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Abstract— This paper proposes a topological mapping tech-
nique that utilises persistent SIFT features to reduce the
amount of data storage required. It delivers, as an output,
a topological map that lends itself well to conventional path
planning techniques. The approach assimilates features into a
statistical model which promises improved data association.
Experiments were performed using omnidirectional camera
images from the Cogniron dataset. A map was constructed
from one of the supplied routes and the performance of the
localisation algorithm evaluated using another route within
the same environment. Thereafter the map was updated using
the comparison route and the results discussed. The statistical
feature association approach is shown to be more robust than
conventional methods.

I. I NTRODUCTION

Most problems in autonomous robotics require systems
that develop an environmental map and then localise them-
selves within this map. Maps may typically be topological
[1], [2], metric [3], [4] and more recently a hybrid metric-
topological model [5], [6]. While metric maps have received
much attention, their accuracy and completeness are often
not required for tasks such as navigation and path planning.
This accuracy is also accompanied by a high cost in terms
of memory and processing time required to create them.
Further work investigating the consistency of metric maps
by Castellanos, [7], shows that these maps may become
statistically inconsistent unless loop closure is performed
frequently. This requirement often cannot be met. In contrast,
topological maps store only unique or distinct areas and the
relationships between them. This is similar to the way hu-
mans store information of their environments. Hybrid metric-
topological models combine both these methods by storing
metric submaps associated with topological landmarks. This
affords the accuracy of metric map localisation without the
problems associated with statistical inconsistency.

Our approach is based on the topological mapping
paradigm using local image features extracted from a
panoramic image of the environment. These features are
collected into groups based on their persistence within the
local environment. In the construction of the topological
map, each region always shares some features of nearby
environments. Navigation through this map may then be
accomplished by following a trail of common features be-
tween the environments en route to the final destination.
Through careful selection of features, the amount of data

Fig. 1. Typical panoramic image showing all the SIFT features in red with
the persistent SIFT features highlighted in yellow.

required to define an environment is reduced and rapid
localisation without a priori information is possible. The
proposed algorithm is thus ideally suited to solving the
kidnapped robot problem.

The remainder of this paper is structured as follows. In
the next section we discuss related work in the field of
topological mapping as well as the improvements of the
proposed algorithm. In Section III we introduce the methods
of map building and localisation employed by our algorithm.
In Section IV we provide the experimental results and in
Section V we present our conclusions and possible future
work.

II. RELATED WORK

The concept of topological mapping was introduced into
the field of robotics following studies of human cogni-
tive mapping undertaken by Kuipers [8]. Since then, much
progress has been made in the field of vision-based topologi-
cal mapping. Topological mapping lends itself well to vision
based approaches as exact localisation is not required. This
allows the use of image properties that are not specific to
an exact location and also permits some variability in the
environment. Ulrich and Nourbakhsh [9] classified regions
through the use of global image features using a colour image
histogram. In the work of Tapus and Siegwart [2], topological
regions are classified according to a “fingerprint”. This fin-
gerprint is a combined descriptor of an environment formed
using vertical edges extracted from panoramic images, colour
regions and corners extracted from laser range data.

Topological maps have also been successfully built using
local features in images. Rybski et al. [10] use the Kanade-
Lucas-Tomasi (KLT) feature tracking algorithm to build
a topological map incrementally using panoramic images.
Booij et al. [11] have developed an appearance based topo-
logical mapping algorithm using Scale Invariant Feature



Transform (SIFT) features. SIFT features provide descriptors
that are invariant to scale and rotation changes and robust to
photometric changes, enabling topological mapping based on
image similarity. Our method is similar in that topological
regions are defined as a collection of SIFT features, however
we achieve a reduction in the number of stored features by
only considering persistent features that exist in the vicinity
of a topological region. Figure 1 shows a typical panoramic
image with the conventional SIFT features indicated in red.
The highlighted SIFT features in yellow are those which
are reliably detected and visible within a domain around the
current frame. Furthermore, we also introduce a statistical
framework for the association of stored features with the
currently visible features improving the matching reliability.

Topological mapping has also been investigated by Fraun-
dorfer et al. [12] as an application of a content based
image retrieval system by storing all observed images of an
environment in a database. Localisation is then achieved by
attempting to match the current image with the images stored
in the database.

