordinate
velocities to track the path. For simple paths that have begj states may be reduced by the number of constraints. This
defined analytically, this is normally easy to accomplishis in general not true for non-holonomic constraints. The
however most path planning algorithms only provide pathgontrol of such platforms is therefore dependent on thetexac
as a set of points. choice of output equations. Several authors have examined
In theory, path following could be accomplished by usingontrollers for the various configurations of wheeled mbil
a set-point controller and constantly moving the referenagbots. In [6] and [7], controllers are derived for two wheel
along the path at a specified rate. When using a set-poiifobile robots and in [8] a dynamic model for a three wheeled
controller, the forward velocity of the platform is relateml cart is derived. While the system in [8] is shown to be
the distance between the platform and the reference poigbntrollable, no dynamic controller is derived.
Therefore, path-following control achieved through mayin
the reference point along the path results in movementshat i In the following section we derive a simplified model for
not smooth. To overcome this problem, we propose a patbur platform and determine the control laws for following
following controller that maintains a fixed forward velagit straight and circular paths. We then develop the framework
as in [5]. In [5], path following controllers are presentedt f for arbitrary path following in Section 3 and present the-sim
simple straight and circular paths. In this paper, we extendated and experimental results for our control methodplog
this work to include the ability to follow arbitrarily defide in Section 4. Finally in Section 5 we present our conclusions
paths by decomposing the path into simple segments.  and future work.



1. DERIVATION OF CONTROL LAWS B. Simple Path Following Controllers

This section covers the derivation of the controllers as The path following controller that is developed is based
presented in [5] pertaining to our mobile platform. We begir®n similar ideas to those presented in [5]. Since we have two
this section by deriving a simplified model of our roboticinputs to the system, we are required to choose two output
platform. This model is then used to derive the path follayin €quations. Since we are performing input-output linearisa
controllers capable of following a few simple analyticallytion. The choice of these output equations directly effects
defined paths. Thereafter, we derive the framework to pernifte outcome of the controller design.

arbitrary path following. To enable smooth path following along a continuous path,
we choose as output equations, the shortest distance betwee
A. Simplified Model of the Platform some point, in the reference frame of the robot, and the

is allows us to maintain a constant forward velocity
nd minimise some error related to the distance from the

The Seekur platform (Figure 1) has four independentl
driven and steered wheels. As a result, the platform ca
move in any given direction and rotate about any given poin? L : .
The platform has internal controllers controlling each o ath. Instinctively, we would like to choose this reference

these wheel’s orientations and velocities and allows tles uspOInt as thet. centr;ah of }hg platform; ?owever,:nce,dun(t:ir(]e_r
to define the forward, translational and rotational velesit our assumptions, the platiorm cannot move sidewards, this

of the platform. Given the rolling constraints imposed b})’ntroduces a non-holonomic constraint at this point and as
the wheels, certain configurations of motion first requir<§UCh the platform becomt_as uncontroliable. To counter this
the wheels to change orientation before movement m (_)blem, we proceed as in [5] and choqse, as a reference
commence. This delay in motion results in movement of th oint, a point in front of the robot at a distantereferred

platform that is not smooth. To overcome this, we ConsidetP as the Iook-ahegd distance. .
In order to derive controllers using these two output

only continuous curvature paths, i.e. paths that resuthfeo .
gquations, we have to be able to calculate the shortest

smooth change in forward and rotational velocity. We alsg, ; )
g y distance between the look-ahead point and the desired path a

ignore any input to translational velocity. funci f stat il d path A To do thi
With these assumptions in mind, and given that we caff runction of state variables and path parameters. -0 co this

control the forward and rotational velocities indepentient we are required to specify the path analytically. We begin by

we arrive at the following simple kinematic model of thecalculatlng _the controllers that keep the robot on a sttaigh
platform. path or a circular path.

1) Straight Line Paths:The first controller that will be
developed is for that of a straight line with equation,

%(:sired path as well as the forward velocity of the robot.

