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Background and Research Question

The Problem

Mine wastes contains high concentrations of metals.

Metals — leached from mine wastes — then released to and
contaminating nearby ecosystems.

Geochemical characterization of mine waste impoundments –
important for rehabilitation; remediation; protect the surrounding
environment and ecosystems.

Effective geochemical characterization – entails surface (to
subsurface) sampling – labor or cost intensive.

Metals in mine waste impoundments – hosted by acid-generating
sulphide-rich minerals (pyrite, pyrrhotite), or adsorbed onto surfaces
of weathering products of such sulphide-rich minerals.

Such minerals are difficult to detect or identify by using current
remote sensing techniques including multispectral or even
hyperspectral data.
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Background and Research Question

Certain sulphide-rich minerals, particularly pyrite, weathers to a series
of iron-bearing sulfates, hydroxides and oxides (shown by Swayze et
al., 2000).

Such secondary iron-bearing sulfates/hydroxides/oxides have
diagnostic spectral features – enables their detection or identification
with analytical techniques using hyperspectral data (Crowley et al.,
2003).

Debba et al. (2005) showed the potential of using hyperspectral data
to estimate abundances of spectrally similar iron-bearing
sulfates/hydroxides/oxides.

Kemper & Sommer (2002) showed that heavy metal contamination in
soils can be quantified using reflectance spectroscopy.
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Background and Research Question

Remote sensing provides an indirect tool for surface characterization
of mine waste impoundments with oxidizing sulphide-rich materials;
namely, for mapping spatial distributions of secondary iron-bearing
sulfates/hydroxides/oxides and heavy metals.

Hence, given a model of spatial distribution of secondary iron-bearing
oxides/hydroxides, the problem is how to design a sampling scheme
that would adequately capture the spatial distribution of certain
groups of metals.

Adaptation to Diggle & Lophaven (2006) retrospective sampling
design — sequentially removes, from a sampling design, samples that
contribute least to a Bayesian prediction of a response — not an
optimal design.

A prospective sampling scheme is derived for nearby unsampled areas
based on the variogram model of the adjacent sampled area.
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Study Area and Data

Study Area

The present case study area is in the Recsk-Lahóca copper mining
area in Hungary. The Recsk-Lahóca mining area is situated in the
Mátra Mountains, about 110 km northeast of Budapest, Hungary.

The Lahóca hill was mined for copper between 1852 and 1979.

Mining of ore deposits in the Recsk-Lahóca area resulted in the
exposure of sulphide bearing-rocks to surface water and atmospheric
oxygen, which accelerate oxidation, leaching and release of metals and
acidity.

This study pertains to the tailings dumps northwest of Lahóca mine,
which consist actually of two dumps referred to as “East Tails” and
“West Tails”.
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Study Area and Data

Figure: Study area: Recsk: Hungary.
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Study Area and Data

The Data – Hyperspectral

A subset of the Digital Airborne Imaging Spectrometer (DAIS-7915)
is used.

The resulting data is a 79 channel hyperspectral image, acquired over
the Recsk. DAIS-7915 is a whisk broom sensor, covering a spectral
range from visible (0.4 µm) to thermal infrared (12.3 µm) at variable
spatial resolution from 3–20 m depending on the carrier aircraft
altitude.

Not all 79 channels were useful as many channels were too noisy and
could not be corrected efficiently. Fortunately, the first 32 channels,
spectral range 406-1035 nm, where iron-bearing
oxides/hydroxides/sulphates have diagnostic features were found
useful for this study.

Samples from the tailings – collected shortly after collection of the
DAIS hyperspectral data.
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Study Area and Data

The Data – Field

53 samples were collected in the East Tails and 44 in the West tails –
10m×10m grid points.

Concentrations of As, Cd, Cu, Fe, Mn, Ni, Pb, Sb and Zn in the
decomposed samples were determined using the ICP-AES analyzer.
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Study Area and Data

Figure: The Recsk-Lahóca area shown in pseudo-natural color composite image
using DAIS data (red = ch10, green = ch5, blue = ch1) fused with a digital
elevation model. Map coordinates are in meters (UTM projection, zone 34N).
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Study Area and Data

Figure: The “East Tails” and the “West Tails” shown in a color composite image
of the DAIS data. Ratios of ch17 to ch28 (representing ferrihydrite reflectance
and absorption peaks) was used as red band, ch13 to ch25 (representing jarosite
reflectance and absorption peaks) was used as green band and ch32 to ch1
(representing non-iron-bearing minerals) was used as blue band. Red dots are
locations of mine tailings samples. Short dashed lines indicates drainage lines of
either active or non-active streams.
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Study Area and Data

Table: Elementary statistics of original geochemical data and skewness of
loge-transformed data — East tails. All concentrations are in ppm except where
stated.