III. M ETHOD

This section describes our method used to create topo-
logical maps of the environment. We start by extracting
interest points together with the associated descriptors from
the omnidirectional input images. These features are then
tracked from image to image using a multi-image association
strategy. Once a feature has persisted for long enough in the
environment it is added to the current environment’s feature
list. When less than a certain number of features are still
visible, a new node in the topological map is created and
linked with the previous node.

Localisation is performed by matching features in the cur-
rent image with those stored in the topological map. Feature
matching is performed using the Mahalanobis distance with
outlier compensation to approximate the closeness of the
match. A weighted matching function is then used as a
measure of certainty that the currently observed surroundings
match a previously stored environment.

A. Feature Extraction and Association

The omnidirectional camera images are obtained from a
hyperbolic mirror mounted on top of a camera. These images
are then warped into 800 x 200 pixel panoramic images for
processing. Features are extracted using a variant of the SIFT
algorithm [13] which identifies blobs in the image by finding
the maxima within a Gaussian scale space. One problem with
this method is that large blobs near the edge of the image are
not reliably identified due to inconsistencies in the definition
of a Gaussian blur on partial data. Since we have a panoramic
image that spans a full revolution we copy portions of the
left side of the image onto the right and vice versa. We
copy a segment equal to the height of the panoramic image
from each side resulting in a 1200 x 200 pixel image. The
SIFT algorithm that we use has been modified to incorpo-
rate colour information. The colour panoramic images are
converted to the CIELab colour space. TheLab colour

space was intended to be used as a perceptually uniform,
luminance invariant colour space where theL component
represents the luminance of the image and thea and b
components are chrominance components representing the
colour information. In our system, the SIFT detector operates
on the luminance component of the image, while the feature
descriptors are taken from thea andb colour components, at
the location of the interest point, resulting in a 256 dimension
feature descriptor. In this manner, colour information is
also included in the feature descriptor resulting in improved
descriptor matching in some environments at the cost of
more feature terms. While theLab colour space conversion is
reasonably costly in terms of implementation, the conversion
may be parallelised in hardware to improve the performance
of the feature extractor.

In some topological mapping algorithms [14], [15], these
interest points, together with their descriptors, are usedto
match similar looking images as a form of topological
localisation. The problem with these methods is that from a
single frame, we cannot be sure of the stability of the feature
point or its descriptor. In [16] it is shown that descriptors
may vary by an order of magnitude more over large changes
in view-point than in adjacent frames. In our algorithm, we
track the evolution of a feature over several input frames,
placing us in a position to discard unstable features as well
as provide a statistical representation of the descriptor as we
move through the environment.

To accomplish this we could simply match features from
adjacent frames and record the descriptors. In some cases,
however, a feature may be absent from a single frame due
to occlusion, sensor noise or some other change in the
environment, such as lighting. Clearly, these largely stable
features should also be included in the feature set that
describes an environment.

To create these associations, the extracted features are
matched between successive frames with a look-ahead match
to track features that may skip a frame. To match the features
we follow the approach of [13]. Given two imagesA andB,
with feature descriptor setsFA andFB , a featurefn

A ∈ FA

is matched to the featurefm
B ∈ FB if the Euclidean distance

d (fn
A, fm

B ) between the two feature descriptors satisfies the
constraint,

d (fn
A, fm

B ) × T < d (fn
A, f

p
B) ∀ f

p
B ∈ FB , (1)

where T is some threshold value used in the matching
process. This form of matching, while reasonably robust,
does permit multiple matches to a single feature in the second
image. To overcome this problem, matches are found from
image A to B as well as from imageB to A, and only
matches present in both sets are taken as true matches.

To perform the look-ahead matching, we process three
consecutive images,A, B andC for matches between them.
Using these matches we establish an× 3 matrix of matches
between descriptor IDs, where matching fromA through
B to C is preferred over matching betweenA and C.
This matching matrix is then passed onto the map building
algorithm to produce the topological map.



B. Environment Definition

To better describe an environment, we introduce the notion
of a feature“snake”. A snake of features is a list of feature
IDs related to successive frames from the dataset for which
a positive match was obtained using the method of Section
III-A. The heart of the map building algorithm is centred
around a dynamic 2D array of these“snakes”. Each row
within this array represents a single feature that is being
tracked. Each column represents the frames in which the
features are present. To prevent an explosion in the size of
the array it is constantly pruned to remove old features on
the top and empty columns on the left while new features are
being added to the bottom and new frames on the right. For
this reason it is also useful to maintain an incrementing list
of unique landmark IDs and frame numbers for reference.
When merging the match array from the previous section,
direct matches between adjacent frames are preferred over
matches between features that skip a frame.