T v COS @
g = vsingb . (1) AI + By + C =0. (4)
w

We define the look-ahead point in the robot’s frame of

In this model, (z,y) represents the 2D location of the reference as the poirit metres ahead of the centre of the
platform, ¢ its orientation and> andw represent the forward p|atform. This point can be specified as,

and rotational velocities respectively.
To design a non-linear controller based on the concept of  Pia = (T1a; Yia) = (§1 + 1 cos &3, & +1sinéz).  (5)

Input-Output linearisation, we require the system to béan t . ) )
P P a 4 The shortest distance between this point and the path

form, A
: specified in (4) may be shown to be,
£ [(©)6 + GO, @ P () may
d_Amla+Byla+C 6
where ¢ is the system statd} is the input to the system Yy vy R (6)

and f (&) and G(&) are the system matrices. To accomplish o ] )
this we include the forward velocity of the platform into For the purposes of deriving this controller, we define the

the system state and choose the forward acceleration of t¢° output equations as,

platform as the second input. The final system in the form A(&1 + lcos&s) 4+ B(& + Isiné) + C
of equation (2) is, hi(§) = o , (1)
& &4c08&3 0 0 ha(§) = & 8)
di 22 _ | & S(1)n§3 + (1) 8 r, (3 Given that both L, hy # 0 and Ly, hs # 0, the relative
t 3 degrees of both outputs are 1 and the linearised system may
€4 0 0 1 :
be represented in the form,
where I’ = [w,a]T represents the input angular velocity s = Az + E(a(é) + pT) 9)

and forward acceleration to the system. The state vegtor
represents the system state, as in (1) augmented with theyerer, 1 is the Lie derivative ofs with respect toy defined asl. h =

platform velocity. JegandLzh = Lg(Lgh).



where, by definition, 2) Circular Paths: The derivation of the controller for the
circular path is very similar to the case of the straight line

A= { 8 8 } ; E= { (1) (1) ] ; controller. For this case, we derive a controller to enabée t
platform to follow a circular path specified by,
o — a1 p= P11 P12 ) ) )
[ a2 }7 {le P22 } ’ (x—2c)"+ (y —ye)” — R° =0, (13)
and, where (z.,y.) specifies the centre of the circular path and

o =hy 2o = hoy R the rgdius. .
ay = Lihy (o = Lyhy =0 I_:or this case, the_shortest distance between the look-ahead
p11=Lg b1 pra = Lg,h1 =0 point and the path is calculated as,
P21 = Lg1 ha =0 P22 = L92h2 d= \/(xla - xC)Q + (yla - yc)2 - R (14)

Through an additional substitution of the form, To simplify the derivation of the controller, we skf(¢) to,

T=a+pl, (10) hi(€) = (& — ) + (S —ye)® — R (15)

equation (9) reduces 1o a true linear equation. (10) may th(Téllen although this equation is not proportional to (14)sit i

be rewritten as, still a valid error functiof for the purposes of designing our
controller. The second output equatibp(€) is left as,

to calculate the required inputs to the platform. ha(€) = €

With the substitution of (10), we see that the non-linear 2 .
system transforms into two first-order linear systems. One Once again, we may determine the relative degree of both
controlling the minimum distance between the path and theutputs to be 1, yielding a linearised equation of the same
look-ahead point and the second controlling the velocitform as (9). The control input for the rotational velocity yna
Since the platform already incorporates a controller tarmbn once again be expressed as,
the forward velocity, we need only derive a controller for 1
the minimum distance to path. Singg, and p,; are both [=w=—— (k2 +a1); (16)
zero, the controllers for the minimum distance to path and P
velocities decouple, meaning that we do not have to consid@pwever, the values af, andp,, are now replaced by,