East Tails samples (n = 53):
Element Min Max Mean SD Skew Skew (loge)

As 48.6 1568.0 266.3 273.9 2.74 0.67
Cd (ppb) 190.0 540.0 323.2 78.2 0.27 −0.28
Cu 85.5 1483.7 354.8 303.3 2.22 0.91
Fe (%) 1.5 3.7 2.8 0.4 -0.49 −1.11
Mn 17.7 766.4 128.4 140.2 3.17 0.41
Ni (ppb) 100.0 4340.0 1129.2 903.5 2.16 −0.36
Pb 14.0 251.8 50.9 52.1 2.27 0.92
Sb (ppb) 5.0 160.0 36.9 31.2 1.59 −0.17
Zn 42.6 762.8 124.4 111.8 3.96 1.14
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Study Area and Data

Table: Elementary statistics of original geochemical data and skewness of
loge-transformed data — West tails. All concentrations are in ppm except where
stated.

West Tails samples (n = 44):
Element Min Max Mean SD Skew Skew (loge)

As 196.3 2789.3 625.9 452.0 3.05 0.73
Cd (ppb) 140.0 720.0 275.7 121.8 2.42 1.19
Cu 303.0 2064.7 889.9 476.2 1.12 0.09
Fe (%) 1.4 3.2 2.3 0.4 0.40 −0.06
Mn 15.1 207.6 52.6 34.8 2.40 0.33
Ni (ppb) 60.0 1370.0 371.1 285.6 2.07 −0.06
Pb 40.4 806.9 192.0 169.8 2.24 0.47
Sb (ppb) 5.0 420.0 84.4 76.9 2.75 −0.31
Zn 68.7 776.7 275.2 179.6 1.18 0.06
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Study Area and Data
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Study Area and Data
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Study Area and Data
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Study Area and Data
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Study Area and Data
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Study Area and Data
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Study Area and Data
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Study Area and Data
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Study Area and Data

Debba (CSIR) Spatial sampling scheme NMMU 2009 22 / 57



Methodology

Splitting the Data

The East and West Tails have different geochemical characteristics —
split the data into two sets.

Data from either sub-area are used to model a relationship between
heavy metal associations and relative abundances of secondary
iron-bearing minerals.

The latter data are derived from spectral unmixing of hyperspectral
data. See: Debba et. al. (2006). Abundance estimation of spectrally
similar materials by using derivatives in simulated annealing, IEEE
Geoscience and Remote Sensing, vol. 44, no. 12, 3649–3658.

Endmembers considered copiapite, jarosite, goethite, ferrihydrite,
hematite, kaolinite, anhydrite, gypsum, quartz, and tumbleweed
(grass).
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Methodology

A model relationship between heavy metal associations and mineral
abundances in one sub-area is then used as basis for optimal sampling
design in the same sub-area and in the other sub-area.

Division of the area and the data thus provides calibration analysis
and prediction/validation analysis for optimal sampling design.

Debba (CSIR) Spatial sampling scheme NMMU 2009 24 / 57



Methodology

Figure: Reflectances of minerals which are common in contaminated areas.
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Methodology

Table: Elementary statistics of relative abundance estimates for end-members.