When a snake of features fails to have a matched feature
for two successive frames, no further feature matches will
be possible on this snake as only a single look-ahead frame
is employed. When this is found, the snake is removed from
the array and added to the environment information. The
length of the snake is important for the performance of the
algorithm. If the snake has too few features, the statistical
descriptor will not be well formed and lead to poor matching
results. For this reason we put a limit on the minimum length
as well as the minimum number of non-zero descriptors.

An environment within the topological map is then defined
as a collection of landmarks or feature snakes visible in the
region of the keyframe – which also describes the location
of the environment. To reduce the amount of data stored for
each environment, we construct a second-moment statistical
descriptor for each feature snake by calculating the mean
µ̄i ∈ R

256 and the covariance matrixSi ∈ R
256×256. To

simplify this definition, we assume that the elements of the
feature descriptor are independent, thus reducingSi to a
diagonal matrix.

In addition to the landmark descriptors we also store
the relative angular location of each of these features with
respect to the robots current heading in the keyframe and the
relative location of the current environment to the previous
one. This information may later be used for the purposes of
localisation and ultimately navigation.

C. Localisation

Localisation is performed by matching currently visible
features extracted from the environment with the database of
features stored for each region. This matching may either be
performed with a single feature extracted from a panoramic
image or from a statistical descriptor of another landmark
for the purposes of loop closing during map building.

The metric used to calculate the match is the Mahalanobis
distance given by,

d2

i = (x − µi)
TS−1

i (x − µi),

for a feature,x, and by,

d2

ij = (µi − µj)
T(Si + Sj)

−1(µi − µj),

when matching two statistical descriptors. To account for
outliers, when calculating this distance we ignore the contri-
butions from the largest 10% of normalised distance elements
in the above sum.

Using this metric we may determine the number of
matches between two environments by accepting any match
less than a certain threshold,χ2. When multiple landmarks
within the current or stored environments match a single
landmark, the landmark pair with the lowest distance is
accepted as the correct match.

Given the number of matching landmarks,n, between any
two regions and the mean Mahalanobis distance of these
matches,̄d, we construct a weighted evaluation function, with
thresholdwt, that determines if a match exists between any
two regions.

w = n + k1

(

k2 − d̄
)3 ≥ wt (2)

Without the second term in the above equation, we would
consider two environments to match one another when a
certain number of landmarks are found to be common
between them. The inclusion of the second term in the above
function increases the certainty of a match as the average
Mahalanobis distance decreases below some valuek2. This
allows us to accept either a few very good matches or many
poor matches as a positive environment association. Ideally
a more smooth threshold function with the same shape as
x3, such asatanh(x), would be preferred although we have
chosen the simpler function to speed up the implementation.

Once a region has been determined, an approximation
of the relative orientation of the robot with respect to the
original orientation of the region may be determined by
calculating the mean angular displacement of the matched
features.

D. Map Building

For the purposes of topological map building, a map is
composed of a set of environments or distinct regions within
the world. Naturally, there must also be a way to identify
when the robot reencounters these environments as well as
a method of defining which of these environments are in
relative proximity to one another. With the definition of
an environment, and localisation within these environments,
discussed above, the problem of map building now reduces to
that of when to define a new region and how to merge current
information with an existing region. To do this, we process
the input frames in sequence as they are obtained from the
omnidirectional camera. The amount of work required for
map building may be greatly reduced by only considering
every kth input frame (however, every input frame is used
for snake generation).

For each frame under consideration, we collect the set of
all visible, persistent landmarks in an interval offn frames



around the current frame1. For the case of the first frame,fn

frames from the start, we simply add the first region to the
environment list together with the orientation of the features
with respect to the robot’s heading.

For each subsequent frame, we attempt to match the
visible landmarks with those in the environment database
according to (2). From here, three possible conditions exist:

1) The current environment obtains the best match with
the currently active region.

2) The current environment obtains the best match with
another region.

3) The current environment does not match any of the
stored regions.

