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Background and Research Question

If research could be as easy as eating a chocolate cake . . .

Figure: Can you guess the ingredients for this chocolate cake?
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Background and Research Question

Ingredients Quantity

unsweetened chocolate
unsweetened cocoa powder
boiling water
flour
baking powder
baking soda
salt
unsalted butter
white sugar
eggs
pure vanilla extract
milk

Table: Chocolate cake ingredients
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Background and Research Question

Ingredients Quantity

unsweetened chocolate 120 grams
unsweetened cocoa powder 28 grams
boiling water 240 ml
flour 315 grams
baking powder 2 teaspoons
baking soda 1 teaspoon
salt 1/4 teaspoon
unsalted butter 226 grams
white sugar 400 grams
eggs 3 large
pure vanilla extract 2 teaspoons
milk 240 ml

Table: Chocolate cake ingredients
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Background and Research Question

What is spectral unmixing?

Figure: The concept of unmixing – taken from
http://www.emeraldinsight.com/fig/0830140104006.png
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Background and Research Question

The Problem

Most spectral unmixing techniques are variants of algorithms
involving matrix inversion.

Major problem in spectral unmixing is the non-orthogonality of
end-members.

Ability to estimate abundances in complex mixtures through spectral
unmixing techniques – complicated when considering very similar
spectral signatures.

Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral
signatures.

How could estimates of abundances of spectrally similar iron-bearing
oxide/hydroxide/sulfate minerals in complex mixtures be obtained
using hyperspectral data?
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Method of spectral unmixing

Old method: problem

Linear Spectral Mixture Analysis (LSMA): The observed spectrum U for
any given pixel in the scene is expressed as:

U = Rp + ε where
n∑

i=1

pi = 1 and 0 ≤ pi ≤ 1

and R is a matrix of which each column corresponds to an endmember, p
is a column vector that denotes the abundances and ε denotes the residual
term.

Minimize:
n∑

i=1

ε2i =
n∑

i=1

 m∑
j=1

(Ri ,j × pi )− Ui

2

Solution: p̂ =
(
RTR

)−1
RTU
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Method of spectral unmixing

New method: solution

Suppose M is an exhaustive set of endmembers and E ⊂ M is a set of
endmembers under consideration for unmixing. Each component spectrum
e ∈ E consists of L discrete wavelengths λl (l = 1, . . . , L). It is denoted by
Re = (Re(λ1), . . . ,R

e(λL)), where Re(λl) is the reflectance value at
wavelength λl .
The observed spectrum U for any given pixel in the scene is expressed as:

U =

[
RE

RM\E

]
×

(
pE pM\E )

+ ε where

||E ||∑
e=1

pe ≤ 1 and 0 ≤ pe ≤ 1

Accordingly, a spectrum at λl can be modeled as

Û(λl) =

||E ||∑
e=1

peR
e(λl) + p0R

M\E (λl) , (1)

where 0 ≤ pe ≤ 1, p0 +
∑||E ||

e=1 pe = 1 and 0 ≤ p0 ≤ 1.
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Method of spectral unmixing

The difference between the estimated and actual spectra at λl equals

ωl = U(λl)−
||E ||∑
e=1

peR
e(λl) . (2)

Minimization of some function of ωl , e.g. SumSpec =
∑L

l=1 |ωl | or
VarSpec = var(ωl) results in estimates for pe .
Alternatively: Use either the differences in the first derivative or the
second derivative instead of the actual differences. The difference in the
first derivative between an estimated and an actual spectrum at λl is

ω′
l =

∆U(λl)

∆λl
−

||E ||∑
e=1

pe

(
∆Re(λl)

∆λl

)
, (3)

where ∆xl = xl+1 − xl . Minimization of a loss function of equation 3, e.g.
SumDeriv =

∑L−2
l=1 |ω′

l | or VarDeriv = var(ω′
l), results in estimates of pe .

