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Abstract 

In this paper we describe the implementation and validation of arbitrarily moving reference frames 

in the block-structured CFD-code EURANUS. We also present results from calculations on two 

applications involving accelerating missiles with generic configurations. It is shown that acceleration 

affects wave drag significantly. Also, it is shown that strake-generated vortices move significantly in 

turns. These results clearly show the necessity of including the acceleration effects in the calculations. 
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I. Introduction 

 

In the past, CFD has largely been restricted to constant velocity objects with time-dependant 

models of transient phenomena, and to systems rotating with constant angular velocity such as 

atmospheric flows, turbines and rotating blades. The relative movement of subsystems has been 

included, in for example aeroelastic models, moving control surfaces, helicopter blades and store 

release. However, in order to be able to predict the behaviour of accelerating and manoeuvring flying 

bodies correctly, one must be able to treat arbitrarily moving reference frames.  

Typical applications that prompted the development of this work include missile aerodynamics and 

the calculation of dynamic derivatives. It may be noted that fourth generation missiles execute turns at 

angular accelerations of the order of 10 g to 100 g, where g is the acceleration due to gravity. Interest 

is also being expressed in projectiles which are subjected to thrusts of the order of 100 g to 500 g. It is 

expected that significant changes in the flow field may result from acceleration of these magnitudes.  
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Basic theory which has been developed for dynamic derivatives under geometrical and speed 

constraints is well known (see, for example, Nielsen [1]). Early aerodynamic characterisation of 

spinning kinetic energy projectiles was carried out by Weinacht and Sturek [29]. Roll, yaw and pitch 

damping derivatives have been calculated by Cormier et al. [3] using quasi-stationary ALE (Arbitrary-

Lagrangian-Eulerian) models [12]. ALE methods also proved useful in the calculation of the 

aerodynamic loads and roll-averaged pitch generated by canard dither in a simulation on multi-level 

Cartesian grids by Murman et al. [19]. The approach of using automatic differentiation to calculate 

dynamic derivatives has been used by Park et al. [23], [22], and Green et al. [10] tested low-order 

panel methods with automatic differentiation to obtain dynamic derivatives for the F-16XL aircraft. An 

alternative method through the reduced-frequency method of Murman [18] is appropriate for 

modelling forced oscillations. CFD solutions for oscillating blades, as encountered in helicopter 

forward flight, has been undertaken by a number of authors (e.g. Shaw and Qin [26]) and is frequently 

modelled by elastic deformation of the grid.  

 

The aerodynamics of objects accelerating on arbitrary prescribed or 6DOF trajectories have also 

been modelled on overset or adaptive grids (for example, those quoted by Cenko et al. [2]), a method 

frequently applied to store separation in the transonic regime. For transonic missiles executing turns at 

50 g to 100 g, however, the trajectory corridor covered by the store would require a background grid 

hundreds of metres in extent, making these methods practicable only for near-field interactions. Some 

work on linear acceleration has been performed by Roohani and Skews [25]. Extended trajectories 

have been obtained by the alternative method of integrating through the substantial databases that have 

been accumulated in aerodynamic parameter studies (e.g. Murman et al. [20]) but this can only be 

accomplished if the population of parameter space is sufficiently dense. 

 

In contrast to the methods described above, the aim of this work is to allow the direct prediction of 

loads in arbitrary manoeuvres which may involve varying angular acceleration (as in the 

commencement or termination of a turn), and/or significant linear acceleration or thrust. Models of 

forced oscillations, or calculation of dynamic derivatives, are a subset of the desired capabilities. 
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II. Theory 

 

A mathematical tool box for the analytic treatment of non-stationary problems with relatively 

moving frames, including an extended vector analysis in an arbitrary number of dimensions, has been 

formulated by Löfgren [17], and forms the foundation for the following finite volume formulation.  

Consider a fixed, inertial reference frame Σ, referred to as the absolute frame (Figure 1). Consider also 

a moving reference frame Σ′, which may be accelerating in an arbitrary fashion, and which is referred 

to as the relative frame. 

 

Notation is introduced to distinguish between vectors in Σ viewed in Σ', and vice versa. A general 

vector a , with components in Σ viewed in Σ, is denoted by a

�

 when viewed from Σ'. For example, if a 

is constant in time but Σ' rotates, a

�

 must have rotating components.  A vector a  in Σ' is expressed as 

a

�

 when viewed from Σ. The rotation of Σ' relative to Σ is denoted by the orthogonal transform U . 

