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Abstract— This paper proposes a topological mapping tech-
nique that utilises persistent SIFT features to reduce the
amount of data storage required. It delivers, as an output,
a topological map that lends itself well to conventional path
planning techniques. The approach assimilates features into a
statistical model which promises improved data association.

Experiments were performed using omnidirectional camera rjg 1. Typical panoramic image showing all the SIFT featuresed with
images from the Cogniron dataset. A map was constructed the persistent SIFT features highlighted in yellow.

from one of the supplied routes and the performance of the
localisation algorithm evaluated using another route within

the same environment. Thereafter the map was updated using ired to defi . ti d d d id
the comparison route and the results discussed. The statistical '€quired 10 define an environment IS reduced and rapi

feature association approach is shown to be more robust than localisation without a priori information is possible. The
conventional methods. proposed algorithm is thus ideally suited to solving the
kidnapped robot problem.

The remainder of this paper is structured as follows. In

Most problems in autonomous robotics require systenibe next section we discuss related work in the field of
that develop an environmental map and then localise thertppological mapping as well as the improvements of the
selves within this map. Maps may typically be topologicaproposed algorithm. In Section Ill we introduce the methods
[1], [2], metric [3], [4] and more recently a hybrid metric- of map building and localisation employed by our algorithm.
topological model [5], [6]. While metric maps have receivedn Section IV we provide the experimental results and in
much attention, their accuracy and completeness are oft&ection V we present our conclusions and possible future
not required for tasks such as navigation and path planningork.
This accuracy is also accompanied by a high cost in terms
of memory and processing time required to create them.
Further work investigating the consistency of metric maps The concept of topological mapping was introduced into
by Castellanos, [7], shows that these maps may becorttee field of robotics following studies of human cogni-
statistically inconsistent unless loop closure is perfdm tive mapping undertaken by Kuipers [8]. Since then, much
frequently. This requirement often cannot be met. In catra progress has been made in the field of vision-based topologi-
topological maps store only unique or distinct areas and theal mapping. Topological mapping lends itself well to visio
relationships between them. This is similar to the way hubased approaches as exact localisation is not required. Thi
mans store information of their environments. Hybrid neetri allows the use of image properties that are not specific to
topological models combine both these methods by storiran exact location and also permits some variability in the
metric submaps associated with topological landmarkss Thenvironment. Ulrich and Nourbakhsh [9] classified regions
affords the accuracy of metric map localisation without théhrough the use of global image features using a colour image
problems associated with statistical inconsistency. histogram. In the work of Tapus and Siegwart [2], topolobica

Our approach is based on the topological mappingegions are classified according to a “fingerprint”. This fin-
paradigm using local image features extracted from g@erprint is a combined descriptor of an environment formed
panoramic image of the environment. These features awsing vertical edges extracted from panoramic imagesucolo
collected into groups based on their persistence within thregions and corners extracted from laser range data.
local environment. In the construction of the topological Topological maps have also been successfully built using
map, each region always shares some features of neatbygal features in images. Rybski et al. [10] use the Kanade-
environments. Navigation through this map may then bekucas-Tomasi (KLT) feature tracking algorithm to build
accomplished by following a trail of common features bea topological map incrementally using panoramic images.
tween the environments en route to the final destinatio®ooij et al. [11] have developed an appearance based topo-
Through careful selection of features, the amount of datagical mapping algorithm using Scale Invariant Feature