For case 1 we simply move on to the next frame and
repeat the process. For case 2, we set the region with the
best match to be the current region, update the connectivity
matrix to indicate a connection between the previous and
current regions and merge the landmark sets. For case 3
we add the current frame to the region database and update
the connectivity matrix to indicate a connection between the
previous and new regions.

Occasionally we may encounter a frame where very few
persistent landmarks are visible. This presents a problem to
the map building algorithm as there may not be sufficient
features to allow a positive match to future frames. Two
options exist at this point, either ignore the frame and
continue until a more suitable frame is found or increase
the interval sizefn until a suitable number of features are
visible. We have found that a joint approach works best,
where the interval is expanded to some limit and then if
sufficient features are still not visible, the frame is discarded.

Merging of landmarks:When an environment is revisited,
the currently visible landmarks can be merged with those
in the environment. This allows us to improve the quality
of the existing landmarks as well as to include additional
landmarks that may not have been initially incorporated into
the database. If a landmark matches one that is stored in the
environment, we merge the two landmarks, otherwise we add
it as a new landmark.

We merge two landmarks using a maximum-likelihood
estimate of the new parameters as,

ST = (S−1

1
+ S−1

2
)−1 (3)

µT = ST (S−1

1
µ1 + S−1

2
µ2). (4)

When merging the currently visible frame with one in the
database, we do not update the relative position of the region
or the relative angular location of the existing landmarks.The
new landmarks are assigned an angular position derived from
the assumed orientation of the robot based on the procedure
described in Section III-C.

IV. EXPERIMENTAL RESULTS

In this section we investigate the performance of our
method to perform topological localisation and map building

1Causality requires that we only consider frames occurring before the
current frame unless the map is being built off-line from collected data.

using the Cognitron dataset available from [17]. This dataset
provides several runs through a typical household environ-
ment with changes in the environment and the presence of
dynamic objects (people). We use this dataset to test the
performance of our algorithm in the presence of occlusion
and dynamic changes while providing a basis for comparison
with other algorithms. The experimental results will use the
1st and4th runs fromHome1. Run 1comprises a single trip
around the environment with no dynamic objects or changes
in the environment, whileRun 4 provides several smaller
loops in the environment in the presence of people and with
changes in the environment fromRun 1.

For the SIFT feature extraction, we use a detection thresh-
old of 0.01 and an edge threshold of 4. The threshold used for
SIFT matching in (1) isT = 1.5. We only consider feature
snakes with a length of 30 features or more to ensure that
the statistical model of the descriptor is well formed. When
determining if two features are considered a positive match,
we use a threshold ofχ2 = 40, taken from aχ2 table. For
the constants in equation (2) we usek1 = 0 andwt = 7 for
map building andk1 = 0.025, k2 =

√
40 and wt = 6 for

localisation. The values ofk1 and k2 are chosen to weight
the second term in (2) so that no additional contribution
is present if the average distance matches the threshold
value and that a single match of distance 0 will satisfy (2)
during localisation. The choice ofwt influences the average
distance between nodes of the topological map and was
chosen experimentally. We ignore the second term of (2)
during map building as matches between the same landmarks
within the stored region and the currently visible frame result
in a Mahalanobis distance of 0 affecting the performance of
(2). For the case of localisation, an exact match, such as the
one described above, is virtually impossible due to noise.
During map building we only consider every3rd frame, use
an initial value offn = 3 and increase it to a maximum of
15 in an attempt to increase the number of visible features.

A. Localisation

To test the performance of the localisation algorithm, we
first construct a map of the environment using one dataset.
Thereafter we attempt to localise the position of the robot
from the second dataset within the map generated from the
first. By virtue of the method used to construct the map,
the dataset used to construct the map always has a 100%
correspondence to the regions within the map.