The minimization is achieved through simulated annealing, using either
SumSpec, SumDeriv, VarSpec or VarDeriv as the fitness function to
optimize.
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Method of spectral unmixing Simulated annealing

Simulated annealing is a general optimization method of a fitness function
φ(ω) – depends on pe . Starting with a random configuration of pe , φ(ω0)
is calculated. Let ωi and ωi+1 represent two solutions with fitness φ(ωi )
and φ(ωi+1). Configuration ωi+1 is derived from ωi by randomly replacing

one point pj of ωi by a new point pk in
[
0, 1 + pj −

∑
pe

]
, so that∑

pe ≤ 1. A probabilistic acceptance criterion decides whether ωi+1 is
accepted or not i.e.

Pc(ω
i → ωi+1) =


1, if φ(ωi+1) ≤ φ(ωi )

exp

(
φ(ωi )− φ(ωi+1)

c

)
, if φ(ωi+1) > φ(ωi )

(4)

where c denotes a parameter and is reduced by a factor of 0.95, thereby
decreasing the probability of accepting inferior moves. Reduction stops
when the process stabilizes. A transition takes place if ωi+1 is accepted.
Next, a solution ωi+2 is derived from ωi+1, and the probability
Pc(ω

i+1 → ωi+2) is calculated with a similar acceptance criterion as
equation 4. The fitness function will be one of SumSpec, VarSpec,
SumDeriv or VarDeriv.
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End-member spectra and synthetic mixtures
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Figure: Five end-members spectra from USGS library, resampled to DAIS VIR
region
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End-member spectra and synthetic mixtures
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Error spectra
After smoothing

Figure: Five end-members spectra with error from the U(−0.02, 0.02)
distribution. Smoothing was applied to the spectra.
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End-member spectra and synthetic mixtures
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Figure: Mixed spectra with error from the U(−0.02, 0.02) distribution.
Smoothing was applied to the spectra.
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End-member spectra and synthetic mixtures
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Figure: First derivative of end-member spectra after applying smoothing.
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End-member spectra and synthetic mixtures
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Figure: First derivative of mixed spectra after applying smoothing.
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Results

Table: Abundance: Using observed spectra & SumSpec.
Known abundance Estimated abundance

Goe Jar Cop Fer Goe Jar Cop Fer M\E
End-member spectrum included in E

1.00 0.00 0.00 0.00 0.78 0.03 0.05 0.14 0.00
0.00 1.00 0.00 0.00 0.03 0.94 0.00 0.01 0.02
0.00 0.00 1.00 0.00 0.03 0.06 0.89 0.02 0.00
0.00 0.00 0.00 1.00 0.03 0.00 0.01 0.92 0.04

End-member spectrum excluded from E

1.00 0.00 0.00 0.00 — 0.25 0.00 0.64 0.11
0.00 1.00 0.00 0.00 0.00 — 1.00 0.00 0.00
0.00 0.00 1.00 0.00 0.01 0.68 — 0.00 0.31
0.00 0.00 0.00 1.00 0.71 0.00 0.00 — 0.29

Mixtures

0.50 0.50 0.00 0.00 0.48 0.51 — — 0.01
0.50 0.50 0.00 0.00 0.40 0.52 0.01 0.05 0.02
0.15 0.25 0.25 0.35 0.66 0.30 — — 0.04
0.15 0.25 0.25 0.35 0.20 0.26 0.23 0.29 0.02
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Results

Table: Abundance: Using observed spectra & VarSpec.
Known abundance Estimated abundance

Goe Jar Cop Fer Goe Jar Cop Fer M\E
End-member spectrum included in E

1.00 0.00 0.00 0.00 0.90 0.02 0.00 0.08 0.00
0.00 1.00 0.00 0.00 0.07 0.91 0.00 0.00 0.02
0.00 0.00 1.00 0.00 0.02 0.01 0.94 0.00 0.03
0.00 0.00 0.00 1.00 0.03 0.00 0.01 0.92 0.04

End-member spectrum excluded from E

1.00 0.00 0.00 0.00 — 0.26 0.00 0.69 0.05
0.00 1.00 0.00 0.00 0.43 — 0.57 0.00 0.00
0.00 0.00 1.00 0.00 0.01 0.38 — 0.00 0.61
0.00 0.00 0.00 1.00 0.97 0.00 0.01 — 0.02