I. INTRODUCTION

Il. RELATED WORK



Transform (SIFT) features. SIFT features provide desoript space was intended to be used as a perceptually uniform,
that are invariant to scale and rotation changes and robustltminance invariant colour space where thecomponent
photometric changes, enabling topological mapping based cepresents the luminance of the image and ghand b
image similarity. Our method is similar in that topologicalcomponents are chrominance components representing the
regions are defined as a collection of SIFT features, howeveolour information. In our system, the SIFT detector opesat
we achieve a reduction in the number of stored features lmn the luminance component of the image, while the feature
only considering persistent features that exist in thenitigi descriptors are taken from tleeandb colour components, at
of a topological region. Figure 1 shows a typical panoramithe location of the interest point, resulting in a 256 dimens
image with the conventional SIFT features indicated in redeature descriptor. In this manner, colour information is
The highlighted SIFT features in yellow are those whiclalso included in the feature descriptor resulting in imgabv
are reliably detected and visible within a domain around theéescriptor matching in some environments at the cost of
current frame. Furthermore, we also introduce a statisticenore feature terms. While tHeab colour space conversion is
framework for the association of stored features with theeasonably costly in terms of implementation, the coneersi
currently visible features improving the matching rellipi may be parallelised in hardware to improve the performance
Topological mapping has also been investigated by Fraunf the feature extractor.
dorfer et al. [12] as an application of a content based In some topological mapping algorithms [14], [15], these
image retrieval system by storing all observed images of dnterest points, together with their descriptors, are used
environment in a database. Localisation is then achieved lbyatch similar looking images as a form of topological
attempting to match the current image with the images storéacalisation. The problem with these methods is that from a
in the database. single frame, we cannot be sure of the stability of the fesatur
point or its descriptor. In [16] it is shown that descriptors
may vary by an order of magnitude more over large changes
This section describes our method used to create topio+ view-point than in adjacent frames. In our algorithm, we
logical maps of the environment. We start by extractingrack the evolution of a feature over several input frames,
interest points together with the associated descriptors f placing us in a position to discard unstable features as well
the omnidirectional input images. These features are thes provide a statistical representation of the descrigare
tracked from image to image using a multi-image associatiamove through the environment.
strategy. Once a feature has persisted for long enough in theTo accomplish this we could simply match features from
environment it is added to the current environment’s featuradjacent frames and record the descriptors. In some cases,
list. When less than a certain number of features are sthiowever, a feature may be absent from a single frame due
visible, a new node in the topological map is created an occlusion, sensor noise or some other change in the
linked with the previous node. environment, such as lighting. Clearly, these largely Istab
Localisation is performed by matching features in the cufeatures should also be included in the feature set that
rent image with those stored in the topological map. Featudescribes an environment.
matching is performed using the Mahalanobis distance with To create these associations, the extracted features are
outlier compensation to approximate the closeness of tmeatched between successive frames with a look-ahead match
match. A weighted matching function is then used as ® track features that may skip a frame. To match the features
measure of certainty that the currently observed surrewsdi we follow the approach of [13]. Given two imagésand B,

1. METHOD

match a previously stored environment. with feature descriptor sets84 and Fp, a featuref; € F4
] o is matched to the featurg € Fp if the Euclidean distance
A. Feature Extraction and Association d(f%, f#) between the two feature descriptors satisfies the

The omnidirectional camera images are obtained from @onstraint,
hyperbolic mirror mounted on top of a camera. These images N rm n
are then warped into 800 x 200 pixel panoramic images for d(fi, f5) < T <d(fi.f5) ¥V fp€Fp, (1)
processing. Features are extracted using a variant of fie Slwhere 7' is some threshold value used in the matching
algorithm [13] which identifies blobs in the image by findingprocess. This form of matching, while reasonably robust,
the maxima within a Gaussian scale space. One problem witloes permit multiple matches to a single feature in the sicon
this method is that large blobs near the edge of the image ameage. To overcome this problem, matches are found from
not reliably identified due to inconsistencies in the deifinit image A to B as well as from imageB to A, and only
of a Gaussian blur on partial data. Since we have a panorammatches present in both sets are taken as true matches.
image that spans a full revolution we copy portions of the To perform the look-ahead matching, we process three
left side of the image onto the right and vice versa. Weonsecutive imagesi, B andC for matches between them.
copy a segment equal to the height of the panoramic imad#sing these matches we establish a 3 matrix of matches
from each side resulting in a 1200 x 200 pixel image. Theetween descriptor IDs, where matching fra#n through
SIFT algorithm that we use has been modified to incorpaB to C is preferred over matching betweeA and C.
rate colour information. The colour panoramic images ar€his matching matrix is then passed onto the map building
converted to the CIH.ab colour space. Thd.ab colour algorithm to produce the topological map.