T=pl(r-a), (11)

the inputr. . . a1 = 26 ((61 —xc)cosés + (S —ye)sinéz +1)  and
Using a simple proportional controller, the inptmay be o] )
specified ast; = —k; 2. Incorporating this into the relation ”*! (€2 = ye) cos&s — (& — we)sings) .
in (11), we arrive at an expression fbi of, Once again we requirg;; # 0 to ensure that the control
1 input is finite. This is ensured provided that,
I'=w=—— (k1z1+a1)7 (12)
pu1 (62 —yc)cos€s # (61 — xc)sinés and [ # 0.
where, . . .
The first inequality above can be rewritten as,
= &4 (Acosés + Bsinés) and £ — sing
' VA + B2 ;% = 7; — tan &,
[ (Acos&s — Bsiné&s) 1= % COS&3
P = - Az B2 : once again requiring that the heading of the robot is not at

, right angles to the desired path for the same reason as in the
From the form of (12), we may see that the system is °n|¥traight path case.

controllable where the inverse pf; is defined. That is,

Acosés — Bsiné3 #0 and [#0

[1l. ARBITRARY PATH-FOLLOWING FRAMEWORK
In the previous section, we derived two path-following

or equivalently that, controllers, one for straight paths and the other for cacul
A paths. In this section, we develop a method whereby an
5 #tangs and [#0. arbitrary path may be expressed in terms of straight- and

circular-paths for the purposes of controlling the platior

These inequalities are satisfied when the desired path is noLI_he input to the arbitrary-path follower takes the form of

at right angles to the current heading of the robot and thae collection of points in the robot reference frame together
look-ahead point does not lie at the centre of the platform.. P . . get

: . : with a recommended path velocity at that point. At each time
The requirement on the heading of the platform arises dus?e the nearest point in the path to the robot is identifeed a
to the fact that no direction was specified with the path P. P P

The requirement £ 0, exists because of the non-holonomic(x“yi)' A local straight or circular path is then calculated
constraints enforcgd thrOUgh_ our definition of the System 2g, functions evaluate to zero at the same locations anddeieatives
equations as mentioned previously. of the same sign over corresponding intervals.



that passes through this point and matches the local dggvatB. Circular Path Segments

information of the arbitrary path. This path information is |n order to calculate the parameters for a circular path,

then fed to the controller to enable path following. we need to know in which direction the circle is turning.
To calculate the parameters of this path segment, Wene relation for curvature in (19) is unsigned, however, if

begin by determining the first two derivatives inandy e remove the absolute value we obtain a signed curvature

with respect to the point index of the points specifying th@nhat indicates the direction of rotation. Signed curvatisre
arbitrary path. These derivatives are calculated usingBthe gefined, using the path derivatives, as,

oint centre difference formulae as follotys
P oty dx d?y — dy d%x

1 k= > 3 (23)
dor = 5(—1‘1'_1 +zit1), @7 (dz? 4+ dy?)2
A2z = 21 — 2u; + Tis1, (18) The signed curvature is positive when the unit tangentestat

in a counter-clockwise direction and negative when it egat
where x; represents the value of the closest point to the clockwise.
robot. z;_; andz;,; denote the neighbouring points of the If we consider the case where > 0, the unit tangent
closest point. The same relations may be used to calcukate ffotates in a counter-clockwise direction meaning that the
derivatives of the; coordinates of the input path. Derivativescircular path is turning to the left and hence the centre of
with respect to coordinate indices, as opposed to eathe circle lies90° to the left of the tangent vector. The unit
other, are used to prevent the derivatives from becoming #hngent vector for the path may be calculated from the path

conditioned when the path lies on one axis dnly derivatives as, . )
Given the derivatives of the path coordinates, we may i = de @ +dy y
calculate the curvature of the path to determine whether it i Vdz? + dy?’

a straight or circular path. From to [9], curvature is defineq a4 andg represent the andy unit vectors respectively.

as, O Since the radius vector lie80° to the left of the tangent
= % . (19) vector, we apply ®0° rotation matrix tot to calculater as,
(z2 +y'?)2 Ly étdeg
This value represents the inverse of the Radius of Curvature 7 = Rooot = Rt g (24)