East Tails Samples (n = 53) West Tails Samples (n = 44)

Endmember Min Max Mean SD Min Max Mean SD

goethite 0.00 0.21 0.04 0.05 0.00 0.18 0.04 0.05
jarosite 0.00 0.29 0.05 0.07 0.00 0.30 0.05 0.07
hematite 0.00 0.21 0.04 0.05 0.00 0.36 0.07 0.08
ferrihydrite 0.00 0.12 0.03 0.03 0.00 0.49 0.07 0.10
kaolinite 0.00 0.21 0.04 0.04 0.00 0.30 0.06 0.07
quartz 0.00 0.13 0.03 0.03 0.00 0.39 0.08 0.10
copiapite 0.00 0.16 0.04 0.04 0.00 0.33 0.06 0.07
gypsum 0.00 0.33 0.03 0.05 0.00 0.33 0.07 0.09
anhydrite 0.00 0.16 0.03 0.04 0.00 0.25 0.06 0.07
tumbelweed 0.00 0.18 0.03 0.04 0.00 0.45 0.07 0.08
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Methodology

Table: Elementary statistics of relative abundance estimates for end-members.

East Tails HS (n = 575) West Tails HS (n = 383)

Endmember Min Max Mean SD Min Max Mean SD

goethite 0.00 0.36 0.04 0.05 0.00 0.42 0.05 0.05
jarosite 0.00 0.31 0.05 0.06 0.00 0.45 0.05 0.06
hematite 0.00 0.32 0.04 0.05 0.00 0.36 0.04 0.05
ferrihydrite 0.00 0.44 0.05 0.06 0.00 0.49 0.05 0.06
kaolinite 0.00 0.53 0.05 0.06 0.00 0.34 0.04 0.05
quartz 0.00 0.31 0.04 0.05 0.00 0.39 0.05 0.05
copiapite 0.00 0.32 0.05 0.06 0.00 0.36 0.04 0.06
gypsum 0.00 0.36 0.05 0.06 0.00 0.33 0.04 0.05
anhydrite 0.00 0.40 0.04 0.05 0.00 0.45 0.04 0.06
tumbelweed 0.00 0.37 0.04 0.05 0.00 0.45 0.05 0.06
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Methodology
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Methodology
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Methodology
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Methodology

Modeling of heavy metal associations

Concentrations of several metals in soils can be estimated using
reflectance spectroscopy.

Model heavy metals association reflecting scavenging of metals by
secondary iron-bearing minerals in the mine tailings dumps.

A factor component analysis with varimax rotation was performed on
the logarithmic-transformed heavy metal concentrations to obtain the
heavy metal association of interest.
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Methodology

Table: Factor component analysis with varimax rotation of the heavy metal
concentrations.

East Tails (n = 53)
Factor As Cd Cu Fe Mn Ni Pb Sb Zn vara

FA1 0.59 -0.13 0.82 -0.26 -0.02 -0.18 0.72 0.65 0.76 2.65
FA2 0.43 0.91 -0.23 0.91 0.15 0.32 -0.36 0.04 -0.43 2.34
FA3 -0.57 0.31 -0.3 0.13 0.92 0.90 -0.41 -0.17 0.14 2.33

West Tails (n = 44)
Factor As Cd Cu Fe Mn Ni Pb Sb Zn var

FA1 0.90 0.56 0.86 0.10 -0.08 -0.27 0.76 0.71 0.79 3.65
FA2 0.01 0.58 -0.09 0.71 0.90 0.88 -0.07 0.35 -0.15 2.58

a Variance explained by each factor.
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Methodology

FA1 of heavy metal contents in either the East Tails or the West Tails
— show high positive loadings mostly on As, Cu, Pb, Sb, and Zn.
This heavy metal association reflects the type of mineral deposits that
were mined in the Recsk-Lahóca area. The As-Cu-Pb-Sb-Zn
association therefore reflects the source materials of the mine tailings
and/or the relatively unweathered parts of the mine tailings dumps.

FA2 of heavy metal contents in either the East Tails or the West Tails
shows high positive loadings on Fe. The FA2 also show that in either
the East Tails or the West Tails there is a common heavy metal
association of Fe-Cd-Ni-Mn. This heavy metal association reflects
metal scavenging by not only secondary iron-bearing minerals but also
secondary manganese bearing minerals.

FA3 in the East Tails shows high positive loadings on Mn and Ni.
This Mn-Ni association mainly reflects scavenging of Ni by secondary
manganese oxides/hydroxides.
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Methodology

The FA2 in both the East Tails and the West Tails are considered to
represent the heavy metal association of interest. The second factor
in the East Tails is labeled as FA2E and the second factor in the West
Tails is labeled FA2W.

Scores of FA2E AND FA2W were calculated using the corresponding
factor component loadings.