B. Environment Definition for a featurex, and by,

To better describe an environment, we introduce the notion 2 _ (. \T(q. N1/,
of a feature“snake”. A snake of features is a list of feature iy = (s = ) (S 4 85) 7 s = ),
IDs related to successive frames from the dataset for whigfhen matching two statistical descriptors. To account for
a positive match was obtained using the method of Sectigjutliers, when calculating this distance we ignore the igont
lll-A. The heart of the map building algorithm is centredputions from the largest 10% of normalised distance elesnent
around a dynamic 2D array of theSsnakes”. Each row n the above sum.
within this array represents a single feature that is being Using this metric we may determine the number of
traCked. EaCh Column represents the fl’ameS in Wh|Ch thﬁatches between two environments by accepting any match
features are present. To prevent an explosion in the size |gks than a certain thresholg2. When multiple landmarks
the array it is constantly pruned to remove old features oRjthin the current or stored environments match a single
the top and empty columns on the left while new features afgndmark, the landmark pair with the lowest distance is
being added to the bottom and new frames on the right. Fﬁbcepted as the correct match.
this reason it is also useful to maintain an incrementing lis  Gjyen the number of matching landmarks,between any
of unique landmark IDs and frame numbers for referencgy o regions and the mean Mahalanobis distance of these
When merging the match array from the previous sectiofyatchesd, we construct a weighted evaluation function, with

direct matches between adjacent frames are preferred oYgfesholdw,, that determines if a match exists between any
matches between features that skip a frame. two regions.

When a snake of features fails to have a matched feature
for two successive frames, no further feature matches will w=n+ky (k2 — d)S > w, )
be possible on this snake as only a single look-ahead frame
is employed. When this is found, the snake is removed froM/ithout the second term in the above equation, we would
the array and added to the environment information. Theonsider two environments to match one another when a
length of the snake is important for the performance of theertain number of landmarks are found to be common
algorithm. If the snake has too few features, the statisticRetween them. The inclusion of the second term in the above
descriptor will not be well formed and lead to poor matchingunction increases the certainty of a match as the average
results. For this reason we put a limit on the minimum lengtiMahalanobis distance decreases below some vajudhis
as well as the minimum number of non-zero descriptors. allows us to accept either a few very good matches or many

An environment within the topological map is then defined0or matches as a positive environment association. jdeall
as a collection of landmarks or feature snakes visible in the more smooth threshold function with the same shape as
region of the keyframe — which also describes the locationi’, Such astanh(z), would be preferred although we have
of the environment. To reduce the amount of data stored féhosen the simpler function to speed up the implementation.
each environment, we construct a second-moment statisticaOnce a region has been determined, an approximation
descriptor for each feature snake by calculating the me#i the relative orientation of the robot with respect to the
f; € R?®6 and the covariance matri§; € R2°6%256 To original orientation of the region may be determined by
simplify this definition, we assume that the elements of thealculating the mean angular displacement of the matched
feature descriptor are independent, thus redudihgo a features.
diagonal matrix.

In addition to the landmark descriptors we also stor®. Map Building
the relative angular location of each of these features with g, the purposes of topological map building, a map is

respect to the robots current heading in the keyframe and thgmposed of a set of environments or distinct regions within
relative location of the current environment to the presiouihe world. Naturally, there must also be a way to identify
one. This information may later be used for the purposes gfhen the robot reencounters these environments as well as

localisation and ultimately navigation. a method of defining which of these environments are in
o relative proximity to one another. With the definition of
C. Localisation an environment, and localisation within these environmient

Localisation is performed by matching currently visiblediscussed above, the problem of map building now reduces to
features extracted from the environment with the databfse ®at of when to define a new region and how to merge current
features stored for each region. This matching may either fjgformation with an existing region. To do this, we process
performed with a single feature extracted from a panoramf€ input frames in sequence as they are obtained from the
image or from a statistical descriptor of another landmarRmnidirectional camera. The amount of work required for

for the purposes of loop closing during map building. map blii}!d.i”g may be greatly reduced by only considering
The metric used to calculate the match is the Mahalanob®ery & input frame (however, every input frame is used
distance given by, for snake generation).

For each frame under consideration, we collect the set of
d? = (x — i) "S; H(x — i), all visible, persistent landmarks in an interval ff frames