Then 
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1

+=⋅=⋅=⋅=

−
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                                   (1)

Let r be the displacement vector of the origin of Σ′ interpreted in Σ. Coordinates x  in Σ′ are related to 

coordinates x  in Σ by the transformation 

xrx ⋅+= U                                                                      (2)

and its inverse. For time derivatives we are able [7] to define a rotation vector ω by 

a

t

U

aU ⋅

∂

∂

=⋅× )(ω                                                               (3) 

Differentiating with respect to time we obtain absolute and relative velocities respectively: 
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The relative velocity field u  between the two frames is defined by vvu −=

�

                                       

which leads to 

xru ×+= ω

���
��                                                                     (5) 



AC
CEP

TE
D M

AN
USC

RIP
T

ACCEPTED MANUSCRIPT

Spatial derivatives and frame transformations can then be derived [7]. Note that density and pressure 

are invariant under transformation. The conservation equations may be expressed in Σ or Σ′. 

Conventionally, CFD calculations are carried out in the relative frame Σ′. The coordinate system and 

grid attached to the object in Σ′ are shown in fig. 1. To illustrate the formulation, in the absolute frame 

we have 

       ∫∫
∂

=⋅+−⊗+

∂

∂

VV

SdpIuvvdVv

t

0))((

�

�

ρρ                               (6) 

where the tensor product with components 
jiij

baba =⊗ ][  has been used and viscous fluxes have 

been neglected for the purposes of illustration. In the relative frame, it is possible to show that the 

momentum conservation equation can be written [7] 
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The complicated source terms in the non-inertial frame can be interpreted as the fictitious forces of 

Batchelor [1] and Greenspan [11]. From the left, the terms represent the fictitious forces of 

translational acceleration (if U captures all rotation), angular acceleration, Coriolis effects, and 

centrifugal effects in the non-inertial frame. In the absolute frame Σ, no source terms appear. 

In a numerical implementation, there is a choice between using the absolute frame formulation and 

the absolute velocities v or the relative frame formulation and velocities v. The relative velocities v are 

small close to solid bodies for viscous calculations where the grid tends to be very fine. Hence, they 

reduce the risk of inaccuracies arising from truncation error. The presence of significant source terms, 

however, may change the properties of the numerical scheme and the conservative character is lost.  

The absolute formulation and the use of absolute velocities v can be integrated very easily into 

schemes which already use stretchable coordinates or moving grids. Modifications are required to 

boundary conditions, and since absolute velocities v are frequently difficult for practitioners to 

interpret, the transformation of flow fields to the relative frame is a necessary tool. An estimate 

indicates that truncation errors in the near field would be acceptably reduced by the use of double 

precision. The absolute formulation was therefore chosen for the present work. A precise description 
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of the computational procedure is given in Forsberg [7], and related background material can be found 

in previous papers [8], [9]. 

III. Implementation 

For the numerical implementation we have used EURANUS, which is a general Euler and Navier-

Stokes solver for structured, and possibly non-matching, multi-block meshes. A cell centred finite 

volume approach is used with central differences, symmetric Total Variation Diminishing (TVD) or 

upwind TVD flux difference splitting. An explicit Runge-Kutta local time-stepping is used for steady 

state calculations, and an implicit time-integration with dual time-stepping is used for the time accurate 

computations. To enhance the convergence implicit residual smoothing (IRS) and full approximation 

storage (FAS) multigrid are used.  

EURANUS already has grid-stretching introduced for aero-elastic purposes which greatly simplify 

the introduction of moving reference frames. This code is extensively verified ([24], [5], [15], [6], 

[28]). The existing routines supporting the implementation of stretchable meshes for aero-elastic 

calculations made the implementation of absolute instead of relative velocities straightforward. No 

extra terms which might ruin the conservative form of the equations have been added [5]. The 

modifications to the boundary condition routines and the rest of the program required by the presence 

of absolute velocities were also found to be minor.  

The input variables are r� , the velocity of the Σ′ origin seen in Σ′, and ω , the rotation of the 

moving frame about its origin, seen in Σ′. Input is provided by the user at arbitrary successive times in 

the input file. Cubic interpolation then provides values at intermediate times corresponding to the 

solver time steps. Although the implementation is fully viscous only Euler cases are shown in this 

paper. 

IV. Validation case 1: rotating plate 

In order to validate the implementation of the rotation transform, the existing extensively verified 

version of EURANUS intended for coordinate systems rotating with constant angular velocity has been 

used for comparison. This version includes rotation effects as source terms on the right-hand side of 
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the Navier-Stokes equations. From this point in the paper, variables are written without the frame 

notation in Σ′. 