When localising the position of the robot inRun 4with
a map generated usingRun 1, we obtain a 78.5% match
to a nearby region within the map. The algorithm may not
always localise to the nearest region as passing through
“doorways” changes the visible set of features, and the
match will then be to the nearest region containing the
currently visible features. The proposed algorithm presents
an improvement over similar algorithms [15] where only
features descriptors from single frames are considered. The
78.5% match obtained is reasonable considering that the
robot traverses regions inRun 4 that are not visited inRun
1. For these regions, a suitable match cannot be expected.
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Fig. 2. Topological Map of the Environment created from the Datasets

B. Map Building

We test the performance of the map building algorithm
using both datasets. We have concatenatedRun 1onto the
end ofRun 4and processed both concurrently to test the per-
formance of the proposed method at handling the kidnapped
robot problem. The results obtained from the algorithm are
shown in Figure 2. The locations of the topological map are
superimposed on an approximate grid map generated from
the accompanying laser range finder data. The dotted lines
show the actual path of the robot while the solid lines form
the connections between the various topological nodes. All
the red information (squares) pertains to theRun 4dataset
while the blue information (diamonds) pertains to theRun 1
dataset. The algorithm handled the kidnapped robot problem
flawlessly, immediately reassigning the location of the robot
to the map node closest to the start of theRun 1dataset.

When initially processing the input images, the number of
SIFT features extracted from each image had an average of
317.1 and a standard deviation of 103.3. After processing
these features to create the topological map, the regions
within the map had an average of 46.2 features with a
standard deviation of 42.4. Considering that the statistical
descriptors require twice the storage space of conventional
SIFT features, the algorithm achieves a reduction of approx-
imately 30% in the amount of data to be stored.

In Figure 2 we have highlighted several regions of interest.
In regions 1 and 2 we have nearby map nodes as a result
of large changes in the environment. These changes occur
from the movement of the robot through “doorways”. The
associated sets of frames in Figure 2 show the changes in
the environment from one node to the next.

In Region 3 many nodes were created in close proximity.
This can be attributed to the lack of stable features in the
environment as well as the presence of dynamic objects.

The associated frame shows a rather featureless environment
found within this region.

The two nodes marked 4 in Figure 2 are taken from
roughly the same location but from different runs. The
two frames from these nodes are shown in Figure 3. This
figure highlights one of the problems of the SIFT feature
extractor. The changes in illumination between the two runs
have resulted in almost no matches between the two figures,
despite them being from almost exactly the same view point.
While the SIFT feature extractor claims to be photometrically
robust, the change in illumination have caused saturation
of the camera in some parts of the image, affecting the
performance. SIFT feature matching performed using (1)
yields two matches (one of which is incorrect) shown in
yellow. Our method identifies 3 matches, shown in red, that
match similar areas in the two images. Unfortunately, these
matches were not sufficient to enable the localisation of the
robot at point 4 within the map, resulting in two nodes being
created at this point.

At point 5 in Figure 2 a new node was created on the

Fig. 3. Two images from different datasets at the same locationshowing
the sensitivity of SIFT to illumination. Yellow matches△ are using the
conventional SIFT matching method, while red matches© are with our
algorithm.



second pass. In this area, during the first pass inRun 4, there
was an object in the environment that allowed a number of
features to persist for much longer allowing a greater distance
to be covered before the creation of a new node. On the
second pass inRun 1, this object was removed from the
environment causing a new node to be added sooner. This
highlights the ability of the topological mapping algorithm
to adapt to changes in the environment.

As shown in Region 3 of Figure 2, a lack of features in
an environment presents the only significant problem of our
method. We are currently investigating other means of feature
extraction that may be used when an insufficient number of
SIFT features are detected.

V. CONCLUSION AND FUTURE WORK

We have introduced a vision based topological mapping
and localisation algorithm that exploits the persistence of
SIFT features within several omnidirectional camera images
to improve data association. This algorithm also allocates
topological regions conservatively, based on the number of
visible features, as opposed to other algorithms that space
regions equally in time or distance. This region definition
coupled with the selection of only persistent features, from
the myriad of features usually identified within an image,
limits the total amount of information required to map an
environment by 70% relative to other methods storing SIFT
descriptors directly. We have also shown that the statistical
approach to landmark matching can yield a better result than
normally obtained using only single descriptors.

A. Future Work

At present we are working on a real-time implementation
of this algorithm on a mobile platform with integrated
navigation between regions. To improve the localisation
performance, we are looking at using a statistical algorithm
to predict the certainty of being in a region given previously
occupied regions and the stored odometry relations. The
algorithm may also be adapted to improve the location
estimates of a map node using a SLAM infrastructure as
described in [18]. Finally navigation is being implemented
using the A* graph planning algorithm with the relative
region displacements allocated during the mapping algorithm
as edge weights to enable improved path planning.
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