(RoC) of the path. The inverse quantity is used as the RoC ) . )
becomes infinite for a straight path. If this value is neapzer 1he centre of the circular path then lies at a distance,
we may attempt to fit a straight path through the given pointd? = 17+ away from(z;, y;) along the radius vectof. The
while, when this value lies away from 0, we will fit a circular €€ntré point of the circle may then be calculated as,

path. . = x;— Rdy(d2®+ dyz)_% ,

1

A. Straight Line Segments yi R de (de? + dy?) E

Ye =

To calculate the parameters of a straight line path of the
form (4) we proceed as follows. The derivative of the Iineth
in (4) may be calculated as,

For the caseik < 0, the required rotation applied to
e unit tangent to obtain the unit radius vector becomes
—90°. This is equivalent to using the transpose of the rotation

dy = A matrix in (24). The effect of this is to alter the sign Bfin
de2 B’ the equations used to calculate the circle centre. These two
From this we may choose the values.bfand B as, cases may be combined by including the signioin the
computation ofr, andy. or simply by replacingk with *.
A=dy and  B=-dz. After doing this, the resulting parameters for a circulathpa

We can then solve fof’ by substituting the point of interest are found as,

(z4,y;) into (4) to obtain,

1
R = = (25)
C=dx y; —dy z;. dy .
e = i —— (da® +dy?) Z, 26
In summary, given the closest point to the robot and the * “ K ( Tty ) (26)
. . . . . . d 1
path derllvat|v§as at that point, the coefficients of the gtrai ve = wi+ Tl‘ (dx2 4 dy2) 3 27)
path defined in (4) may be calculated as, K
A d (20) IV. EXPERIMENTAL RESULTS
B B} yd’ 21) A. Simulated Results
B “ The simulated results were calculated using a Simulink

implementation of the simplified platform kinematics and
3When at the beginning or end of the path, the forward and backwa C_Ontm"_er' No p_Iatform_ dynamlcs were InC|Ud_ed in the

difference formulae would have to be used. simulation allowing for instantaneous changes in platform
4In this case the derivativd could become infinite. velocity.



Straight Path Following of a Line at 45 Passing Through (0, 2) Arbitrary Path Following of a Simulated Path with L = 2.0m
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Fig. 2. Plot of the simulated straight line following conteslwith various  Fig. 4. Plot of the simulated arbitrary path following framelwmn a
look-ahead distances. simulated path around the parking lot.

Circular Path Following of a Circle with Centre (3,3) and Radius 3m

- —-L=05m desired path. In the limit, a look ahead distance of 3.0m for
ek this example would result in the platform remaining in the
““““ Desired centre of the circle and rotating on the spot.
The performance of the arbitrary path following controller
\ was tested in simulation by implementing a controller to
follow a sample path captured by DGPS in the parking lot
14 behind building 17a on the CSIR campus. The locations
‘ indicated in the plot of Figure 4 represent the ENU offset of
v the path relative to the DGPS base station. The controller wa
/ simulated with a look-ahead distance of 2.0m and a starting
position slightly off the path to demonstrate the abilitytioé
controller to navigate onto the path. The result is presente
-1 : : , : : in Figure 4.
X[m] 2) Influence of Look-Ahead Distanten Path Following:
From the examples above, we may infer that the trade-off
Fig. 3. Plot of the simulated circular path following conteslwith various  regarding the selection of look-ahead distances is smesthn
look-ahead distances. of path vs. accuracy of path. It is also worth mentioning that
the deviation from the path is related to the ratio of look-

1) Simple Path Followingin this section we present the a_thgad distance to path radiu_s. _Sir}ce the.angula_r rotation is
simulated results for the straight and circular path foitay I|m|tgd .and the forward velocny is fixed, this also imposes a
controllers. For the straight path following controllehet estriction on the smallest radius of curvature that theotob
robot was made to follow a straight path #5° passing May follow. With fthls in mind, it may be pertinent to relate
through the origin. The robots initial state was0, 0]T. The the look-ahead distance and desired forward velocity of the

simulated results are shown for look-ahead distances of,0.5Platform to the radius of curvature so that as the radius of