P =



around the current frameFor the case of the first framg,  using the Cognitron dataset available from [17]. This dattas
frames from the start, we simply add the first region to therovides several runs through a typical household environ-
environment list together with the orientation of the featu ment with changes in the environment and the presence of
with respect to the robot’'s heading. dynamic objects (people). We use this dataset to test the
For each subsequent frame, we attempt to match tiperformance of our algorithm in the presence of occlusion
visible landmarks with those in the environment databasand dynamic changes while providing a basis for comparison
according to (2). From here, three possible conditionsteexiswith other algorithms. The experimental results will use th
1) The current environment obtains the best match with® and4 runs fromHome1 Run 1comprises a single trip
the currently active region. around the environment with no dynamic objects or changes
2) The current environment obtains the best match witth the environment, whileRun 4 provides several smaller
another region. loops in the environment in the presence of people and with
3) The current environment does not match any of thehanges in the environment froRun 1
stored regions. For the SIFT feature extraction, we use a detection thresh-
For case 1 we simply move on to the next frame angld of 0.01 and an edge threshold of 4. The threshold used for

repeat the process. For case 2, we set the region with the T matching in (1) is" = 1.5. We only consider feature

best match to be the current region, update the connectivilf/akes with a length of 30 features or more to ensure that
matrix to indicate a connection between the previous a e statistical model of the descriptor is well formed. When

current regions and merge the landmark sets. For casedgtermining if two features are considered a positive match
we add the current frame to the region database and upd4{g use a threshold of? = 40, taken from ay* table. For
the connectivity matrix to indicate a connection betweemn thth® constants in equation (2) we use= 0 andw; = 7 for
previous and new regions. map_bw_ldmg andk; = 0.025, ko = /40 andw; = 6 f(_)r
Occasionally we may encounter a frame where very fefpcalisation. The values of, andk, are chosen to weight
persistent landmarks are visible. This presents a probtem f1€ sécond term in (2) so that no additional contribution
the map building algorithm as there may not be sufficierff Present if the average distance matches the threshold
features to allow a positive match to future frames. Twy@/ue and that a single match of distance 0 will satisfy (2)
options exist at this point, either ignore the frame an&i_unng localisation. The choice af; mfluen_ces the average
continue until a more suitable frame is found or increasdistance between nodes of the topological map and was
the interval sizef,, until a suitable number of features arechosen experimentally. We ignore the second term of (2)
visible. We have found that a joint approach works besflUring map building as matches between the same landmarks
where the interval is expanded to some limit and then N\nthmthe storeq region and the currerjtly visible frameautes
sufficient features are still not visible, the frame is diseal. N @ Mahalanobis distance of 0 affecting the performance of
Merging of landmarks\When an environment is revisited, (2)- For the case of localisation, an exact match, such as the
the currently visible landmarks can be merged with thosg"€ described above, is V|rtually.|mp053|blg due to noise.
in the environment. This allows us to improve the quality°Uring map building we only consider evesy® frame, use
of the existing landmarks as well as to include additionafn initial value off, = 3 and increase it to a maximum of
landmarks that may not have been initially incorporated int15 in an attempt to increase the number of visible features.
the database. If a landmark matches one that is stored in the

environment, we merge the two landmarks, otherwise we add L ,
it as a new landmark. To test the performance of the localisation algorithm, we

We merge two landmarks using a maximum-likelihoodirst construct a map of the environment using one dataset.

Localisation

estimate of the new parameters as, Thereafter we attempt to localise the position of the robot
from the second dataset within the map generated from the

Sr = (S;t+syh! (3) first. By virtue of the method used to construct the map,
pr = Sp(S7lu1+ S5 ps). (4) the dataset used to construct the map always has a 100%

] o ) ) correspondence to the regions within the map.
When merging the currently visible frame with one in the \yhen localising the position of the robot Run 4with

database, we do not update the relative position of the megig map generated usingun 1 we obtain a 78.5% match
or the relative angular chation of the existingll.andma_ﬂkua to a nearby region within the map. The algorithm may not
new landmarks are assigned an angular position derived fro&ﬂNays localise to the nearest region as passing through
the assumed orientation of the robot based on the procedua%orwaysn changes the visible set of features, and the
described in Section 1lI-C. match will then be to the nearest region containing the
IV. EXPERIMENTAL RESULTS currently visible features. The proposed algorithm presen
an improvement over similar algorithms [15] where only
features descriptors from single frames are considered. Th
78.5% match obtained is reasonable considering that the
LCausality requires that we only consider frames occurrinpreethe  [OPOt fraverses regions iRun 4that are not visited irRun
current frame unless the map is being built off-line from kel data. 1. For these regions, a suitable match cannot be expected.