Mixtures

0.50 0.50 0.00 0.00 0.49 0.50 — — 0.01
0.50 0.50 0.00 0.00 0.35 0.54 0.01 0.09 0.01
0.15 0.25 0.25 0.35 0.55 0.24 — — 0.21
0.15 0.25 0.25 0.35 0.14 0.25 0.23 0.34 0.04
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Results

Table: Abundance: Using 1st derivative spectra & SumDeriv.
Known abundance Estimated abundance

Goe Jar Cop Fer Goe Jar Cop Fer M\E 1

End-member spectrum included in E

1.00 0.00 0.00 0.00 0.87 0.02 0.00 0.06 0.05
0.00 1.00 0.00 0.00 0.00 0.94 0.06 0.00 0.00
0.00 0.00 1.00 0.00 0.01 0.04 0.91 0.00 0.05
0.00 0.00 0.00 1.00 0.07 0.01 0.00 0.86 0.06

End-member spectrum excluded from E

1.00 0.00 0.00 0.00 — 0.33 0.00 0.66 0.01
0.00 1.00 0.00 0.00 0.48 — 0.51 0.00 0.01
0.00 0.00 1.00 0.00 0.00 0.45 — 0.01 0.54
0.00 0.00 0.00 1.00 0.33 0.00 0.00 — 0.67

Mixtures

0.50 0.50 0.00 0.00 0.48 0.51 — — 0.01
0.50 0.50 0.00 0.00 0.46 0.48 0.05 0.01 0.00
0.15 0.25 0.25 0.35 0.27 0.32 — — 0.41
0.15 0.25 0.25 0.35 0.09 0.24 0.26 0.39 0.02
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Results

Table: Abundance: Using 1st derivative spectra & VarDeriv.
Known abundance Estimated abundance

Goe Jar Cop Fer Goe Jar Cop Fer M\E 1

End-member spectrum included in E

1.00 0.00 0.00 0.00 0.90 0.00 0.03 0.07 0.00
0.00 1.00 0.00 0.00 0.01 0.92 0.04 0.01 0.02
0.00 0.00 1.00 0.00 0.01 0.07 0.92 0.00 0.00
0.00 0.00 0.00 1.00 0.08 0.00 0.00 0.89 0.03

End-member spectrum excluded from E

1.00 0.00 0.00 0.00 — 0.28 0.00 0.56 0.16
0.00 1.00 0.00 0.00 0.31 — 0.68 0.00 0.01
0.00 0.00 1.00 0.00 0.00 0.46 — 0.00 0.54
0.00 0.00 0.00 1.00 0.27 0.00 0.00 — 0.73

Mixtures

0.50 0.50 0.00 0.00 0.44 0.53 — — 0.03
0.50 0.50 0.00 0.00 0.45 0.52 0.02 0.01 0.00
0.15 0.25 0.25 0.35 0.05 0.40 — — 0.55
0.15 0.25 0.25 0.35 0.07 0.27 0.24 0.37 0.05
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Results

Table: Correlation coefficient between pairs of original spectra, pairs of first
derivative of spectra and pairs of second derivative of spectra.

Original spectra:
goethite jarosite copiapite ferrihydrite

goethite 1.00
jarosite 0.67 1.00
copiapite 0.43 0.72 1.00
ferrihydrite 0.86 0.29 0.16 1.00

1st derivative (lower 4) & 2nd derivative (upper 4):
goethite jarosite copiapite ferrihydrite

goethite 1.00 0.35 -0.14 0.22
jarosite 0.71 1.00 0.43 0.18
copiapite 0.35 0.79 1.00 -0.02
ferrihydrite 0.44 0.24 -0.15 1.00
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Conclusions

This study resulted in four main conclusions.

Abundances of spectrally similar minerals in mine wastes can be
estimated with relatively high accuracy by unmixing of first derivatives
of target spectra, in which contributing components are decorrelated.

Simulated annealing proved efficient in minimizing variance of the
difference spectrum to estimate abundance of spectrally similar
minerals.

Higher accuracy of abundance estimates is gained when end-member
spectra contributing to target spectra is included.

The choice to use the original spectra, the first or second derivatives
spectra depends on the signal-to-noise ratio of the sensor device.
Higher signal-to-noise ratios allows better accuracy in the abundance
estimation by using higher order derivatives.
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