1.0m and 2.0m in Figure 2. curvature decreases, the robot slows down and the looldahea
These paths were followed with a forward velocity.of distance is_ reduced. This would a_IIow for_ more accurate

0.5m/s and a proportional gain ok = 0.3. From these path following at Iqwer speeds on tlghte_r circles. Howeve_r,

results we can see that a larger look-ahead distance resti§ Paths of meaningful scale, the tracking performance is

in smoother paths but longer settling times. reasonable qnd it bgcor_ne_s.ewdent that the impact of the
For the circular controller, we start with the platform at/©0k-ahead distance is diminished.

the origin and attempt to navigate a circular path of radius .

3m positioned at (3,3). The result of this simulation is showB' Experimental Results

in Figure 3. In this section we discuss the experimental results of the
These paths were also followed with a forward velocity ofirbitrary path following controller. We attempt to follow a

v =0.5m/s and a proportional gain ¢f = 0.3. From these path recorded in the parking lot of building 17a. This path

results we can see that increasing the look-ahead distangas recorded using the DGPS heading unit on the platform,

causes the actual path of the platform to diverge from thinen converted to the ENU coordinate frame and resampled

Y [m]
w




Arbitrary Path Following of a Path with L = 2.0m Comparison of Commanded and Actual Angular Velocity for L = 2.0m
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(c) Distance between fused pose location and DGPS locakiowing (d) Distance between fused pose heading and DGPS headingngho
GPS DOP. GPS DOP.

Fig. 5. Experimental results pertaining to the arbitraryhpatlowing controller.

so that the points along the path are not too close. This ughich input was more accurate. While it would appear that
necessary to prevent excessive jerkiness of the path duritiee platform odometry estimate diverged from the path, this
following as the controller continually adjusts the path. is only because the controller strives to keep this estichate
The results of the arbitrary-path following controller areposition on the path. The second anomaly present in the
presented in Figure IV-A.2. Figure 5(a) shows the fuse&PS signal occurred from around 160s to 195s where the
robot odometry together with the position returned by th&PS signal was lost for a significantly longer time.
GPS unit. Initially, the path following algorithm performs Figure 5(b) shows the differences between the commanded
satisfactorily as the number of visible satellites is laggel and actual rotational velocities and Figures 5(c) and 5(d)
the signal quality is good. As the robot moves towards thehow the errors between the fused estimates and the GPS
end of the path we see two anomalies. The first at aroursitions and heading respectively. Figures 5(c) and 5(d)
(-10, -40) where the GPS signal quality was reduced due ®&iso show the HDOP superimposed on the results. In these
the presence of an urban canyon. This anomaly occurredfigures, loss of signal on the GPS is indicated by missing
around 120s as may be seen in Figures 5(c) and 5(d). THata in the plots.
DOP at this point rose above 2.0 and the position solution
of the GPS was deemed inaccurate. The robot continued
to follow the path by extrapolating the last position using This paper presents a method whereby complex arbitrary
internal odometry. When the GPS signal was reacquired, tipaths may be decomposed into simpler sub-components for
error in the odometry was recovered and the internal pose which non-linear controllers may be designed. The perfor-
the robot was set to the GPS location. The controller themance of this method when tracking an arbitrary paths has
recovered steering the platform back onto the path. As rlmeen shown to be acceptable with most of the error attributed
absolute ground truth is available, it is difficult to decideto problems with GPS signal quality. These problems could

V. CONCLUSIONS



be mitigated through the use of a statistical fusion franr&wo [3]

to improve the results.

One problem with the above approach is the inability tgy

specify direction together with the path information. As
result, the robot will follow the path in whichever direatio

is closest to its current heading. To overcome this proble

a

h

an additional controller would have to be developed to emsur

that the platform heading was withi9° of the desired path
heading at the start of the path.
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