In this section we investigate the performance of ou
method to perform topological localisation and map buidin



Fig. 2. Topological Map of the Environment created from theaBats

B. Map Building The associated frame shows a rather featureless enviranmen
o . found within this region.

We test the performance of the map building algorithm +ha two nodes marked 4 in Figure 2 are taken from
using both datasets. We have concaten&ed 1onto the 4 ghy the same location but from different runs. The
end ofRun 4and processed both concurrently to test the pefyo frames from these nodes are shown in Figure 3. This
formance of the proposed method at handling the kidnappgd,,re highlights one of the problems of the SIFT feature

robot problem. The results obtained from the algorithm argyi-actor. The changes in illumination between the two runs
shown in Figure 2. The locations of the topological map argaye resulted in almost no matches between the two figures,
superimposed on an approximate grid map generated frofgpite them being from almost exactly the same view point.
the accompanying laser range finder data. The dotted linggjje the SIFT feature extractor claims to be photometrjcall

show the actual path of the robot while the solid lines formqp, st the change in illumination have caused saturation
the connections between the various topological nodes. Alk 1o camera in some parts of the image, affecting the
the red information (squares) pertains to fRen 4 dataset performance. SIFT feature matching performed using (1)
while the blue information (diamonds) pertains to fRen 1 yields two matches (one of which is incorrect) shown in

dataset. The algorithm handled the kidnapped robot problef o\, Our method identifies 3 matches, shown in red, that
flawlessly, immediately reassigning the location of theotob ach similar areas in the two images. Unfortunately, these
to the map node closest to the start of en 1dataset.  5iches were not sufficient to enable the localisation of the

When initially processing the input images, the number dfphot at point 4 within the map, resulting in two nodes being
SIFT features extracted from each image had an average gated at this point.

317.1 and a standard deviation of 103.3. After processing At point 5 in Figure 2 a new node was created on the
these features to create the topological map, the regions
within the map had an average of 46.2 features with a
standard deviation of 42.4. Considering that the stasiktic
descriptors require twice the storage space of convention
SIFT features, the algorithm achieves a reduction of appro
imately 30% in the amount of data to be stored.

In Figure 2 we have highlighted several regions of interes™
In regions 1 and 2 we have nearby map nodes as a res
of large changes in the environment. These changes oc
from the movement of the robot through “doorways”. Th
associated sets of frames in Figure 2 show the changes

the environment from one node to the next.
: ; . Fig. 3. Two images from different datasets at the same locatmnving
In Region 3 many nodes were created in close pI’OXImIt)(he sensitivity of SIFT to illumination. Yellow matche& are using the

This can be attributed to the lack of stable features in th&@nventional SIFT matching method, while red matcii@sare with our
environment as well as the presence of dynamic objectgorithm.

F
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second pass. In this area, during the first pad’un 4 there

to thank the providers of the Cogniron dataset for making

was an object in the environment that allowed a number dheir data available.

features to persist for much longer allowing a greater dista

to be covered before the creation of a new node. On the
second pass ifRun 1 this object was removed from the [1]
environment causing a new node to be added sooner. This
highlights the ability of the topological mapping algorith  [2]
to adapt to changes in the environment.

As shown in Region 3 of Figure 2, a lack of features in;
an environment presents the only significant problem of our
method. We are currently investigating other means of featu [4]
extraction that may be used when an insufficient number of
SIFT features are detected.

5
V. CONCLUSION AND FUTURE WORK "

We have introduced a vision based topological mappings)
and localisation algorithm that exploits the persistente o
SIFT features within several omnidirectional camera insage -,
to improve data association. This algorithm also allocates
topological regions conservatively, based on the number of
visible features, as opposed to other algorithms that spa&—f‘
regions equally in time or distance. This region definition g
coupled with the selection of only persistent featuresmfro
the myriad of features usually identified within an image 10]
limits the total amount of information required to map an
environment by 70% relative to other methods storing SIFT
descriptors directly. We have also shown that the stadisstic*t
approach to landmark matching can yield a better result than
normally obtained using only single descriptors. [12]

A. Future Work

At present we are working on a real-time implementatiof3]
of this algorithm on a mobile platform with integrated
navigation between regions. To improve the localisatiof 4
performance, we are looking at using a statistical algorith
to predict the certainty of being in a region given previgusl 15]
occupied regions and the stored odometry relations. Tr[|e
algorithm may also be adapted to improve the location
estimates of a map node using a SLAM infrastructure ]
described in [18]. Finally navigation is being implementeﬁ
using the A* graph planning algorithm with the relative
region displacements allocated during the mapping algorit (17]
as edge weights to enable improved path planning. [18]
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