As a simple test case incorporating the steady revolution of a simple flat plate of zero thickness is 

constructed and rotated about a centre at distance R (see Figure 2).  The circular trajectory is followed 

by a pivot point either halfway along the plate (centre case) or at the leading edge of the plate (skew 

case). The revolution angular velocity is 40 s
-1

, the revolution radius 5 m and the speed of the plate 200 

ms
-1

. A comparison between the pressures on the plate for the two cases is shown when convergence 

has been reached in Figure 3. No significant differences between the results are seen. 

 

V. Validation case 2: constant velocity airfoil 

The simplest validation for linear velocity terms to be performed is a test of Galilean invariance 

with no frame acceleration present, in which the pressure profile across an airfoil travelling at constant 

velocity (-u
x
, -u

y
, 0), modelled in the absolute frame with stagnant far-field boundary conditions, is 

compared with the pressure profile across an airfoil modelled in the relative frame with free stream 

boundary conditions (u
x
, u

y
, 0). No acceleration is present in these cases.   

The conditions chosen are Mach 0.8 with angle of attack α = 1.25º. A two-dimensional grid with 

257 x 65 points is used. The chord length L is 1.0 m; characteristic far field boundaries are placed at 25 

chord lengths away from the slip airfoil surface in the dimensions modelled. A second order central 

difference scheme was used with Jameson dissipation [14], [13]. An implicit five stage Runge-Kutta 

scheme with backward Euler time differencing, 5 W-cycle multi-grid levels and residual smoothing 

were used. Pressure coefficients C
p
 were compared for relative and absolute frames and are very 

similar for the two cases.  

VI.  Validation case 3: oscillating airfoil 

We consider the oscillating airfoil case published by Landon [16]. The experimental pressure and 

force measurements have been extensively used to evaluate time-dependant solvers [30], [4]. The 

entire grid oscillates rigidly and the grid moves at Mach 0.755. At far-field boundaries, conditions of 
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stagnant flow (zero velocity) are imposed. The angle of attack of the airfoil varies as a function of time 

t as 

tt ωααα sin)(
10

+=
                                                                   (8) 

with α
0
 = 0.016º and α

1
 = 2.51º. The angular velocity ω is chosen such that the dimensionless 

frequency k  = 0.0814, with the definition 
∞

= uLk 2/ω  where L is the scale length, in this case the 

chord length, and u
∞
 is the relative speed of the airfoil and the flow. The airfoil is oscillated about its 

quarter-chord point. A two-dimensional O-mesh with 129 points on the airfoil surface and 33 points to 

the outer boundary was used [27].  

 

The chord length is 1.0 m (in contrast to that of Landon [16], where the chord length in the 

experiment was 0.1016 m). Characteristic far field boundaries are placed at 25 chord lengths away 

from the airfoil, and the external flow is specified as stagnant. In the absolute frame, the airfoil is 

moved at speed u = -u
∞
 and pitched so that the angle of attack is given by equation (6).  A steady field 

for α
0
 = 0.016º was provided as initialisation.  

The normal force coefficients C
N
 and pitching moment C

m
 are shown as a function of α  in 

Figure 4, and pressure coefficients C
p 

for selected α are shown in Figure 5. The agreement between the 

absolute frame model and experimental results is reasonable and consistent with other calculations 

[10]. 

 

VII. Application case: rapidly accelerating missile 

As a first application, we consider a simple missile configuration with a flare subject to very rapid 

(4500 ms
-2

) linear acceleration along the major axis (Figure 6). At these extreme accelerations no 

experiments are yet available. The main practical interest is in the impact of the acceleration on the 

drag coefficient C
d
. We compare with steady state calculations performed at a given set of velocities.  

The results of Euler calculations for the simplified missile are shown in Figure 7. The drag 

coefficient has been normalized with respect to the instantaneous dynamic pressure. The main 

observed impact of the acceleration on the drag is that the transonic maximum is reduced by 
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approximately 20% and moved above the speed of sound, having a maximum value at approximately 

Mach 1.2.  

VIII. Application case: vortex behaviour in turn 

 

A motivating interest application is the increasing manoeuvrability of missiles. As illustrated in 

Figure 8, vortices from nose, canards, body or strakes which interact with fins may move as a result of 

significant acceleration in a turn, and at certain angles of attack may change either fin disruption or 

pressure footprints on the body. The vortices in this case are generated along sharp-edged zero-

thickness strakes rather than by separation along the curved surfaces of the hemisphere-cylinder body, 

Figure 9. 

For a typical speed of 600 ms
-1

, a pitch rate of q=1 s
-1

corresponds to a turn radius of 60 m, and a 

transverse acceleration of 600 ms
-2

 or approximately 60 g, where g is the acceleration due to gravity. 

For a 2 m typical length L, the ratio of L to turn radius R is about 1/30, indicating that centrifugal 

effects would be small but significant. The Rossby number U/2Lq is 150. 