The scores of FA2E and FA2W — linearly transformed to [0, 1] (for
numerical compatibility with the mineral abundance estimates) —
FA2ET and FA2WT.
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Methodology

Figure: Spatial distributions of FA2ET and FA2WT scores. High scores indicate
areas of Fe-Cd-Ni-Mn enrichment, whereas low scores indicate areas of
As-Cu-Pb-Sb-Zn enrichment.
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Methodology

Kriging with external drift

Kriging with external drift is applicable to estimate primary variables
of interest, which are practically measurable at only few sample sites,
based on linearly related ancillary variables, which are measurable at
much higher sampling density than the primary variables.
Kriging with external drift is ideal if a primary variable could be
measured more precisely and practically at a few locations (factor
scores of heavy metal associations), whereas possibly less accurate
measurements of linearly related ancillary variables are available
everywhere in the spatial domain (relative abundances of
metal-scavenging iron-bearing minerals – hyperspectral image).
For the modeling, consider x ∈ A ⊂ R2 to be a generic data location
(xu, xv ) in 2-dimensional Euclidean space and suppose the domain
Z (x) at spatial location x is a random quantity.
The multivariate random field {Z (x) : x ∈ A}, is generated by letting
x vary over index set A ⊂ R2. A realization of this is denoted by
{z(x) : x ∈ A}.
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Methodology

Kriging with external drift

The variogram
2γ(h) = E [Z (x)− Z (x + h)]2 . (1)

The semi-variogram γ(h):

γ(h) =
1

2
E [Z (x)− Z (x + h)]2 . (2)

The experimental semi-variogram γ?(h), where h is a fixed lag vector
in both distance and direction, may be obtained from
κ = 1, 2, . . . ,P(h) pairs of observations {z(xκ), z(xκ + h)} at
locations {xκ, xκ + h}, as:

γ?(h) =
1

2 · P(h)

P(h)∑
κ=1

[z(xκ)− z(xκ + h)]2 . (3)

Debba (CSIR) Spatial sampling scheme NMMU 2009 40 / 57



Methodology

Kriging with external drift

The k ancillary variables represented as regionalized variables
yi (x), i = 1, . . . , k with nA observations, are less accurate
measurements covering the whole domain A at small scale and are
considered as deterministic. The values {yi (x)} needs to be known at
all locations xα of the samples as well as at the nodes of the
estimation grid.

Since Z (x) and the set of {yi (x)} are two ways of expressing the
same phenomenon, assume that Z (x) is an average equal to a linear
function of the set of {yi (x)} up to a constant b0 and coefficients
bi , i = 1, . . . , k,

E [Z (x)] = b0 +
k∑

i=1

bi · yi (x) =
k∑

i=0

bi · yi (x) , (4)

where y0(x) = 1.
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Methodology

Kriging with external drift

Assuming Z (x) is a second order stationary random function, then

Z ∗(x0) =

nA∑
α=1

λαZ (xα) (5)

where λα denotes the weight of the αth observation and is constraint
to unit sum.

In estimating the external drift coefficients, the following conditions,

nA∑
α=1

λαyi (xα) = yi (x0) , i = 1, . . . , k , (6)

are added to the kriging system independently of the inference of the
covariance function, hence the term “external”.

The kriging variance can then be written as

σ2
KED(x0) = Var[Z (x0)− Z ∗(x0)] . (7)
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Methodology

Kriging with external drift

The only factor influencing the kriging variance are the variogram
γ(h), the number of observations nA, the sampling locations xα and
the location x0. This means that the kriging variance does not
depend on the observations themselves, but rather only on their
relative spacing. The advantage is that in can be used to optimize
sampling schemes in advance of data collection.

The location and the covariates as external drift were used to
estimate the heavy metal concentration,

E [Z (x)] = b0 + b1 · xu + b2 · xv + b3 ·GOE(x)

+b4 · JAR(x) + b5 · FER(x) + b6 ·HEM(x)

+b7 ·KAO(x) + b8 · COP(x) , (8)

namely, a first order polynomial on the coordinates and the
abundance estimates of the metal-scavenging minerals.
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Methodology

Retrospective sampling: Sequential removal

Mean Kriging Prediction Error (MKPE):

φMKPE(S) =
1

np

∑
x∈A

{Z (x)− Z ∗(x|S)]}2 , (9)

where np is the number of observations in the sampling scheme, Z (x)
is the primary variable at location x and Z ∗(x|S) is the predicted
value at x for sampling scheme S with np samples.

Removal of samples from an existing design to achieve an optimal
retrospective sampling scheme.

Samples discarded if its removal contributes to a highest increase in
MKPE value.
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Methodology

Retrospective sampling: Simulated Annealing

Mean Kriging Prediction Error (MKPE):

φMKPE(S) =
1

np

∑
x∈A

{Z (x)− Z ∗(x|S)]}2 , (10)
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Methodology

Prospective sampling: Simulated annealing

The optimization procedure by simulated annealing is then performed
by application of a criterion called the Mean Kriging Variance with
External Drift (MKVED), the fitness function of which is defined as

φMKVED(S) =
1

nA

nA∑
j=1

σ2
KED(xA,j |S) , (11)

where nA is the number of raster nodes for which data for each of the
covariates are available.

The MKVED-criterion is proposed to derive the optimal prospective
sampling scheme in an unvisited area based on a relevant model from
a previously sampled area.
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Results

Retrospective sampling: Sequential removal

Ten sequential removals were made to derive an optimal retrospective
sampling scheme with 43 samples for the East Tails and an optimal
retrospective sampling scheme with 34 samples for the West Tails.

For the East Tails, remaining 43 samples gave a mean prediction error
of 6.34× 10−7.

For the West Tails, remaining 34 samples gave a mean prediction
error of 1.36× 10−6.
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Results

Figure: Sequential removal — East tails
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Results

Figure: Sequential removal — West tails
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Results

Retrospective sampling: Simulated Annealing

Sampling scheme with 10 samples less than an existing sampling
scheme.

For the East Tails, remaining 43 samples gave a mean prediction error
of 2.75× 10−16.

For the West Tails, remaining 34 samples gave a mean prediction
error of 1.17× 10−14.

Clearly, optimized retrospective sampling schemes derived via
simulated annealing have considerably lower prediction errors than
optimized retrospective samples schemes derived by sequential
removal of samples.
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Results

Figure: Simulated Annealing — East tails
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Results

Figure: Simulated Annealing — West tails
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Results

A prospective sampling scheme

A prospective sampling scheme for the West Tails is derived based on
a model for the East Tails.

As an illustration, it was decided to derive a prospective sampling
scheme having 30 samples in the West Tails using the 53 samples
from the East Tails.

The exponential variogram was estimated with the data from the East
Tails.

To verify that this variogram is also appropriate for the West Tails,
the East and West Tails data were combined.

The similarity of the two variograms indicate that the variogram for
the East Tails could be appropriate for modeling the West Tails.
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Results

(a) East Tails (b) East and West Tails combined

Figure: The exponential variogram for the East Tails, combined East & West
Tails.
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Results

Figure: Prospective optimal sampling scheme in the West Tails using East Tails
samples.
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Results

A prospective sampling scheme

The optimal sampling scheme constructed using the kriging external
drift variance approach are spread over the West Tails region while
retaining some close pairs of samples.
These close pair samples are to improve the estimation of the
variogram model.
The mean kriging with external drift variance for the West Tails,
using the combined East and West Tails sampling data, is 6.8× 10−4

for the West Tails.
This mean kriging variance was approximately the same when either
of the two variograms was used.
The optimal sampling scheme resulted in a mean kriging with external
drift variance for the West Tails of 3.3× 10−4 using the variogram
derived from the East Tails data.
This indicates that the optimal sampling scheme contains samples
that reduces the mean kriging with external drift variance for the
previously designed grid sampling scheme in the West Tails.
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Conclusions

What have we learnt?

This study demonstrates that designing sampling schemes using
simulated annealing results in much better selection of samples from
an existing scheme in terms of prediction accuracy.

The use of secondary information in designing optimal sampling
schemes was also illustrated. Often these secondary information can
be achieved at a relatively low cost and available over a greater
region. These are the primary reasons for incorporating this
information into the sampling design.

Optimized sampling schemes using the mean kriging with external
drift variance will result in sampling schemes that explicitly take into
account the nature of spatial dependency of the data and together
with hyperspectral data can be used to design sampling schemes in
nearby unexplored areas.
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