The total length is 2.000 m, the diameter is 0.100 m, and the strakes project 0.010 m from the 

surface. The origin is at the nose of the hemisphere and the coordinate x extends along the main axis. 

We define the angle of attack α as the kinematic angle between the direction of flow and the x axis in 

the body axis system, and the pitch angle θ as the attitudinal angle between a fixed axis in an inertial 

system, which may be referred to as x
1
, and the x axis in the body axis system. The pitch rate or 

angular velocity, q, is defined as θ
�

. The object executes a circle with α constant and constant q. From 

derivatives with respect to q of the pitching moment C
m
 and the lift coefficient C

N
 we obtain the 

dynamic derivatives C
mq

 and C
Nq

 respectively.  

Normal force coefficients and pitching moment coefficients for varying q are shown in Figure 10 

for α = 15º. Lines have been fitted to the points excluding q < -10 s
-1

 and the dynamic derivatives C
mq

 

= ∂C
m
/∂q and C

Nq
 = ∂C

N
/∂q are the slopes. 

We compare the flow field at α = 15º and no rotation, q = 0 s
-1

, with the flow field for a sample 

rotation, q = -5 s
-1

. The upper strake vortices can easily be traced from their inception and their 
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propagation backwards until they eventually merge with the wake. To quantify the pressure change, 

we consider the difference field Δp = p|
q=-5

 – p|
q=0

. 

In the wake, a clear displacement exists in the top strake vortex under rotation, and the 

displacement is upwards, towards the centre of revolution; the contrast appears in Figure 11 (a) and (b) 

at x = 2.5 m. The difference field Δp shows changes of the order of 10
4

 Pa.  The pressure changes on 

the windward side of the body account for the dominant contribution to lift and pitching moment with 

negative q in Figure 10. 

IX. Conclusions 

We develop and implement a prediction method applicable to the aerodynamics of arbitrary 

manoeuvres, formulated in the absolute frame. The absolute frame formulation has the advantage that 

no source terms need be incorporated, and conservation is automatic. The method was easy to 

implement in the existing well-validated Navier-Stokes code EURANUS, since partly-moving meshes 

have already been incorporated for aeroelastic purposes.  We have validated the absolute frame method 

using pressure coefficients over a constant velocity transonic NACA0012 test case, a rotating plate and 

the oscillating airfoil data of Landon [16].   

A flare has been accelerated through Mach 1 and the drag coefficient results compared with those 

obtained at constant velocity. The main observations that the transonic maximum wave drag is reduced 

by approximately 20% and that the maximum value occurs at approximately Mach 1.2. To investigate 

the effect of turn rate, we considered vortices being generated along sharp-edged strakes on a 

hemisphere-cylinder. In the wake, a clear displacement exists in the top strake vortex under rotation 

towards the centre of revolution. These effects are of interest because vortices from nose, canards, 

body or strakes which interact with fins will move as a result of significant acceleration in a turn, and 

at certain angles of attack may change either fin disruption or pressure footprints on the body.  Also, 

the dynamic derivatives C
mq

 and C
Nq

 are easily available from the method. 
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Figure 1:  Fixed, or absolute, frame  Σ, and moving, or relative, frame Σ′. 

 

Figure 2: Rotating plate geometry with rotation centre at (a) plate centre 

and (b) leading edge  

Figure 3: Comparison of relative and absolute frame pressure for 

rotating plate with rotation centre at (C) plate centre and (LE) 

plate leading edge 

 

Figure 4: (a) Normal force coefficient and (b) Pitching moment coefficient for experimental 

results [16] and absolute frame model with 96 time steps per cycle. 

 

Figure 5: Pressure coefficient as a function of x; upper surface 

experimental data [16] shown as solid circles on upper surface 

and circles on lower surface 

 

Figure 6: Flare geometry, measurements in mm 

 

Figure 7: Drag coefficient results for Euler calculations, normalised with 

respect to instantaneous dynamic pressure, for steady state 

flare (solid circles) and linearly accelerated flare (crosses and 

line). 

 

Figure 8: Schematic illustration of vortices (shaded) in (a) constant 

velocity flight and (b) turn 

 

Figure 9: Geometry of straked body 

Figure 10: Normal force coefficients C
N
 (solid symbols) and pitching 

moment coefficients C
m

 (open symbols) in the relative frame for   

α = 15º with fitted lines 

 

Figure 11: Contours of pressure for α = 15º, x = 2.5 m, q = 0 s
-1

 (a) and q = 

-5 s
-1

 (b). Contours are drawn at the same intervals in each 

case. The horizontal red line represents y = 0 m. The difference 

field is shown in (c). 
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